airspeed.cpp
7.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/****************************************************************************
*
* Copyright (C) 2012-2013 PX4 Development Team. All rights reserved.
* Author: Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file airspeed.c
* Airspeed estimation
*
* @author Lorenz Meier <lm@inf.ethz.ch>
*
*/
#include "airspeed.h"
#include <px4_platform_common/defines.h>
#include <lib/ecl/geo/geo.h>
float calc_IAS_corrected(enum AIRSPEED_COMPENSATION_MODEL pmodel, enum AIRSPEED_SENSOR_MODEL smodel,
float tube_len, float tube_dia_mm, float differential_pressure, float pressure_ambient, float temperature_celsius)
{
if (!PX4_ISFINITE(temperature_celsius)) {
temperature_celsius = 15.f; // ICAO Standard Atmosphere 15 degrees celcius
}
// air density in kg/m3
const float rho_air = get_air_density(pressure_ambient, temperature_celsius);
const float dp = fabsf(differential_pressure);
float dp_tot = dp;
float dv = 0.0f;
switch (smodel) {
case AIRSPEED_SENSOR_MODEL_MEMBRANE: {
// do nothing
}
break;
case AIRSPEED_SENSOR_MODEL_SDP3X: {
// assumes a metal pitot tube with round tip as here: https://drotek.com/shop/2986-large_default/sdp3x-airspeed-sensor-kit-sdp31.jpg
// and tubing as provided by px4/drotek (1.5 mm diameter)
// The tube_len represents the length of the tubes connecting the pitot to the sensor.
switch (pmodel) {
case AIRSPEED_COMPENSATION_MODEL_PITOT:
case AIRSPEED_COMPENSATION_MODEL_NO_PITOT: {
const float dp_corr = dp * 96600.0f / pressure_ambient;
// flow through sensor
float flow_SDP33 = (300.805f - 300.878f / (0.00344205f * powf(dp_corr, 0.68698f) + 1.0f)) * 1.29f / rho_air;
// for too small readings the compensation might result in a negative flow which causes numerical issues
if (flow_SDP33 < 0.0f) {
flow_SDP33 = 0.0f;
}
float dp_pitot = 0.0f;
switch (pmodel) {
case AIRSPEED_COMPENSATION_MODEL_PITOT:
dp_pitot = (0.0032f * flow_SDP33 * flow_SDP33 + 0.0123f * flow_SDP33 + 1.0f) * 1.29f / rho_air;
break;
default:
// do nothing
break;
}
// pressure drop through tube
const float dp_tube = (flow_SDP33 * 0.674f) / 450.0f * tube_len * rho_air / 1.29f;
// speed at pitot-tube tip due to flow through sensor
dv = 0.125f * flow_SDP33;
// sum of all pressure drops
dp_tot = dp_corr + dp_tube + dp_pitot;
}
break;
case AIRSPEED_COMPENSATION_TUBE_PRESSURE_LOSS: {
// Pressure loss compensation as defined in https://goo.gl/UHV1Vv.
// tube_dia_mm: Diameter in mm of the pitot and tubes, must have the same diameter.
// tube_len: Length of the tubes connecting the pitot to the sensor and the static + dynamic port length of the pitot.
// check if the tube diameter and dp is nonzero to avoid division by 0
if ((tube_dia_mm > 0.0f) && (dp > 0.0f)) {
const float d_tubePow4 = powf(tube_dia_mm * 1e-3f, 4);
const float denominator = M_PI_F * d_tubePow4 * rho_air * dp;
// avoid division by 0
float eps = 0.0f;
if (fabsf(denominator) > 1e-32f) {
const float viscosity = (18.205f + 0.0484f * (temperature_celsius - 20.0f)) * 1e-6f;
// 4.79 * 1e-7 -> mass flow through sensor
// 59.5 -> dp sensor constant where linear and quadratic contribution to dp vs flow is equal
eps = -64.0f * tube_len * viscosity * 4.79f * 1e-7f * (sqrtf(1.0f + 8.0f * dp / 59.3319f) - 1.0f) / denominator;
}
// range check on eps
if (fabsf(eps) >= 1.0f) {
eps = 0.0f;
}
// pressure correction
dp_tot = dp / (1.0f + eps);
}
}
break;
default: {
// do nothing
}
break;
}
}
break;
default: {
// do nothing
}
break;
}
// if (!PX4_ISFINITE(dp_tube)) {
// dp_tube = 0.0f;
// }
// if (!PX4_ISFINITE(dp_pitot)) {
// dp_pitot = 0.0f;
// }
// if (!PX4_ISFINITE(dv)) {
// dv = 0.0f;
// }
// computed airspeed without correction for inflow-speed at tip of pitot-tube
const float airspeed_uncorrected = sqrtf(2.0f * dp_tot / CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C);
// corrected airspeed
const float airspeed_corrected = airspeed_uncorrected + dv;
// return result with correct sign
return (differential_pressure > 0.0f) ? airspeed_corrected : -airspeed_corrected;
}
float calc_IAS(float differential_pressure)
{
if (differential_pressure > 0.0f) {
return sqrtf((2.0f * differential_pressure) / CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C);
} else {
return -sqrtf((2.0f * fabsf(differential_pressure)) / CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C);
}
}
float calc_TAS_from_CAS(float speed_calibrated, float pressure_ambient, float temperature_celsius)
{
if (!PX4_ISFINITE(temperature_celsius)) {
temperature_celsius = 15.f; // ICAO Standard Atmosphere 15 degrees celcius
}
return speed_calibrated * sqrtf(CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C / get_air_density(pressure_ambient,
temperature_celsius));
}
float calc_CAS_from_IAS(float speed_indicated, float scale)
{
return speed_indicated * scale;
}
float calc_TAS(float total_pressure, float static_pressure, float temperature_celsius)
{
float density = get_air_density(static_pressure, temperature_celsius);
if (density < 0.0001f || !PX4_ISFINITE(density)) {
density = CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C;
}
float pressure_difference = total_pressure - static_pressure;
if (pressure_difference > 0) {
return sqrtf((2.0f * (pressure_difference)) / density);
} else {
return -sqrtf((2.0f * fabsf(pressure_difference)) / density);
}
}
float get_air_density(float static_pressure, float temperature_celsius)
{
if (!PX4_ISFINITE(temperature_celsius)) {
temperature_celsius = 15.f; // ICAO Standard Atmosphere 15 degrees celcius
}
return static_pressure / (CONSTANTS_AIR_GAS_CONST * (temperature_celsius - CONSTANTS_ABSOLUTE_NULL_CELSIUS));
}
float calc_CAS_from_TAS(float speed_true, float pressure_ambient, float temperature_celsius)
{
return speed_true * sqrtf(get_air_density(pressure_ambient, temperature_celsius) / CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C);
}