simulator_mavlink.cpp 41.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/****************************************************************************
 *
 *   Copyright (c) 2015 Mark Charlebois. All rights reserved.
 *   Copyright (c) 2016 Anton Matosov. All rights reserved.
 *   Copyright (c) 2017-2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "simulator.h"
#include <simulator_config.h>

#include <px4_platform_common/log.h>
#include <px4_platform_common/time.h>
#include <px4_platform_common/tasks.h>
#include <lib/ecl/geo/geo.h>
#include <drivers/device/Device.hpp>
#include <drivers/drv_pwm_output.h>
#include <conversion/rotation.h>
#include <mathlib/mathlib.h>

#include <errno.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <poll.h>
#include <pthread.h>
#include <sys/socket.h>
#include <termios.h>
#include <arpa/inet.h>

#include <limits>

#ifdef ENABLE_UART_RC_INPUT
#ifndef B460800
#define B460800 460800
#endif

#ifndef B921600
#define B921600 921600
#endif

static int openUart(const char *uart_name, int baud);
#endif

static int _fd;
static unsigned char _buf[2048];
static sockaddr_in _srcaddr;
static unsigned _addrlen = sizeof(_srcaddr);

const unsigned mode_flag_armed = 128;
const unsigned mode_flag_custom = 1;

using namespace time_literals;

void Simulator::actuator_controls_from_outputs(mavlink_hil_actuator_controls_t *msg)
{
	memset(msg, 0, sizeof(mavlink_hil_actuator_controls_t));

	msg->time_usec = hrt_absolute_time() + hrt_absolute_time_offset();

	bool armed = (_vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_ARMED);

	int _system_type = _param_mav_type.get();

	/* 'pos_thrust_motors_count' indicates number of motor channels which are configured with 0..1 range (positive thrust)
	all other motors are configured for -1..1 range */
	unsigned pos_thrust_motors_count;
	bool is_fixed_wing;

	switch (_system_type) {
	case MAV_TYPE_AIRSHIP:
	case MAV_TYPE_VTOL_DUOROTOR:
	case MAV_TYPE_COAXIAL:
		pos_thrust_motors_count = 2;
		is_fixed_wing = false;
		break;

	case MAV_TYPE_TRICOPTER:
		pos_thrust_motors_count = 3;
		is_fixed_wing = false;
		break;

	case MAV_TYPE_QUADROTOR:
	case MAV_TYPE_VTOL_QUADROTOR:
	case MAV_TYPE_VTOL_TILTROTOR:
		pos_thrust_motors_count = 4;
		is_fixed_wing = false;
		break;

	case MAV_TYPE_VTOL_RESERVED2:
		pos_thrust_motors_count = 5;
		is_fixed_wing = false;
		break;

	case MAV_TYPE_HEXAROTOR:
		pos_thrust_motors_count = 6;
		is_fixed_wing = false;
		break;

	case MAV_TYPE_OCTOROTOR:
		pos_thrust_motors_count = 8;
		is_fixed_wing = false;
		break;

	case MAV_TYPE_SUBMARINE:
		pos_thrust_motors_count = 0;
		is_fixed_wing = false;
		break;

	case MAV_TYPE_FIXED_WING:
		pos_thrust_motors_count = 0;
		is_fixed_wing = true;
		break;

	default:
		pos_thrust_motors_count = 0;
		is_fixed_wing = false;
		break;
	}

	for (unsigned i = 0; i < actuator_outputs_s::NUM_ACTUATOR_OUTPUTS; i++) {
		if (!armed) {
			/* send 0 when disarmed and for disabled channels */
			msg->controls[i] = 0.0f;

		} else if ((is_fixed_wing && i == 4) ||
			   (!is_fixed_wing && i < pos_thrust_motors_count)) {	//multirotor, rotor channel
			/* scale PWM out PWM_DEFAULT_MIN..PWM_DEFAULT_MAX us to 0..1 for rotors */
			msg->controls[i] = (_actuator_outputs.output[i] - PWM_DEFAULT_MIN) / (PWM_DEFAULT_MAX - PWM_DEFAULT_MIN);
			msg->controls[i] = math::constrain(msg->controls[i], 0.f, 1.f);

