test_data.py
3.52 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import print_function
from pylab import *
from pprint import pprint
import scipy.linalg
# test cases, derived from doc/nasa_rotation_def.pdf
#pylint: disable=all
def euler_to_quat(phi, theta, psi):
"Quaternion from (body 3(psi)-2(theta)-1(phi) euler angles"
s1 = sin(psi/2)
c1 = cos(psi/2)
s2 = sin(theta/2)
c2 = cos(theta/2)
s3 = sin(phi/2)
c3 = cos(phi/2)
return array([
s1*s2*s3 + c1*c2*c3,
-s1*s2*c3 + s3*c1*c2,
s1*s3*c2 + s2*c1*c3,
s1*c2*c3 - s2*s3*c1
])
def euler_to_dcm(phi, theta, psi):
s1 = sin(psi)
c1 = cos(psi)
s2 = sin(theta)
c2 = cos(theta)
s3 = sin(phi)
c3 = cos(phi)
return array([
[c1*c2, c1*s2*s3 - s1*c3, c1*s2*c3 + s1*s3],
[s1*c2, s1*s2*s3 + c1*c3, s1*s2*c3 - c1*s3],
[-s2, c2*s3, c2*c3],
])
def quat_prod(q, r):
"Quaternion product"
return array([
r[0]*q[0] - r[1]*q[1] - r[2]*q[2] - r[3]*q[3],
r[0]*q[1] + r[1]*q[0] - r[2]*q[3] + r[3]*q[2],
r[0]*q[2] + r[1]*q[3] + r[2]*q[0] - r[3]*q[1],
r[0]*q[3] - r[1]*q[2] + r[2]*q[1] + r[3]*q[0]
])
def dcm_to_euler(dcm):
return array([
arctan(dcm[2,1]/ dcm[2,2]),
arctan(-dcm[2,0]/ sqrt(1 - dcm[2,0]**2)),
arctan(dcm[1,0]/ dcm[0,0]),
])
def dcm_from_quat(q):
q1 = q[0]
q2 = q[1]
q3 = q[2]
q4 = q[3]
return array([
[q1*q1 + q2*q2 - q3*q3 - q4*q4, 2*(q2*q3 - q1*q4), 2*(q2*q4 + q1*q3)],
[2*(q2*q3 + q1*q4), q1*q1 - q2*q2 + q3*q3 - q4*q4, 2*(q3*q4 - q1*q2)],
[2*(q2*q4 - q1*q3), 2*(q3*q4 + q1*q2), q1*q1 - q2*q2 - q3*q3 + q4*q4]
])
def quat_to_euler(q):
"Quaternion to (body 3(psi)-2(theta)-1(phi) euler angles"
return dcm_to_euler(dcm_from_quat(q))
def quat_to_dcm(q):
return euler_to_dcm(quat_to_euler(q))
phi = 0.1
theta = 0.2
psi = 0.3
print('euler', phi, theta, psi)
q = euler_to_quat(phi, theta, psi)
assert(abs(norm(q) - 1) < FLT_EPSILON)
assert(abs(norm(q) - 1) < FLT_EPSILON)
assert(norm(array(quat_to_euler(q)) - array([phi, theta, psi])) < FLT_EPSILON)
print('\nq:')
pprint(q)
dcm = euler_to_dcm(phi, theta, psi)
assert(norm(dcm[:,0]) == 1)
assert(norm(dcm[:,1]) == 1)
assert(norm(dcm[:,2]) == 1)
assert(abs(dcm[:,0].dot(dcm[:,1])) < FLT_EPSILON)
assert(abs(dcm[:,0].dot(dcm[:,2])) < FLT_EPSILON)
print('\ndcm:')
pprint(dcm)
print('\nq*q', quat_prod(q, q))
q2 = quat_prod(q, q)
pprint(q2)
print(norm(q2))
print('\nq3:')
q3 = array([1,2,3,4])
pprint(q3)
print('\nq3_norm:')
q3_norm =q3 / norm(q3)
pprint(q3_norm)
print('\ninverse')
A = array([[0,2,3], [4,5,6], [7,8,10]])
pprint(A)
pprint(inv(A))
print('\nmatrix exponential')
A = 0.01*array([[1.0,2.0,3.0], [4.0,5.0,6.0], [7.0,8.0,10.0]])
eA_check = scipy.linalg.expm(A)
pprint(eA_check)
eA_approx = eye(3)
k = 1.0
A_pow = A
for i in range(1,3):
k *= i
# print(i, k, '\n', A_pow/k, '\n')
eA_approx += A_pow/k
A_pow = A_pow.dot(A)
print(eA_approx)
print('\nqr decomposition 4x4')
A = array([[20.0, -10.0, -13.0, 21.0], [ 17.0, 16.0, -18.0, -14], [0.7, -0.8, 0.9, -0.5], [-1.0, -1.1, -1.2, -1.3]])
b = array([[2.], [3.], [4.], [5.]])
x = scipy.linalg.lstsq(A,b)[0]
print('A:')
pprint(A)
print('b:')
pprint(b)
print('x:')
pprint(scipy.linalg.lstsq(A,b)[0])
print('\nqr decomposition 4x3')
A = array([[20.0, -10.0, -13.0], [ 17.0, 16.0, -18.0], [0.7, -0.8, 0.9], [-1.0, -1.1, -1.2]])
b = array([[2.], [3.], [4.], [5.]])
x = scipy.linalg.lstsq(A,b)[0]
print('A:')
pprint(A)
print('b:')
pprint(b)
print('x:')
pprint(x)
# vim: set et ft=python fenc=utf-8 ff=unix sts=4 sw=4 ts=8 :