ekf_helper.cpp
57.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf_helper.cpp
* Definition of ekf helper functions.
*
* @author Roman Bast <bapstroman@gmail.com>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <cstdlib>
void Ekf::resetVelocity()
{
if (_control_status.flags.gps && isTimedOut(_last_gps_fail_us, (uint64_t)_min_gps_health_time_us)) {
// this reset is only called if we have new gps data at the fusion time horizon
resetVelocityToGps();
} else if (_control_status.flags.opt_flow) {
resetHorizontalVelocityToOpticalFlow();
} else if (_control_status.flags.ev_vel) {
resetVelocityToVision();
} else {
resetHorizontalVelocityToZero();
}
}
void Ekf::resetVelocityToGps()
{
_information_events.flags.reset_vel_to_gps = true;
ECL_INFO("reset velocity to GPS");
resetVelocityTo(_gps_sample_delayed.vel);
P.uncorrelateCovarianceSetVariance<3>(4, sq(_gps_sample_delayed.sacc));
}
void Ekf::resetHorizontalVelocityToOpticalFlow()
{
_information_events.flags.reset_vel_to_flow = true;
ECL_INFO("reset velocity to flow");
// constrain height above ground to be above minimum possible
const float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance);
// calculate absolute distance from focal point to centre of frame assuming a flat earth
const float range = heightAboveGndEst / _range_sensor.getCosTilt();
if ((range - _params.rng_gnd_clearance) > 0.3f) {
// we should have reliable OF measurements so
// calculate X and Y body relative velocities from OF measurements
Vector3f vel_optflow_body;
vel_optflow_body(0) = - range * _flow_compensated_XY_rad(1) / _flow_sample_delayed.dt;
vel_optflow_body(1) = range * _flow_compensated_XY_rad(0) / _flow_sample_delayed.dt;
vel_optflow_body(2) = 0.0f;
// rotate from body to earth frame
const Vector3f vel_optflow_earth = _R_to_earth * vel_optflow_body;
resetHorizontalVelocityTo(Vector2f(vel_optflow_earth));
} else {
resetHorizontalVelocityTo(Vector2f{0.f, 0.f});
}
// reset the horizontal velocity variance using the optical flow noise variance
P.uncorrelateCovarianceSetVariance<2>(4, sq(range) * calcOptFlowMeasVar());
}
void Ekf::resetVelocityToVision()
{
_information_events.flags.reset_vel_to_vision = true;
ECL_INFO("reset to vision velocity");
resetVelocityTo(getVisionVelocityInEkfFrame());
P.uncorrelateCovarianceSetVariance<3>(4, getVisionVelocityVarianceInEkfFrame());
}
void Ekf::resetHorizontalVelocityToZero()
{
_information_events.flags.reset_vel_to_zero = true;
ECL_INFO("reset velocity to zero");
// Used when falling back to non-aiding mode of operation
resetHorizontalVelocityTo(Vector2f{0.f, 0.f});
P.uncorrelateCovarianceSetVariance<2>(4, 25.0f);
}
void Ekf::resetVelocityTo(const Vector3f &new_vel)
{
resetHorizontalVelocityTo(Vector2f(new_vel));
resetVerticalVelocityTo(new_vel(2));
}
void Ekf::resetHorizontalVelocityTo(const Vector2f &new_horz_vel)
{
const Vector2f delta_horz_vel = new_horz_vel - Vector2f(_state.vel);
_state.vel.xy() = new_horz_vel;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].vel.xy() += delta_horz_vel;
}
_output_new.vel.xy() += delta_horz_vel;
_state_reset_status.velNE_change = delta_horz_vel;
_state_reset_status.velNE_counter++;
}
void Ekf::resetVerticalVelocityTo(float new_vert_vel)
{
const float delta_vert_vel = new_vert_vel - _state.vel(2);
_state.vel(2) = new_vert_vel;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].vel(2) += delta_vert_vel;
_output_vert_buffer[index].vert_vel += delta_vert_vel;
}
_output_new.vel(2) += delta_vert_vel;
_output_vert_new.vert_vel += delta_vert_vel;
_state_reset_status.velD_change = delta_vert_vel;
_state_reset_status.velD_counter++;
}
void Ekf::resetHorizontalPosition()
{
// let the next odometry update know that the previous value of states cannot be used to calculate the change in position
_hpos_prev_available = false;
if (_control_status.flags.gps) {
// this reset is only called if we have new gps data at the fusion time horizon
resetHorizontalPositionToGps();
} else if (_control_status.flags.ev_pos) {
// this reset is only called if we have new ev data at the fusion time horizon
resetHorizontalPositionToVision();
} else if (_control_status.flags.opt_flow) {
_information_events.flags.reset_pos_to_last_known = true;
ECL_INFO("reset position to last known position");
if (!_control_status.flags.in_air) {
// we are likely starting OF for the first time so reset the horizontal position
resetHorizontalPositionTo(Vector2f(0.f, 0.f));
} else {
resetHorizontalPositionTo(_last_known_posNE);
}
// estimate is relative to initial position in this mode, so we start with zero error.
