WindEstimator.cpp
10.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/****************************************************************************
*
* Copyright (c) 2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file WindEstimator.cpp
* A wind and airspeed scale estimator.
*/
#include "WindEstimator.hpp"
bool
WindEstimator::initialise(const matrix::Vector3f &velI, const matrix::Vector2f &velIvar, const float tas_meas)
{
// do no initialise if ground velocity is low
// this should prevent the filter from initialising on the ground
if (sqrtf(velI(0) * velI(0) + velI(1) * velI(1)) < 3.0f) {
return false;
}
const float v_n = velI(0);
const float v_e = velI(1);
// estimate heading from ground velocity
const float heading_est = atan2f(v_e, v_n);
// initilaise wind states assuming zero side slip and horizontal flight
_state(INDEX_W_N) = velI(INDEX_W_N) - tas_meas * cosf(heading_est);
_state(INDEX_W_E) = velI(INDEX_W_E) - tas_meas * sinf(heading_est);
_state(INDEX_TAS_SCALE) = 1.0f;
// compute jacobian of states wrt north/each earth velocity states and true airspeed measurement
float L0 = v_e * v_e;
float L1 = v_n * v_n;
float L2 = L0 + L1;
float L3 = tas_meas / (L2 * sqrtf(L2));
float L4 = L3 * v_e * v_n + 1.0f;
float L5 = 1.0f / sqrtf(L2);
float L6 = -L5 * tas_meas;
matrix::Matrix3f L;
L.setZero();
L(0, 0) = L4;
L(0, 1) = L0 * L3 + L6;
L(1, 0) = L1 * L3 + L6;
L(1, 1) = L4;
L(2, 2) = 1.0f;
// get an estimate of the state covariance matrix given the estimated variance of ground velocity
// and measured airspeed
_P.setZero();
_P(INDEX_W_N, INDEX_W_N) = velIvar(0);
_P(INDEX_W_E, INDEX_W_E) = velIvar(1);
_P(INDEX_TAS_SCALE, INDEX_TAS_SCALE) = 0.0001f;
_P = L * _P * L.transpose();
// reset the timestamp for measurement rejection
_time_rejected_tas = 0;
_time_rejected_beta = 0;
_wind_estimator_reset = true;
return true;
}
void
WindEstimator::update(uint64_t time_now)
{
if (!_initialised) {
return;
}
// set reset state to false (is set to true when initialise fuction is called later)
_wind_estimator_reset = false;
// run covariance prediction at 1Hz
if (time_now - _time_last_update < 1000 * 1000 || _time_last_update == 0) {
if (_time_last_update == 0) {
_time_last_update = time_now;
}
return;
}
float dt = (float)(time_now - _time_last_update) * 1e-6f;
_time_last_update = time_now;
float q_w = _wind_p_var;
float q_k_tas = _tas_scale_p_var;
float SPP0 = dt * dt;
float SPP1 = SPP0 * q_w;
float SPP2 = SPP1 + _P(0, 1);
matrix::Matrix3f P_next;
P_next(0, 0) = SPP1 + _P(0, 0);
P_next(0, 1) = SPP2;
P_next(0, 2) = _P(0, 2);
P_next(1, 0) = SPP2;
P_next(1, 1) = SPP1 + _P(1, 1);
P_next(1, 2) = _P(1, 2);
P_next(2, 0) = _P(0, 2);
P_next(2, 1) = _P(1, 2);
P_next(2, 2) = SPP0 * q_k_tas + _P(2, 2);
_P = P_next;
}
void
WindEstimator::fuse_airspeed(uint64_t time_now, const float true_airspeed, const matrix::Vector3f &velI,
const matrix::Vector2f &velIvar)
{
matrix::Vector2f velIvar_constrained = { math::max(0.01f, velIvar(0)), math::max(0.01f, velIvar(1)) };
if (!_initialised) {
// try to initialise
