battery.cpp
11.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/****************************************************************************
*
* Copyright (c) 2019-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file battery.cpp
*
* Library calls for battery functionality.
*
* @author Julian Oes <julian@oes.ch>
* @author Timothy Scott <timothy@auterion.com>
*/
#include "battery.h"
#include <mathlib/mathlib.h>
#include <cstring>
#include <px4_platform_common/defines.h>
using namespace time_literals;
Battery::Battery(int index, ModuleParams *parent, const int sample_interval_us) :
ModuleParams(parent),
_index(index < 1 || index > 9 ? 1 : index)
{
const float expected_filter_dt = static_cast<float>(sample_interval_us) / 1_s;
_voltage_filter_v.setParameters(expected_filter_dt, 1.f);
_current_filter_a.setParameters(expected_filter_dt, .5f);
_throttle_filter.setParameters(expected_filter_dt, 1.f);
if (index > 9 || index < 1) {
PX4_ERR("Battery index must be between 1 and 9 (inclusive). Received %d. Defaulting to 1.", index);
}
// 16 chars for parameter name + null terminator
char param_name[17];
snprintf(param_name, sizeof(param_name), "BAT%d_V_EMPTY", _index);
_param_handles.v_empty = param_find(param_name);
if (_param_handles.v_empty == PARAM_INVALID) {
PX4_ERR("Could not find parameter with name %s", param_name);
}
snprintf(param_name, sizeof(param_name), "BAT%d_V_CHARGED", _index);
_param_handles.v_charged = param_find(param_name);
snprintf(param_name, sizeof(param_name), "BAT%d_N_CELLS", _index);
_param_handles.n_cells = param_find(param_name);
snprintf(param_name, sizeof(param_name), "BAT%d_CAPACITY", _index);
_param_handles.capacity = param_find(param_name);
snprintf(param_name, sizeof(param_name), "BAT%d_V_LOAD_DROP", _index);
_param_handles.v_load_drop = param_find(param_name);
snprintf(param_name, sizeof(param_name), "BAT%d_R_INTERNAL", _index);
_param_handles.r_internal = param_find(param_name);
snprintf(param_name, sizeof(param_name), "BAT%d_SOURCE", _index);
_param_handles.source = param_find(param_name);
_param_handles.low_thr = param_find("BAT_LOW_THR");
_param_handles.crit_thr = param_find("BAT_CRIT_THR");
_param_handles.emergen_thr = param_find("BAT_EMERGEN_THR");
_param_handles.v_empty_old = param_find("BAT_V_EMPTY");
_param_handles.v_charged_old = param_find("BAT_V_CHARGED");
_param_handles.n_cells_old = param_find("BAT_N_CELLS");
_param_handles.capacity_old = param_find("BAT_CAPACITY");
_param_handles.v_load_drop_old = param_find("BAT_V_LOAD_DROP");
_param_handles.r_internal_old = param_find("BAT_R_INTERNAL");
_param_handles.source_old = param_find("BAT_SOURCE");
updateParams();
}
void Battery::reset()
{
memset(&_battery_status, 0, sizeof(_battery_status));
_battery_status.current_a = -1.f;
_battery_status.remaining = 1.f;
_battery_status.scale = 1.f;
// Publish at least one cell such that the total voltage gets into MAVLink BATTERY_STATUS
_battery_status.cell_count = math::max(_params.n_cells, 1);
// TODO: check if it is sane to reset warning to NONE
_battery_status.warning = battery_status_s::BATTERY_WARNING_NONE;
_battery_status.connected = false;
_battery_status.capacity = _params.capacity > 0.0f ? (uint16_t)_params.capacity : 0;
_battery_status.temperature = NAN;
_battery_status.id = (uint8_t) _index;
}
void Battery::updateBatteryStatus(const hrt_abstime ×tamp, float voltage_v, float current_a, bool connected,
int source, int priority, float throttle_normalized)
{
reset();
if (!_battery_initialized) {
_voltage_filter_v.reset(voltage_v);
_current_filter_a.reset(current_a);
_throttle_filter.reset(throttle_normalized);
}
_voltage_filter_v.update(voltage_v);
_current_filter_a.update(current_a);
_throttle_filter.update(throttle_normalized);
sumDischarged(timestamp, current_a);
estimateStateOfCharge(_voltage_filter_v.getState(), _current_filter_a.getState(), _throttle_filter.getState());
computeScale();
if (_battery_initialized) {
determineWarning(connected);
}
if (_voltage_filter_v.getState() > 2.1f) {
_battery_initialized = true;
_battery_status.voltage_v = voltage_v;
_battery_status.voltage_filtered_v = _voltage_filter_v.getState();
_battery_status.scale = _scale;
_battery_status.current_a = current_a;
_battery_status.current_filtered_a = _current_filter_a.getState();
_battery_status.discharged_mah = _discharged_mah;
_battery_status.warning = _warning;
_battery_status.remaining = _state_of_charge;
_battery_status.connected = connected;
_battery_status.source = source;
_battery_status.priority = priority;
static constexpr int uorb_max_cells = sizeof(_battery_status.voltage_cell_v) / sizeof(
_battery_status.voltage_cell_v[0]);
int max_cells = math::min(_battery_status.cell_count, uorb_max_cells);
// Fill cell voltages with average values to work around MAVLink BATTERY_STATUS not allowing to report just total voltage
for (int i = 0; i < max_cells; i++) {
_battery_status.voltage_cell_v[i] = _battery_status.voltage_filtered_v / max_cells;
}
}
if (source == _params.source) {
publish();
}
}
void Battery::publish()
{
_battery_status.timestamp = hrt_absolute_time();
_battery_status_pub.publish(_battery_status);
}
void Battery::sumDischarged(const hrt_abstime ×tamp, float current_a)
{
// Not a valid measurement
if (current_a < 0.f) {
// Because the measurement was invalid we need to stop integration
// and re-initialize with the next valid measurement
_last_timestamp = 0;
return;
}
// Ignore first update because we don't know dt.