P.uncorrelateCovarianceSetVariance<2>(7, 0.0f);
} else {
_information_events.flags.reset_pos_to_last_known = true;
ECL_INFO("reset position to last known position");
// Used when falling back to non-aiding mode of operation
resetHorizontalPositionTo(_last_known_posNE);
P.uncorrelateCovarianceSetVariance<2>(7, sq(_params.pos_noaid_noise));
}
}
void Ekf::resetHorizontalPositionToGps()
{
_information_events.flags.reset_pos_to_gps = true;
ECL_INFO("reset position to GPS");
resetHorizontalPositionTo(_gps_sample_delayed.pos);
P.uncorrelateCovarianceSetVariance<2>(7, sq(_gps_sample_delayed.hacc));
}
void Ekf::resetHorizontalPositionToVision()
{
_information_events.flags.reset_pos_to_vision = true;
ECL_INFO("reset position to ev position");
Vector3f _ev_pos = _ev_sample_delayed.pos;
if (_params.fusion_mode & MASK_ROTATE_EV) {
_ev_pos = _R_ev_to_ekf * _ev_sample_delayed.pos;
}
resetHorizontalPositionTo(Vector2f(_ev_pos));
P.uncorrelateCovarianceSetVariance<2>(7, _ev_sample_delayed.posVar.slice<2, 1>(0, 0));
}
void Ekf::resetHorizontalPositionTo(const Vector2f &new_horz_pos)
{
const Vector2f delta_horz_pos{new_horz_pos - Vector2f{_state.pos}};
_state.pos.xy() = new_horz_pos;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].pos.xy() += delta_horz_pos;
}
_output_new.pos.xy() += delta_horz_pos;
_state_reset_status.posNE_change = delta_horz_pos;
_state_reset_status.posNE_counter++;
}
void Ekf::resetVerticalPositionTo(const float &new_vert_pos)
{
const float old_vert_pos = _state.pos(2);
_state.pos(2) = new_vert_pos;
// store the reset amount and time to be published
_state_reset_status.posD_change = new_vert_pos - old_vert_pos;
_state_reset_status.posD_counter++;
// apply the change in height / height rate to our newest height / height rate estimate
// which have already been taken out from the output buffer
_output_new.pos(2) += _state_reset_status.posD_change;
// add the reset amount to the output observer buffered data
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].pos(2) += _state_reset_status.posD_change;
_output_vert_buffer[i].vert_vel_integ += _state_reset_status.posD_change;
}
// add the reset amount to the output observer vertical position state
_output_vert_new.vert_vel_integ = _state.pos(2);
}
// Reset height state using the last height measurement
void Ekf::resetHeight()
{
// Get the most recent GPS data
const gpsSample &gps_newest = _gps_buffer.get_newest();
// reset the vertical position
if (_control_status.flags.rng_hgt) {
// update the state and associated variance
resetVerticalPositionTo(_hgt_sensor_offset - _range_sensor.getDistBottom());
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.range_noise));
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else if (_control_status.flags.baro_hgt) {
// initialize vertical position with newest baro measurement
const baroSample &baro_newest = _baro_buffer.get_newest();
if (!_baro_hgt_faulty) {
resetVerticalPositionTo(-baro_newest.hgt + _baro_hgt_offset);
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.baro_noise));
} else {
// TODO: reset to last known baro based estimate
}
} else if (_control_status.flags.gps_hgt) {
// initialize vertical position and velocity with newest gps measurement
if (!_gps_hgt_intermittent) {
resetVerticalPositionTo(_hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref);
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(9, sq(gps_newest.vacc));
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else {
// TODO: reset to last known gps based estimate
}
} else if (_control_status.flags.ev_hgt) {
// initialize vertical position with newest measurement
const extVisionSample &ev_newest = _ext_vision_buffer.get_newest();
// use the most recent data if it's time offset from the fusion time horizon is smaller
if (ev_newest.time_us >= _ev_sample_delayed.time_us) {
resetVerticalPositionTo(ev_newest.pos(2));
} else {
resetVerticalPositionTo(_ev_sample_delayed.pos(2));
}
}
// reset the vertical velocity state
if (_control_status.flags.gps && !_gps_hgt_intermittent) {
// If we are using GPS, then use it to reset the vertical velocity
resetVerticalVelocityTo(gps_newest.vel(2));
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(6, sq(1.5f * gps_newest.sacc));
} else {
// we don't know what the vertical velocity is, so set it to zero
resetVerticalVelocityTo(0.0f);
// Set the variance to a value large enough to allow the state to converge quickly
// that does not destabilise the filter
P.uncorrelateCovarianceSetVariance<1>(6, 10.0f);
}
}
// align output filter states to match EKF states at the fusion time horizon
void Ekf::alignOutputFilter()
{
const outputSample &output_delayed = _output_buffer.get_oldest();
// calculate the quaternion rotation delta from the EKF to output observer states at the EKF fusion time horizon
Quatf q_delta{_state.quat_nominal * output_delayed.quat_nominal.inversed()};
q_delta.normalize();
// calculate the velocity and position deltas between the output and EKF at the EKF fusion time horizon
const Vector3f vel_delta = _state.vel - output_delayed.vel;
const Vector3f pos_delta = _state.pos - output_delayed.pos;
// loop through the output filter state history and add the deltas
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal = q_delta * _output_buffer[i].quat_nominal;
_output_buffer[i].quat_nominal.normalize();
_output_buffer[i].vel += vel_delta;
_output_buffer[i].pos += pos_delta;
}
_output_new = _output_buffer.get_newest();
}
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS.
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle only.
bool Ekf::realignYawGPS()
{
const float gpsSpeed = sqrtf(sq(_gps_sample_delayed.vel(0)) + sq(_gps_sample_delayed.vel(1)));
// Need at least 5 m/s of GPS horizontal speed and
// ratio of velocity error to velocity < 0.15 for a reliable alignment
const bool gps_yaw_alignment_possible = (gpsSpeed > 5.0f) && (_gps_sample_delayed.sacc < (0.15f * gpsSpeed));
if (!gps_yaw_alignment_possible) {
// attempt a normal alignment using the magnetometer
return resetMagHeading(_mag_lpf.getState());
}
// check for excessive horizontal GPS velocity innovations
const bool badVelInnov = (_gps_vel_test_ratio(0) > 1.0f) && _control_status.flags.gps;
// calculate GPS course over ground angle
const float gpsCOG = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
// calculate course yaw angle
const float ekfCOG = atan2f(_state.vel(1), _state.vel(0));
// Check the EKF and GPS course over ground for consistency
const float courseYawError = wrap_pi(gpsCOG - ekfCOG);
// If the angles disagree and horizontal GPS velocity innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad
const bool badYawErr = fabsf(courseYawError) > 0.5f;
const bool badMagYaw = (badYawErr && badVelInnov);
if (badMagYaw) {
_num_bad_flight_yaw_events ++;
}
// correct yaw angle using GPS ground course if compass yaw bad or yaw is previously not aligned
if (badMagYaw || !_control_status.flags.yaw_align) {
_warning_events.flags.bad_yaw_using_gps_course = true;
ECL_WARN("bad yaw, using GPS course");