_initialised = initialise(velI, velIvar_constrained, true_airspeed);
return;
}
// don't fuse faster than 10Hz
if (time_now - _time_last_airspeed_fuse < 100 * 1000) {
return;
}
_time_last_airspeed_fuse = time_now;
// assign helper variables
const float v_n = velI(0);
const float v_e = velI(1);
const float v_d = velI(2);
const float k_tas = _state(INDEX_TAS_SCALE);
// compute kalman gain K
const float HH0 = sqrtf(v_d * v_d + (v_e - _state(INDEX_W_E)) * (v_e - _state(INDEX_W_E)) + (v_n - _state(INDEX_W_N)) * (v_n - _state(INDEX_W_N)));
const float HH1 = k_tas / HH0;
matrix::Matrix<float, 1, 3> H_tas;
H_tas(0, 0) = HH1 * (-v_n + _state(INDEX_W_N));
H_tas(0, 1) = HH1 * (-v_e + _state(INDEX_W_E));
H_tas(0, 2) = HH0;
matrix::Matrix<float, 3, 1> K = _P * H_tas.transpose();
const matrix::Matrix<float, 1, 1> S = H_tas * _P * H_tas.transpose() + _tas_var;
K /= S(0,0);
// compute innovation
const float airspeed_pred = k_tas * sqrtf((v_n - _state(INDEX_W_N)) * (v_n - _state(INDEX_W_N)) + (v_e - _state(INDEX_W_E)) *
(v_e - _state(INDEX_W_E)) + v_d * v_d);
_tas_innov = true_airspeed - airspeed_pred;
// innovation variance
_tas_innov_var = S(0,0);
bool reinit_filter = false;
bool meas_is_rejected = false;
meas_is_rejected = check_if_meas_is_rejected(time_now, _tas_innov, _tas_innov_var, _tas_gate, _time_rejected_tas, reinit_filter);
reinit_filter |= _tas_innov_var < 0.0f;
if (meas_is_rejected || reinit_filter) {
if (reinit_filter) {
_initialised = initialise(velI, matrix::Vector2f(0.1f, 0.1f), true_airspeed);
}
// we either did a filter reset or the current measurement was rejected so do not fuse
return;
}
// apply correction to state
_state(INDEX_W_N) += _tas_innov * K(0, 0);
_state(INDEX_W_E) += _tas_innov * K(1, 0);
_state(INDEX_TAS_SCALE) += _tas_innov * K(2, 0);
// update covariance matrix
_P = _P - K * H_tas * _P;
run_sanity_checks();
}
void
WindEstimator::fuse_beta(uint64_t time_now, const matrix::Vector3f &velI, const matrix::Quatf &q_att)
{
if (!_initialised) {
_initialised = initialise(velI, matrix::Vector2f(0.1f, 0.1f), velI.length());
return;
}
// don't fuse faster than 10Hz
if (time_now - _time_last_beta_fuse < 100 * 1000) {
return;
}
_time_last_beta_fuse = time_now;
const float v_n = velI(0);
const float v_e = velI(1);
const float v_d = velI(2);
// compute sideslip observation vector
float HB0 = 2.0f * q_att(0);
float HB1 = HB0 * q_att(3);
float HB2 = 2.0f * q_att(1);
float HB3 = HB2 * q_att(2);
float HB4 = v_e - _state(INDEX_W_E);
float HB5 = HB1 + HB3;
float HB6 = v_n - _state(INDEX_W_N);
float HB7 = q_att(0) * q_att(0);
float HB8 = q_att(3) * q_att(3);
float HB9 = HB7 - HB8;
float HB10 = q_att(1) * q_att(1);
float HB11 = q_att(2) * q_att(2);
float HB12 = HB10 - HB11;
float HB13 = HB12 + HB9;
float HB14 = HB13 * HB6 + HB4 * HB5 + v_d * (-HB0 * q_att(2) + HB2 * q_att(3));
float HB15 = 1.0f / HB14;
float HB16 = (HB4 * (-HB10 + HB11 + HB9) + HB6 * (-HB1 + HB3) + v_d * (HB0 * q_att(1) + 2.0f * q_att(2) * q_att(3))) /
(HB14 * HB14);
matrix::Matrix<float, 1, 3> H_beta;