if (_last_timestamp != 0) {
const float dt = (timestamp - _last_timestamp) / 1e6;
// mAh since last loop: (current[A] * 1000 = [mA]) * (dt[s] / 3600 = [h])
_discharged_mah_loop = (current_a * 1e3f) * (dt / 3600.f);
_discharged_mah += _discharged_mah_loop;
}
_last_timestamp = timestamp;
}
void Battery::estimateStateOfCharge(const float voltage_v, const float current_a, const float throttle)
{
// remaining battery capacity based on voltage
float cell_voltage = voltage_v / _params.n_cells;
// correct battery voltage locally for load drop to avoid estimation fluctuations
if (_params.r_internal >= 0.f) {
cell_voltage += _params.r_internal * current_a;
} else {
// assume linear relation between throttle and voltage drop
cell_voltage += throttle * _params.v_load_drop;
}
_state_of_charge_volt_based = math::gradual(cell_voltage, _params.v_empty, _params.v_charged, 0.f, 1.f);
// choose which quantity we're using for final reporting
if (_params.capacity > 0.f) {
// if battery capacity is known, fuse voltage measurement with used capacity
if (!_battery_initialized) {
// initialization of the estimation state
_state_of_charge = _state_of_charge_volt_based;
} else {
// The lower the voltage the more adjust the estimate with it to avoid deep discharge
const float weight_v = 3e-4f * (1 - _state_of_charge_volt_based);
_state_of_charge = (1 - weight_v) * _state_of_charge + weight_v * _state_of_charge_volt_based;
// directly apply current capacity slope calculated using current
_state_of_charge -= _discharged_mah_loop / _params.capacity;
_state_of_charge = math::max(_state_of_charge, 0.f);
const float state_of_charge_current_based = math::max(1.f - _discharged_mah / _params.capacity, 0.f);
_state_of_charge = math::min(state_of_charge_current_based, _state_of_charge);
}
} else {
_state_of_charge = _state_of_charge_volt_based;
}
}
void Battery::determineWarning(bool connected)
{
if (connected) {
// propagate warning state only if the state is higher, otherwise remain in current warning state
if (_state_of_charge < _params.emergen_thr) {
_warning = battery_status_s::BATTERY_WARNING_EMERGENCY;
} else if (_state_of_charge < _params.crit_thr) {
_warning = battery_status_s::BATTERY_WARNING_CRITICAL;
} else if (_state_of_charge < _params.low_thr) {
_warning = battery_status_s::BATTERY_WARNING_LOW;
} else {
_warning = battery_status_s::BATTERY_WARNING_NONE;
}
}
}
void Battery::computeScale()
{
const float voltage_range = (_params.v_charged - _params.v_empty);
// reusing capacity calculation to get single cell voltage before drop
const float bat_v = _params.v_empty + (voltage_range * _state_of_charge_volt_based);
_scale = _params.v_charged / bat_v;
if (_scale > 1.3f) { // Allow at most 30% compensation
_scale = 1.3f;
} else if (!PX4_ISFINITE(_scale) || _scale < 1.f) { // Shouldn't ever be more than the power at full battery
_scale = 1.f;
}
}
void Battery::updateParams()
{
if (_index == 1) {
migrateParam<float>(_param_handles.v_empty_old, _param_handles.v_empty, &_params.v_empty_old, &_params.v_empty,
_first_parameter_update);
migrateParam<float>(_param_handles.v_charged_old, _param_handles.v_charged, &_params.v_charged_old, &_params.v_charged,
_first_parameter_update);
migrateParam<int>(_param_handles.n_cells_old, _param_handles.n_cells, &_params.n_cells_old, &_params.n_cells,
_first_parameter_update);
migrateParam<float>(_param_handles.capacity_old, _param_handles.capacity, &_params.capacity_old, &_params.capacity,
_first_parameter_update);
migrateParam<float>(_param_handles.v_load_drop_old, _param_handles.v_load_drop, &_params.v_load_drop_old,
&_params.v_load_drop, _first_parameter_update);
migrateParam<float>(_param_handles.r_internal_old, _param_handles.r_internal, &_params.r_internal_old,
&_params.r_internal, _first_parameter_update);
migrateParam<int>(_param_handles.source_old, _param_handles.source, &_params.source_old, &_params.source,
_first_parameter_update);
} else {
param_get(_param_handles.v_empty, &_params.v_empty);
param_get(_param_handles.v_charged, &_params.v_charged);
param_get(_param_handles.n_cells, &_params.n_cells);
param_get(_param_handles.capacity, &_params.capacity);
param_get(_param_handles.v_load_drop, &_params.v_load_drop);
param_get(_param_handles.r_internal, &_params.r_internal);
param_get(_param_handles.source, &_params.source);
}
param_get(_param_handles.low_thr, &_params.low_thr);
param_get(_param_handles.crit_thr, &_params.crit_thr);
param_get(_param_handles.emergen_thr, &_params.emergen_thr);
ModuleParams::updateParams();
_first_parameter_update = false;
}