// declare the magnetometer as failed if a bad yaw has occurred more than once
if (_control_status.flags.mag_aligned_in_flight && (_num_bad_flight_yaw_events >= 2)
&& !_control_status.flags.mag_fault) {
_warning_events.flags.stopping_mag_use = true;
ECL_WARN("stopping mag use");
_control_status.flags.mag_fault = true;
}
// calculate new yaw estimate
float yaw_new;
if (!_control_status.flags.mag_aligned_in_flight) {
// This is our first flight alignment so we can assume that the recent change in velocity has occurred due to a
// forward direction takeoff or launch and therefore the inertial and GPS ground course discrepancy is due to yaw error
const float current_yaw = getEuler321Yaw(_state.quat_nominal);
yaw_new = current_yaw + courseYawError;
_control_status.flags.mag_aligned_in_flight = true;
} else if (_control_status.flags.wind) {
// we have previously aligned yaw in-flight and have wind estimates so set the yaw such that the vehicle nose is
// aligned with the wind relative GPS velocity vector
yaw_new = atan2f((_gps_sample_delayed.vel(1) - _state.wind_vel(1)),
(_gps_sample_delayed.vel(0) - _state.wind_vel(0)));
} else {
// we don't have wind estimates, so align yaw to the GPS velocity vector
yaw_new = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
}
// use the combined EKF and GPS speed variance to calculate a rough estimate of the yaw error after alignment
const float SpdErrorVariance = sq(_gps_sample_delayed.sacc) + P(4, 4) + P(5, 5);
const float sineYawError = math::constrain(sqrtf(SpdErrorVariance) / gpsSpeed, 0.0f, 1.0f);
const float yaw_variance_new = sq(asinf(sineYawError));
// Apply updated yaw and yaw variance to states and covariances
resetQuatStateYaw(yaw_new, yaw_variance_new, true);
// Use the last magnetometer measurements to reset the field states
_state.mag_B.zero();
_R_to_earth = Dcmf(_state.quat_nominal);
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
resetMagCov();
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
// If heading was bad, then we also need to reset the velocity and position states
_velpos_reset_request = badMagYaw;
return true;
} else {
// align mag states only
// calculate initial earth magnetic field states
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
resetMagCov();
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
return true;
}
}
// Reset heading and magnetic field states
bool Ekf::resetMagHeading(const Vector3f &mag_init, bool increase_yaw_var, bool update_buffer)
{
// prevent a reset being performed more than once on the same frame
if (_imu_sample_delayed.time_us == _flt_mag_align_start_time) {
return true;
}
if (_params.mag_fusion_type >= MAG_FUSE_TYPE_NONE) {
stopMagFusion();
return false;
}
// calculate the observed yaw angle and yaw variance
float yaw_new;
float yaw_new_variance = 0.0f;
if (_control_status.flags.ev_yaw) {
yaw_new = getEuler312Yaw(_ev_sample_delayed.quat);
if (increase_yaw_var) {
yaw_new_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f));
}
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) {
// rotate the magnetometer measurements into earth frame using a zero yaw angle
const Dcmf R_to_earth = updateYawInRotMat(0.f, _R_to_earth);
// the angle of the projection onto the horizontal gives the yaw angle
const Vector3f mag_earth_pred = R_to_earth * mag_init;
yaw_new = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination();
if (increase_yaw_var) {
yaw_new_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f));
}
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR && _is_yaw_fusion_inhibited) {
// we are operating temporarily without knowing the earth frame yaw angle
return true;
} else {
// there is no yaw observation
return false;
}
// update quaternion states and corresponding covarainces
resetQuatStateYaw(yaw_new, yaw_new_variance, update_buffer);
// set the earth magnetic field states using the updated rotation
_state.mag_I = _R_to_earth * mag_init;
resetMagCov();
// record the time for the magnetic field alignment event
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
return true;
}
// Return the magnetic declination in radians to be used by the alignment and fusion processing
float Ekf::getMagDeclination()
{
// set source of magnetic declination for internal use
if (_control_status.flags.mag_aligned_in_flight) {
// Use value consistent with earth field state
return atan2f(_state.mag_I(1), _state.mag_I(0));
} else if (_params.mag_declination_source & MASK_USE_GEO_DECL) {
// use parameter value until GPS is available, then use value returned by geo library
if (_NED_origin_initialised || ISFINITE(_mag_declination_gps)) {
return _mag_declination_gps;
} else {
return math::radians(_params.mag_declination_deg);
}
} else {
// always use the parameter value
return math::radians(_params.mag_declination_deg);
}
}
void Ekf::constrainStates()
{
_state.quat_nominal = matrix::constrain(_state.quat_nominal, -1.0f, 1.0f);
_state.vel = matrix::constrain(_state.vel, -1000.0f, 1000.0f);
_state.pos = matrix::constrain(_state.pos, -1.e6f, 1.e6f);
const float delta_ang_bias_limit = math::radians(20.f) * _dt_ekf_avg;
_state.delta_ang_bias = matrix::constrain(_state.delta_ang_bias, -delta_ang_bias_limit, delta_ang_bias_limit);
const float delta_vel_bias_limit = _params.acc_bias_lim * _dt_ekf_avg;
_state.delta_vel_bias = matrix::constrain(_state.delta_vel_bias, -delta_vel_bias_limit, delta_vel_bias_limit);
_state.mag_I = matrix::constrain(_state.mag_I, -1.0f, 1.0f);
_state.mag_B = matrix::constrain(_state.mag_B, -0.5f, 0.5f);
_state.wind_vel = matrix::constrain(_state.wind_vel, -100.0f, 100.0f);
}
float Ekf::compensateBaroForDynamicPressure(const float baro_alt_uncompensated) const
{
// calculate static pressure error = Pmeas - Ptruth
// model position error sensitivity as a body fixed ellipse with a different scale in the positive and
// negative X and Y directions. Used to correct baro data for positional errors
const matrix::Dcmf R_to_body(_output_new.quat_nominal.inversed());
// Calculate airspeed in body frame
const Vector3f velocity_earth = _output_new.vel - _vel_imu_rel_body_ned;
const Vector3f wind_velocity_earth(_state.wind_vel(0), _state.wind_vel(1), 0.0f);
const Vector3f airspeed_earth = velocity_earth - wind_velocity_earth;
const Vector3f airspeed_body = R_to_body * airspeed_earth;
const Vector3f K_pstatic_coef(airspeed_body(0) >= 0.0f ? _params.static_pressure_coef_xp :
_params.static_pressure_coef_xn,
airspeed_body(1) >= 0.0f ? _params.static_pressure_coef_yp : _params.static_pressure_coef_yn,
_params.static_pressure_coef_z);
const Vector3f airspeed_squared = matrix::min(airspeed_body.emult(airspeed_body), sq(_params.max_correction_airspeed));
const float pstatic_err = 0.5f * _air_density * (airspeed_squared.dot(K_pstatic_coef));
// correct baro measurement using pressure error estimate and assuming sea level gravity
return baro_alt_uncompensated + pstatic_err / (_air_density * CONSTANTS_ONE_G);
}
// calculate the earth rotation vector
Vector3f Ekf::calcEarthRateNED(float lat_rad) const
{
return Vector3f(CONSTANTS_EARTH_SPIN_RATE * cosf(lat_rad),
0.0f,