H_beta(0, 0) = HB13 * HB16 + HB15 * (HB1 - HB3);
H_beta(0, 1) = HB15 * (HB12 - HB7 + HB8) + HB16 * HB5;
H_beta(0, 2) = 0;
// compute kalman gain
matrix::Matrix<float, 3, 1> K = _P * H_beta.transpose();
const matrix::Matrix<float, 1, 1> S = H_beta * _P * H_beta.transpose() + _beta_var;
K /= S(0,0);
// compute predicted side slip angle
matrix::Vector3f rel_wind(velI(0) - _state(INDEX_W_N), velI(1) - _state(INDEX_W_E), velI(2));
matrix::Dcmf R_body_to_earth(q_att);
rel_wind = R_body_to_earth.transpose() * rel_wind;
if (fabsf(rel_wind(0)) < 0.1f) {
return;
}
// use small angle approximation, sin(x) = x for small x
const float beta_pred = rel_wind(1) / rel_wind(0);
_beta_innov = 0.0f - beta_pred;
_beta_innov_var = S(0,0);
bool reinit_filter = false;
bool meas_is_rejected = false;
meas_is_rejected = check_if_meas_is_rejected(time_now, _beta_innov, _beta_innov_var, _beta_gate, _time_rejected_beta,
reinit_filter);
reinit_filter |= _beta_innov_var < 0.0f;
if (meas_is_rejected || reinit_filter) {
if (reinit_filter) {
_initialised = initialise(velI, matrix::Vector2f(0.1f, 0.1f), velI.length());
}
// we either did a filter reset or the current measurement was rejected so do not fuse
return;
}
// apply correction to state
_state(INDEX_W_N) += _beta_innov * K(0, 0);
_state(INDEX_W_E) += _beta_innov * K(1, 0);
_state(INDEX_TAS_SCALE) += _beta_innov * K(2, 0);
// update covariance matrix
_P = _P - K * H_beta * _P;
run_sanity_checks();
}
void
WindEstimator::run_sanity_checks()
{
for (unsigned i = 0; i < 3; i++) {
if (_P(i, i) < 0.0f) {
// ill-conditioned covariance matrix, reset filter
_initialised = false;
return;
}
// limit covariance diagonals if they grow too large
if (i < 2) {
_P(i, i) = _P(i, i) > 25.0f ? 25.0f : _P(i, i);
} else if (i == 2) {
_P(i, i) = _P(i, i) > 0.1f ? 0.1f : _P(i, i);
}
}
if (!ISFINITE(_state(INDEX_W_N)) || !ISFINITE(_state(INDEX_W_E)) || !ISFINITE(_state(INDEX_TAS_SCALE))) {
_initialised = false;
return;
}
// check if we should inhibit learning of airspeed scale factor and rather use a pre-set value.
// airspeed scale factor errors arise from sensor installation which does not change and only needs
// to be computed once for a perticular installation.
if (_enforced_airspeed_scale < 0) {
_state(INDEX_TAS_SCALE) = math::max(0.0f, _state(INDEX_TAS_SCALE));
} else {
_state(INDEX_TAS_SCALE) = _enforced_airspeed_scale;
}
// attain symmetry
for (unsigned row = 0; row < 3; row++) {
for (unsigned column = 0; column < row; column++) {
float tmp = (_P(row, column) + _P(column, row)) / 2;
_P(row, column) = tmp;
_P(column, row) = tmp;
}
}
}
bool
WindEstimator::check_if_meas_is_rejected(uint64_t time_now, float innov, float innov_var, uint8_t gate_size,
uint64_t &time_meas_rejected, bool &reinit_filter)
{
if (innov * innov > gate_size * gate_size * innov_var) {
time_meas_rejected = time_meas_rejected == 0 ? time_now : time_meas_rejected;
} else {
time_meas_rejected = 0;
}
reinit_filter = time_now - time_meas_rejected > 5 * 1000 * 1000 && time_meas_rejected != 0;
return time_meas_rejected != 0;
}