-CONSTANTS_EARTH_SPIN_RATE * sinf(lat_rad));
}
void Ekf::getGpsVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _gps_vel_innov(0);
hvel[1] = _gps_vel_innov(1);
vvel = _gps_vel_innov(2);
hpos[0] = _gps_pos_innov(0);
hpos[1] = _gps_pos_innov(1);
vpos = _gps_pos_innov(2);
}
void Ekf::getGpsVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _gps_vel_innov_var(0);
hvel[1] = _gps_vel_innov_var(1);
vvel = _gps_vel_innov_var(2);
hpos[0] = _gps_pos_innov_var(0);
hpos[1] = _gps_pos_innov_var(1);
vpos = _gps_pos_innov_var(2);
}
void Ekf::getGpsVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const
{
hvel = _gps_vel_test_ratio(0);
vvel = _gps_vel_test_ratio(1);
hpos = _gps_pos_test_ratio(0);
vpos = _gps_pos_test_ratio(1);
}
void Ekf::getEvVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _ev_vel_innov(0);
hvel[1] = _ev_vel_innov(1);
vvel = _ev_vel_innov(2);
hpos[0] = _ev_pos_innov(0);
hpos[1] = _ev_pos_innov(1);
vpos = _ev_pos_innov(2);
}
void Ekf::getEvVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _ev_vel_innov_var(0);
hvel[1] = _ev_vel_innov_var(1);
vvel = _ev_vel_innov_var(2);
hpos[0] = _ev_pos_innov_var(0);
hpos[1] = _ev_pos_innov_var(1);
vpos = _ev_pos_innov_var(2);
}
void Ekf::getEvVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const
{
hvel = _ev_vel_test_ratio(0);
vvel = _ev_vel_test_ratio(1);
hpos = _ev_pos_test_ratio(0);
vpos = _ev_pos_test_ratio(1);
}
void Ekf::getAuxVelInnov(float aux_vel_innov[2]) const
{
aux_vel_innov[0] = _aux_vel_innov(0);
aux_vel_innov[1] = _aux_vel_innov(1);
}
void Ekf::getAuxVelInnovVar(float aux_vel_innov_var[2]) const
{
aux_vel_innov_var[0] = _aux_vel_innov_var(0);
aux_vel_innov_var[1] = _aux_vel_innov_var(1);
}
// get the state vector at the delayed time horizon
matrix::Vector<float, 24> Ekf::getStateAtFusionHorizonAsVector() const
{
matrix::Vector<float, 24> state;
state.slice<4, 1>(0, 0) = _state.quat_nominal;
state.slice<3, 1>(4, 0) = _state.vel;
state.slice<3, 1>(7, 0) = _state.pos;
state.slice<3, 1>(10, 0) = _state.delta_ang_bias;
state.slice<3, 1>(13, 0) = _state.delta_vel_bias;
state.slice<3, 1>(16, 0) = _state.mag_I;
state.slice<3, 1>(19, 0) = _state.mag_B;
state.slice<2, 1>(22, 0) = _state.wind_vel;
return state;
}
bool Ekf::getEkfGlobalOrigin(uint64_t &origin_time, double &latitude, double &longitude, float &origin_alt) const
{
origin_time = _last_gps_origin_time_us;
latitude = math::degrees(_pos_ref.lat_rad);
longitude = math::degrees(_pos_ref.lon_rad);
origin_alt = _gps_alt_ref;
return _NED_origin_initialised;
}
bool Ekf::setEkfGlobalOrigin(const double latitude, const double longitude, const float altitude)
{
bool current_pos_available = false;
double current_lat = static_cast<double>(NAN);
double current_lon = static_cast<double>(NAN);
float current_alt = 0.f;
// if we are already doing aiding, correct for the change in position since the EKF started navigating
if (map_projection_initialized(&_pos_ref) && isHorizontalAidingActive()) {
map_projection_reproject(&_pos_ref, _state.pos(0), _state.pos(1), ¤t_lat, ¤t_lon);
current_alt = -_state.pos(2) + _gps_alt_ref;
current_pos_available = true;
}
// reinitialize map projection to latitude, longitude, altitude, and reset position
if (map_projection_init_timestamped(&_pos_ref, latitude, longitude, _time_last_imu) == 0) {
if (current_pos_available) {
// reset horizontal position
Vector2f position;
map_projection_project(&_pos_ref, current_lat, current_lon, &position(0), &position(1));
resetHorizontalPositionTo(position);
// reset altitude
_gps_alt_ref = altitude;
resetVerticalPositionTo(_gps_alt_ref - current_alt);
} else {
// reset altitude
_gps_alt_ref = altitude;
}
return true;
}
return false;
}
/*
First argument returns GPS drift metrics in the following array locations
0 : Horizontal position drift rate (m/s)
1 : Vertical position drift rate (m/s)
2 : Filtered horizontal velocity (m/s)
Second argument returns true when IMU movement is blocking the drift calculation
Function returns true if the metrics have been updated and not returned previously by this function
*/
bool Ekf::get_gps_drift_metrics(float drift[3], bool *blocked)
{
memcpy(drift, _gps_drift_metrics, 3 * sizeof(float));
*blocked = !_control_status.flags.vehicle_at_rest;
if (_gps_drift_updated) {
_gps_drift_updated = false;
return true;
}
return false;
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void Ekf::get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) const
{
// report absolute accuracy taking into account the uncertainty in location of the origin
// If not aiding, return 0 for horizontal position estimate as no estimate is available
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P(7, 7) + P(8, 8) + sq(_gps_origin_eph));
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning && (_control_status.flags.gps)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1))));
} else if (_is_dead_reckoning && (_control_status.flags.ev_pos)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1))));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P(9, 9) + sq(_gps_origin_epv));
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
void Ekf::get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) const
{
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P(7, 7) + P(8, 8));
// If we are dead-reckoning for too long, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_deadreckon_time_exceeded && _control_status.flags.gps) {
hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1))));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P(9, 9));
}
// get the 1-sigma horizontal and vertical velocity uncertainty
void Ekf::get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) const
{
float hvel_err = sqrtf(P(4, 4) + P(5, 5));
// If we are dead-reckoning for too long, use the innovations as a conservative alternate measure of the horizontal velocity error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_deadreckon_time_exceeded) {
float vel_err_conservative = 0.0f;
if (_control_status.flags.opt_flow) {
float gndclearance = math::max(_params.rng_gnd_clearance, 0.1f);
vel_err_conservative = math::max((_terrain_vpos - _state.pos(2)), gndclearance) * _flow_innov.norm();
}
if (_control_status.flags.gps) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1))));
} else if (_control_status.flags.ev_pos) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1))));
}
if (_control_status.flags.ev_vel) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_vel_innov(0)) + sq(_ev_vel_innov(1))));
}
hvel_err = math::max(hvel_err, vel_err_conservative);
}
*ekf_evh = hvel_err;
*ekf_evv = sqrtf(P(6, 6));
}
/*
Returns the following vehicle control limits required by the estimator to keep within sensor limitations.
vxy_max : Maximum ground relative horizontal speed (meters/sec). NaN when limiting is not needed.
vz_max : Maximum ground relative vertical speed (meters/sec). NaN when limiting is not needed.
hagl_min : Minimum height above ground (meters). NaN when limiting is not needed.
hagl_max : Maximum height above ground (meters). NaN when limiting is not needed.
*/
void Ekf::get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) const
{
// Calculate range finder limits
const float rangefinder_hagl_min = _range_sensor.getValidMinVal();
// Allow use of 75% of rangefinder maximum range to allow for angular motion
const float rangefinder_hagl_max = 0.75f * _range_sensor.getValidMaxVal();
// Calculate optical flow limits
// Allow ground relative velocity to use 50% of available flow sensor range to allow for angular motion
const float flow_vxy_max = fmaxf(0.5f * _flow_max_rate * (_terrain_vpos - _state.pos(2)), 0.0f);
const float flow_hagl_min = _flow_min_distance;
const float flow_hagl_max = _flow_max_distance;
// TODO : calculate visual odometry limits
const bool relying_on_rangefinder = _control_status.flags.rng_hgt && !_params.range_aid;
const bool relying_on_optical_flow = isOnlyActiveSourceOfHorizontalAiding(_control_status.flags.opt_flow);
// Do not require limiting by default
*vxy_max = NAN;
*vz_max = NAN;
*hagl_min = NAN;
*hagl_max = NAN;
// Keep within range sensor limit when using rangefinder as primary height source
if (relying_on_rangefinder) {
*vxy_max = NAN;
*vz_max = NAN;
*hagl_min = rangefinder_hagl_min;
*hagl_max = rangefinder_hagl_max;
}
// Keep within flow AND range sensor limits when exclusively using optical flow
if (relying_on_optical_flow) {
*vxy_max = flow_vxy_max;
*vz_max = NAN;
*hagl_min = fmaxf(rangefinder_hagl_min, flow_hagl_min);
*hagl_max = fminf(rangefinder_hagl_max, flow_hagl_max);
}
}
void Ekf::resetImuBias()
{
resetGyroBias();
resetAccelBias();
}
void Ekf::resetGyroBias()
{
// Zero the delta angle and delta velocity bias states
_state.delta_ang_bias.zero();
// Zero the corresponding covariances and set
// variances to the values use for initial alignment
P.uncorrelateCovarianceSetVariance<3>(10, sq(_params.switch_on_gyro_bias * FILTER_UPDATE_PERIOD_S));
}
void Ekf::resetAccelBias()
{
// Zero the delta angle and delta velocity bias states
_state.delta_vel_bias.zero();
// Zero the corresponding covariances and set
// variances to the values use for initial alignment
P.uncorrelateCovarianceSetVariance<3>(13, sq(_params.switch_on_accel_bias * FILTER_UPDATE_PERIOD_S));
// Set previous frame values
_prev_dvel_bias_var = P.slice<3, 3>(13, 13).diag();
}
void Ekf::resetMagBias()
{
// Zero the magnetometer bias states
_state.mag_B.zero();
// Zero the corresponding covariances and set
// variances to the values use for initial alignment
P.uncorrelateCovarianceSetVariance<3>(19, sq(_params.mag_noise));
// reset any saved covariance data for re-use when auto-switching between heading and 3-axis fusion
// _saved_mag_bf_variance[0] is the the D earth axis
_saved_mag_bf_variance[1] = 0;
_saved_mag_bf_variance[2] = 0;
_saved_mag_bf_variance[3] = 0;
}
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned.
void Ekf::get_innovation_test_status(uint16_t &status, float &mag, float &vel, float &pos, float &hgt, float &tas,
float &hagl, float &beta) const
{
// return the integer bitmask containing the consistency check pass/fail status
status = _innov_check_fail_status.value;
// return the largest magnetometer innovation test ratio
mag = sqrtf(math::max(_yaw_test_ratio, _mag_test_ratio.max()));
// return the largest velocity and position innovation test ratio
if (_control_status.flags.gps) {
vel = sqrtf(math::max(_gps_vel_test_ratio(0), _gps_vel_test_ratio(1)));
pos = sqrtf(_gps_pos_test_ratio(0));
}
if (_control_status.flags.ev_vel) {
vel = math::max(vel, sqrtf(math::max(_ev_vel_test_ratio(0), _ev_vel_test_ratio(1))));
pos = math::max(pos, sqrtf(_ev_pos_test_ratio(0)));
}
if (isOnlyActiveSourceOfHorizontalAiding(_control_status.flags.opt_flow)) {
vel = sqrtf(_optflow_test_ratio);
}
// return the vertical position innovation test ratio
if (_control_status.flags.baro_hgt) {
hgt = sqrtf(_baro_hgt_test_ratio(1));
} else if (_control_status.flags.gps_hgt) {
hgt = sqrtf(_gps_pos_test_ratio(1));
} else if (_control_status.flags.rng_hgt) {
hgt = sqrtf(_rng_hgt_test_ratio(1));
} else if (_control_status.flags.ev_hgt) {
hgt = sqrtf(_ev_pos_test_ratio(1));
}
// return the airspeed fusion innovation test ratio
tas = sqrtf(_tas_test_ratio);
// return the terrain height innovation test ratio
hagl = sqrtf(_hagl_test_ratio);
// return the synthetic sideslip innovation test ratio
beta = sqrtf(_beta_test_ratio);
}
// return a bitmask integer that describes which state estimates are valid
void Ekf::get_ekf_soln_status(uint16_t *status) const
{
ekf_solution_status soln_status;
// TODO: Is this accurate enough?
soln_status.flags.attitude = _control_status.flags.tilt_align && _control_status.flags.yaw_align && (_fault_status.value == 0);
soln_status.flags.velocity_horiz = (isHorizontalAidingActive() || (_control_status.flags.fuse_beta && _control_status.flags.fuse_aspd)) && (_fault_status.value == 0);
soln_status.flags.velocity_vert = (_control_status.flags.baro_hgt || _control_status.flags.ev_hgt || _control_status.flags.gps_hgt || _control_status.flags.rng_hgt) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_rel = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_abs = (_control_status.flags.gps || _control_status.flags.ev_pos) && (_fault_status.value == 0);
soln_status.flags.pos_vert_abs = soln_status.flags.velocity_vert;
soln_status.flags.pos_vert_agl = isTerrainEstimateValid();
soln_status.flags.const_pos_mode = !soln_status.flags.velocity_horiz;
soln_status.flags.pred_pos_horiz_rel = soln_status.flags.pos_horiz_rel;
soln_status.flags.pred_pos_horiz_abs = soln_status.flags.pos_horiz_abs;
const bool gps_vel_innov_bad = (_gps_vel_test_ratio(0) > 1.0f) || (_gps_vel_test_ratio(1) > 1.0f);
const bool gps_pos_innov_bad = (_gps_pos_test_ratio(0) > 1.0f);
const bool mag_innov_good = (_mag_test_ratio.max() < 1.0f) && (_yaw_test_ratio < 1.0f);
soln_status.flags.gps_glitch = (gps_vel_innov_bad || gps_pos_innov_bad) && mag_innov_good;
soln_status.flags.accel_error = _fault_status.flags.bad_acc_vertical;
*status = soln_status.value;
}
void Ekf::fuse(const Vector24f &K, float innovation)
{
_state.quat_nominal -= K.slice<4, 1>(0, 0) * innovation;
_state.quat_nominal.normalize();
_state.vel -= K.slice<3, 1>(4, 0) * innovation;
_state.pos -= K.slice<3, 1>(7, 0) * innovation;
_state.delta_ang_bias -= K.slice<3, 1>(10, 0) * innovation;
_state.delta_vel_bias -= K.slice<3, 1>(13, 0) * innovation;
_state.mag_I -= K.slice<3, 1>(16, 0) * innovation;
_state.mag_B -= K.slice<3, 1>(19, 0) * innovation;
_state.wind_vel -= K.slice<2, 1>(22, 0) * innovation;
}
void Ekf::uncorrelateQuatFromOtherStates()
{
P.slice<_k_num_states - 4, 4>(4, 0) = 0.f;
P.slice<4, _k_num_states - 4>(0, 4) = 0.f;
}
// return true if we are totally reliant on inertial dead-reckoning for position
void Ekf::update_deadreckoning_status()
{
const bool velPosAiding = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.ev_vel)
&& (isRecent(_time_last_hor_pos_fuse, _params.no_aid_timeout_max)
|| isRecent(_time_last_hor_vel_fuse, _params.no_aid_timeout_max)
|| isRecent(_time_last_delpos_fuse, _params.no_aid_timeout_max));
const bool optFlowAiding = _control_status.flags.opt_flow && isRecent(_time_last_of_fuse, _params.no_aid_timeout_max);
const bool airDataAiding = _control_status.flags.wind &&
isRecent(_time_last_arsp_fuse, _params.no_aid_timeout_max) &&
isRecent(_time_last_beta_fuse, _params.no_aid_timeout_max);
_is_wind_dead_reckoning = !velPosAiding && !optFlowAiding && airDataAiding;
_is_dead_reckoning = !velPosAiding && !optFlowAiding && !airDataAiding;
if (!_is_dead_reckoning) {
_time_last_aiding = _time_last_imu - _params.no_aid_timeout_max;
}
// report if we have been deadreckoning for too long, initial state is deadreckoning until aiding is present
_deadreckon_time_exceeded = (_time_last_aiding == 0)
|| isTimedOut(_time_last_aiding, (uint64_t)_params.valid_timeout_max);
}
// calculate the variances for the rotation vector equivalent
Vector3f Ekf::calcRotVecVariances()
{
Vector3f rot_var_vec;
float q0, q1, q2, q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float t2 = q0*q0;
float t3 = acosf(q0);
float t4 = -t2+1.0f;
float t5 = t2-1.0f;
if ((t4 > 1e-9f) && (t5 < -1e-9f)) {
float t6 = 1.0f/t5;
float t7 = q1*t6*2.0f;
float t8 = 1.0f/powf(t4,1.5f);
float t9 = q0*q1*t3*t8*2.0f;
float t10 = t7+t9;
float t11 = 1.0f/sqrtf(t4);
float t12 = q2*t6*2.0f;
float t13 = q0*q2*t3*t8*2.0f;
float t14 = t12+t13;
float t15 = q3*t6*2.0f;
float t16 = q0*q3*t3*t8*2.0f;
float t17 = t15+t16;
rot_var_vec(0) = t10*(P(0,0)*t10+P(1,0)*t3*t11*2.0f)+t3*t11*(P(0,1)*t10+P(1,1)*t3*t11*2.0f)*2.0f;
rot_var_vec(1) = t14*(P(0,0)*t14+P(2,0)*t3*t11*2.0f)+t3*t11*(P(0,2)*t14+P(2,2)*t3*t11*2.0f)*2.0f;
rot_var_vec(2) = t17*(P(0,0)*t17+P(3,0)*t3*t11*2.0f)+t3*t11*(P(0,3)*t17+P(3,3)*t3*t11*2.0f)*2.0f;
} else {
rot_var_vec = 4.0f * P.slice<3,3>(1,1).diag();
}
return rot_var_vec;
}
// initialise the quaternion covariances using rotation vector variances
// do not call before quaternion states are initialised
void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var)
{
// calculate an equivalent rotation vector from the quaternion
float q0,q1,q2,q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float delta = 2.0f*acosf(q0);
float scaler = (delta/sinf(delta*0.5f));
float rotX = scaler*q1;
float rotY = scaler*q2;
float rotZ = scaler*q3;
// autocode generated using matlab symbolic toolbox
float t2 = rotX*rotX;
float t4 = rotY*rotY;
float t5 = rotZ*rotZ;
float t6 = t2+t4+t5;
if (t6 > 1e-9f) {
float t7 = sqrtf(t6);
float t8 = t7*0.5f;
float t3 = sinf(t8);
float t9 = t3*t3;
float t10 = 1.0f/t6;
float t11 = 1.0f/sqrtf(t6);
float t12 = cosf(t8);
float t13 = 1.0f/powf(t6,1.5f);
float t14 = t3*t11;
float t15 = rotX*rotY*t3*t13;
float t16 = rotX*rotZ*t3*t13;
float t17 = rotY*rotZ*t3*t13;
float t18 = t2*t10*t12*0.5f;
float t27 = t2*t3*t13;
float t19 = t14+t18-t27;
float t23 = rotX*rotY*t10*t12*0.5f;
float t28 = t15-t23;
float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f;
float t25 = rotX*rotZ*t10*t12*0.5f;
float t31 = t16-t25;
float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f;
float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f;
float t24 = t15-t23;
float t26 = t16-t25;
float t29 = t4*t10*t12*0.5f;
float t34 = t3*t4*t13;
float t30 = t14+t29-t34;
float t32 = t5*t10*t12*0.5f;
float t40 = t3*t5*t13;
float t33 = t14+t32-t40;
float t36 = rotY*rotZ*t10*t12*0.5f;
float t39 = t17-t36;
float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f;
float t37 = t15-t23;
float t38 = t17-t36;
float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25);
float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39;
float t43 = t16-t25;
float t44 = t17-t36;
// zero all the quaternion covariances
P.uncorrelateCovarianceSetVariance<2>(0, 0.0f);
P.uncorrelateCovarianceSetVariance<2>(2, 0.0f);
// Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox
P(0,0) = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f;
P(0,1) = t22;
P(0,2) = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f;
P(0,3) = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f;
P(1,0) = t22;
P(1,1) = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26);
P(1,2) = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P(1,3) = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P(2,0) = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f;
P(2,1) = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P(2,2) = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38);
P(2,3) = t42;
P(3,0) = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f;
P(3,1) = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P(3,2) = t42;
P(3,3) = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44);
} else {
// the equations are badly conditioned so use a small angle approximation
P.uncorrelateCovarianceSetVariance<1>(0, 0.0f);
P.uncorrelateCovarianceSetVariance<3>(1, 0.25f * rot_vec_var);
}
}
void Ekf::setControlBaroHeight()
{
_control_status.flags.baro_hgt = true;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlRangeHeight()
{
_control_status.flags.rng_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlGPSHeight()
{
_control_status.flags.gps_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlEVHeight()
{
_control_status.flags.ev_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
}
void Ekf::stopMagFusion()
{
stopMag3DFusion();
stopMagHdgFusion();
clearMagCov();
}
void Ekf::stopMag3DFusion()
{
// save covariance data for re-use if currently doing 3-axis fusion
if (_control_status.flags.mag_3D) {
saveMagCovData();
_control_status.flags.mag_3D = false;
}
}
void Ekf::stopMagHdgFusion()
{
_control_status.flags.mag_hdg = false;
}
void Ekf::startMagHdgFusion()
{
stopMag3DFusion();
_control_status.flags.mag_hdg = true;
}
void Ekf::startMag3DFusion()
{
if (!_control_status.flags.mag_3D) {
stopMagHdgFusion();
zeroMagCov();
loadMagCovData();
_control_status.flags.mag_3D = true;
}
}
void Ekf::startBaroHgtFusion()
{
setControlBaroHeight();
// We don't need to set a height sensor offset
// since we track a separate _baro_hgt_offset
_hgt_sensor_offset = 0.0f;
// Turn off ground effect compensation if it times out
if (_control_status.flags.gnd_effect) {
if (isTimedOut(_time_last_gnd_effect_on, GNDEFFECT_TIMEOUT)) {
_control_status.flags.gnd_effect = false;
}
}
}
void Ekf::startGpsHgtFusion()
{
setControlGPSHeight();
// we have just switched to using gps height, calculate height sensor offset such that current
// measurement matches our current height estimate
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
}
}
void Ekf::updateBaroHgtOffset()
{
// calculate a filtered offset between the baro origin and local NED origin if we are not
// using the baro as a height reference
if (!_control_status.flags.baro_hgt && _baro_data_ready) {
const float local_time_step = math::constrain(1e-6f * _delta_time_baro_us, 0.0f, 1.0f);
// apply a 10 second first order low pass filter to baro offset
const float offset_rate_correction = 0.1f * (_baro_sample_delayed.hgt + _state.pos(2) -
_baro_hgt_offset);
_baro_hgt_offset += local_time_step * math::constrain(offset_rate_correction, -0.1f, 0.1f);
}
}
float Ekf::getGpsHeightVariance()
{
// observation variance - receiver defined and parameter limited
// use 1.5 as a typical ratio of vacc/hacc
const float lower_limit = fmaxf(1.5f * _params.gps_pos_noise, 0.01f);
const float upper_limit = fmaxf(1.5f * _params.pos_noaid_noise, lower_limit);
const float gps_alt_var = sq(math::constrain(_gps_sample_delayed.vacc, lower_limit, upper_limit));
return gps_alt_var;
}
Vector3f Ekf::getVisionVelocityInEkfFrame() const
{
Vector3f vel;
// correct velocity for offset relative to IMU
const Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
const Vector3f vel_offset_body = _ang_rate_delayed_raw % pos_offset_body;
// rotate measurement into correct earth frame if required
switch(_ev_sample_delayed.vel_frame) {
case velocity_frame_t::BODY_FRAME_FRD:
vel = _R_to_earth * (_ev_sample_delayed.vel - vel_offset_body);
break;
case velocity_frame_t::LOCAL_FRAME_FRD:
const Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
if (_params.fusion_mode & MASK_ROTATE_EV)
{
vel = _R_ev_to_ekf *_ev_sample_delayed.vel - vel_offset_earth;
} else {
vel = _ev_sample_delayed.vel - vel_offset_earth;
}
break;
}
return vel;
}
Vector3f Ekf::getVisionVelocityVarianceInEkfFrame() const
{
Matrix3f ev_vel_cov = _ev_sample_delayed.velCov;
// rotate measurement into correct earth frame if required
switch(_ev_sample_delayed.vel_frame) {
case velocity_frame_t::BODY_FRAME_FRD:
ev_vel_cov = _R_to_earth * ev_vel_cov * _R_to_earth.transpose();
break;
case velocity_frame_t::LOCAL_FRAME_FRD:
if(_params.fusion_mode & MASK_ROTATE_EV)
{
ev_vel_cov = _R_ev_to_ekf * ev_vel_cov * _R_ev_to_ekf.transpose();
}
break;
}
return ev_vel_cov.diag();
}
// update the rotation matrix which rotates EV measurements into the EKF's navigation frame
void Ekf::calcExtVisRotMat()
{
// Calculate the quaternion delta that rotates from the EV to the EKF reference frame at the EKF fusion time horizon.
const Quatf q_error((_state.quat_nominal * _ev_sample_delayed.quat.inversed()).normalized());
_R_ev_to_ekf = Dcmf(q_error);
}
// Increase the yaw error variance of the quaternions
// Argument is additional yaw variance in rad**2
void Ekf::increaseQuatYawErrVariance(float yaw_variance)
{
// See DeriveYawResetEquations.m for derivation which produces code fragments in C_code4.txt file
// The auto-code was cleaned up and had terms multiplied by zero removed to give the following:
// Intermediate variables
float SG[3];
SG[0] = sq(_state.quat_nominal(0)) - sq(_state.quat_nominal(1)) - sq(_state.quat_nominal(2)) + sq(_state.quat_nominal(3));
SG[1] = 2*_state.quat_nominal(0)*_state.quat_nominal(2) - 2*_state.quat_nominal(1)*_state.quat_nominal(3);
SG[2] = 2*_state.quat_nominal(0)*_state.quat_nominal(1) + 2*_state.quat_nominal(2)*_state.quat_nominal(3);
float SQ[4];
SQ[0] = 0.5f * ((_state.quat_nominal(1)*SG[0]) - (_state.quat_nominal(0)*SG[2]) + (_state.quat_nominal(3)*SG[1]));
SQ[1] = 0.5f * ((_state.quat_nominal(0)*SG[1]) - (_state.quat_nominal(2)*SG[0]) + (_state.quat_nominal(3)*SG[2]));
SQ[2] = 0.5f * ((_state.quat_nominal(3)*SG[0]) - (_state.quat_nominal(1)*SG[1]) + (_state.quat_nominal(2)*SG[2]));
SQ[3] = 0.5f * ((_state.quat_nominal(0)*SG[0]) + (_state.quat_nominal(1)*SG[2]) + (_state.quat_nominal(2)*SG[1]));
// Limit yaw variance increase to prevent a badly conditioned covariance matrix
yaw_variance = fminf(yaw_variance, 1.0e-2f);
// Add covariances for additonal yaw uncertainty to existing covariances.
// This assumes that the additional yaw error is uncorrrelated to existing errors
P(0,0) += yaw_variance*sq(SQ[2]);
P(0,1) += yaw_variance*SQ[1]*SQ[2];
P(1,1) += yaw_variance*sq(SQ[1]);
P(0,2) += yaw_variance*SQ[0]*SQ[2];
P(1,2) += yaw_variance*SQ[0]*SQ[1];
P(2,2) += yaw_variance*sq(SQ[0]);
P(0,3) -= yaw_variance*SQ[2]*SQ[3];
P(1,3) -= yaw_variance*SQ[1]*SQ[3];
P(2,3) -= yaw_variance*SQ[0]*SQ[3];
P(3,3) += yaw_variance*sq(SQ[3]);
P(1,0) += yaw_variance*SQ[1]*SQ[2];
P(2,0) += yaw_variance*SQ[0]*SQ[2];
P(2,1) += yaw_variance*SQ[0]*SQ[1];
P(3,0) -= yaw_variance*SQ[2]*SQ[3];
P(3,1) -= yaw_variance*SQ[1]*SQ[3];
P(3,2) -= yaw_variance*SQ[0]*SQ[3];
}
// save covariance data for re-use when auto-switching between heading and 3-axis fusion
void Ekf::saveMagCovData()
{
// save variances for the D earth axis and XYZ body axis field
for (uint8_t index = 0; index <= 3; index ++) {
_saved_mag_bf_variance[index] = P(index + 18, index + 18);
}
// save the NE axis covariance sub-matrix
_saved_mag_ef_covmat = P.slice<2, 2>(16, 16);
}
void Ekf::loadMagCovData()
{
// re-instate variances for the D earth axis and XYZ body axis field
for (uint8_t index = 0; index <= 3; index ++) {
P(index + 18, index + 18) = _saved_mag_bf_variance[index];
}
// re-instate the NE axis covariance sub-matrix
P.slice<2, 2>(16, 16) = _saved_mag_ef_covmat;
}
void Ekf::startGpsFusion()
{
resetHorizontalPositionToGps();
// when using optical flow,
// velocity reset is not necessary
if (!_control_status.flags.opt_flow) {
resetVelocityToGps();
}
_information_events.flags.starting_gps_fusion = true;
ECL_INFO("starting GPS fusion");
_control_status.flags.gps = true;
}
void Ekf::stopGpsFusion()
{
stopGpsPosFusion();
stopGpsVelFusion();
stopGpsYawFusion();
}
void Ekf::stopGpsPosFusion()
{
_control_status.flags.gps = false;
_control_status.flags.gps_hgt = false;
_gps_pos_innov.setZero();
_gps_pos_innov_var.setZero();
_gps_pos_test_ratio.setZero();
}
void Ekf::stopGpsVelFusion()
{
_gps_vel_innov.setZero();
_gps_vel_innov_var.setZero();
_gps_vel_test_ratio.setZero();
}
void Ekf::startGpsYawFusion()
{
_control_status.flags.mag_dec = false;
stopEvYawFusion();
stopMagHdgFusion();
stopMag3DFusion();
_control_status.flags.gps_yaw = true;
}
void Ekf::stopGpsYawFusion()
{
_control_status.flags.gps_yaw = false;
}
void Ekf::startEvPosFusion()
{
_control_status.flags.ev_pos = true;
resetHorizontalPosition();
_information_events.flags.starting_vision_pos_fusion = true;
ECL_INFO("starting vision pos fusion");
}
void Ekf::startEvVelFusion()
{
_control_status.flags.ev_vel = true;
resetVelocity();
_information_events.flags.starting_vision_vel_fusion = true;
ECL_INFO("starting vision vel fusion");
}
void Ekf::startEvYawFusion()
{
// reset the yaw angle to the value from the vision quaternion
const float yaw = getEuler321Yaw(_ev_sample_delayed.quat);
const float yaw_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f));
resetQuatStateYaw(yaw, yaw_variance, true);
// flag the yaw as aligned
_control_status.flags.yaw_align = true;
// turn on fusion of external vision yaw measurements and disable all magnetometer fusion
_control_status.flags.ev_yaw = true;
_control_status.flags.mag_dec = false;
stopMagHdgFusion();
stopMag3DFusion();
_information_events.flags.starting_vision_yaw_fusion = true;
ECL_INFO("starting vision yaw fusion");
}
void Ekf::stopEvFusion()
{
stopEvPosFusion();
stopEvVelFusion();
stopEvYawFusion();
}
void Ekf::stopEvPosFusion()
{
_control_status.flags.ev_pos = false;
_ev_pos_innov.setZero();
_ev_pos_innov_var.setZero();
_ev_pos_test_ratio.setZero();
}
void Ekf::stopEvVelFusion()
{
_control_status.flags.ev_vel = false;
_ev_vel_innov.setZero();
_ev_vel_innov_var.setZero();
_ev_vel_test_ratio.setZero();
}
void Ekf::stopEvYawFusion()
{
_control_status.flags.ev_yaw = false;
}
void Ekf::stopAuxVelFusion()
{
_aux_vel_innov.setZero();
_aux_vel_innov_var.setZero();
_aux_vel_test_ratio.setZero();
}
void Ekf::stopFlowFusion()
{
_control_status.flags.opt_flow = false;
_flow_innov.setZero();
_flow_innov_var.setZero();
_optflow_test_ratio = 0.0f;
}
void Ekf::resetQuatStateYaw(float yaw, float yaw_variance, bool update_buffer)
{
// save a copy of the quaternion state for later use in calculating the amount of reset change
const Quatf quat_before_reset = _state.quat_nominal;
// update transformation matrix from body to world frame using the current estimate
_R_to_earth = Dcmf(_state.quat_nominal);
// update the rotation matrix using the new yaw value
_R_to_earth = updateYawInRotMat(yaw, _R_to_earth);
// calculate the amount that the quaternion has changed by
const Quatf quat_after_reset(_R_to_earth);
const Quatf q_error((quat_after_reset * quat_before_reset.inversed()).normalized());
// update quaternion states
_state.quat_nominal = quat_after_reset;
uncorrelateQuatFromOtherStates();
// record the state change
_state_reset_status.quat_change = q_error;
// update the yaw angle variance
if (yaw_variance > FLT_EPSILON) {
increaseQuatYawErrVariance(yaw_variance);
}
// add the reset amount to the output observer buffered data
if (update_buffer) {
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal = _state_reset_status.quat_change * _output_buffer[i].quat_nominal;
}
// apply the change in attitude quaternion to our newest quaternion estimate
// which was already taken out from the output buffer
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal;
}
// capture the reset event
_state_reset_status.quat_counter++;
}
// Resets the main Nav EKf yaw to the estimator from the EKF-GSF yaw estimator
// Resets the horizontal velocity and position to the default navigation sensor
// Returns true if the reset was successful
bool Ekf::resetYawToEKFGSF()
{
// don't allow reet using the EKF-GSF estimate until the filter has started fusing velocity
// data and the yaw estimate has converged
float new_yaw, new_yaw_variance;
if (!_yawEstimator.getYawData(&new_yaw, &new_yaw_variance)) {
return false;
}
const bool has_converged = new_yaw_variance < sq(_params.EKFGSF_yaw_err_max);
if (!has_converged) {
return false;
}
resetQuatStateYaw(new_yaw, new_yaw_variance, true);
// reset velocity and position states to GPS - if yaw is fixed then the filter should start to operate correctly
resetVelocity();
resetHorizontalPosition();
// record a magnetic field alignment event to prevent possibility of the EKF trying to reset the yaw to the mag later in flight
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
_control_status.flags.yaw_align = true;
if (_params.mag_fusion_type == MAG_FUSE_TYPE_NONE) {
_information_events.flags.yaw_aligned_to_imu_gps = true;
ECL_INFO("Yaw aligned using IMU and GPS");
} else {
// stop using the magnetometer in the main EKF otherwise it's fusion could drag the yaw around
// and cause another navigation failure
_control_status.flags.mag_fault = true;
_warning_events.flags.emergency_yaw_reset_mag_stopped = true;
ECL_WARN("Emergency yaw reset - mag use stopped");
}
return true;
}
bool Ekf::getDataEKFGSF(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF],
float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF])
{
return _yawEstimator.getLogData(yaw_composite, yaw_variance, yaw, innov_VN, innov_VE, weight);
}
void Ekf::runYawEKFGSF()
{
float TAS;
if (isTimedOut(_airspeed_sample_delayed.time_us, 1000000) && _control_status.flags.fixed_wing) {
TAS = _params.EKFGSF_tas_default;
} else {
TAS = _airspeed_sample_delayed.true_airspeed;
}
const Vector3f imu_gyro_bias = getGyroBias();
_yawEstimator.update(_imu_sample_delayed, _control_status.flags.in_air, TAS, imu_gyro_bias);
// basic sanity check on GPS velocity data
if (_gps_data_ready && _gps_sample_delayed.vacc > FLT_EPSILON &&
ISFINITE(_gps_sample_delayed.vel(0)) && ISFINITE(_gps_sample_delayed.vel(1))) {
_yawEstimator.setVelocity(_gps_sample_delayed.vel.xy(), _gps_sample_delayed.vacc);
}
}
void Ekf::resetGpsDriftCheckFilters()
{
_gps_velNE_filt.setZero();
_gps_pos_deriv_filt.setZero();
}