		} else {
			const float pwm_center = (PWM_DEFAULT_MAX + PWM_DEFAULT_MIN) / 2;
			const float pwm_delta = (PWM_DEFAULT_MAX - PWM_DEFAULT_MIN) / 2;

			/* scale PWM out PWM_DEFAULT_MIN..PWM_DEFAULT_MAX us to -1..1 for other channels */
			msg->controls[i] = (_actuator_outputs.output[i] - pwm_center) / pwm_delta;
			msg->controls[i] = math::constrain(msg->controls[i], -1.f, 1.f);
		}

	}

	msg->mode = mode_flag_custom;
	msg->mode |= (armed) ? mode_flag_armed : 0;
	msg->flags = 0;

#if defined(ENABLE_LOCKSTEP_SCHEDULER)
	msg->flags |= 1;
#endif
}

void Simulator::send_controls()
{
	orb_copy(ORB_ID(actuator_outputs), _actuator_outputs_sub, &_actuator_outputs);

	if (_actuator_outputs.timestamp > 0) {
		mavlink_hil_actuator_controls_t hil_act_control;
		actuator_controls_from_outputs(&hil_act_control);

		mavlink_message_t message{};
		mavlink_msg_hil_actuator_controls_encode(_param_mav_sys_id.get(), _param_mav_comp_id.get(), &message, &hil_act_control);

		PX4_DEBUG("sending controls t=%ld (%ld)", _actuator_outputs.timestamp, hil_act_control.time_usec);

		send_mavlink_message(message);
	}
}

void Simulator::update_sensors(const hrt_abstime &time, const mavlink_hil_sensor_t &sensors)
{
	// temperature only updated with baro
	if ((sensors.fields_updated & SensorSource::BARO) == SensorSource::BARO) {
		if (PX4_ISFINITE(sensors.temperature)) {
			_px4_mag_0.set_temperature(sensors.temperature);
			_px4_mag_1.set_temperature(sensors.temperature);

			_sensors_temperature = sensors.temperature;
		}
	}

	// accel
	if ((sensors.fields_updated & SensorSource::ACCEL) == SensorSource::ACCEL) {
		for (int i = 0; i < ACCEL_COUNT_MAX; i++) {
			if (i == 0) {
				// accel 0 is simulated FIFO
				static constexpr float ACCEL_FIFO_SCALE = CONSTANTS_ONE_G / 2048.f;
				static constexpr float ACCEL_FIFO_RANGE = 16.f * CONSTANTS_ONE_G;

				_px4_accel[i].set_scale(ACCEL_FIFO_SCALE);
				_px4_accel[i].set_range(ACCEL_FIFO_RANGE);

				if (_accel_stuck[i]) {
					_px4_accel[i].updateFIFO(_last_accel_fifo);

				} else if (!_accel_blocked[i]) {
					_px4_accel[i].set_temperature(_sensors_temperature);

					_last_accel_fifo.samples = 1;
					_last_accel_fifo.dt = time - _last_accel_fifo.timestamp_sample;
					_last_accel_fifo.timestamp_sample = time;
					_last_accel_fifo.x[0] = sensors.xacc / ACCEL_FIFO_SCALE;
					_last_accel_fifo.y[0] = sensors.yacc / ACCEL_FIFO_SCALE;
					_last_accel_fifo.z[0] = sensors.zacc / ACCEL_FIFO_SCALE;

					_px4_accel[i].updateFIFO(_last_accel_fifo);
				}

			} else {
				if (_accel_stuck[i]) {
					_px4_accel[i].update(time, _last_accel[i](0), _last_accel[i](1), _last_accel[i](2));

				} else if (!_accel_blocked[i]) {
					_px4_accel[i].set_temperature(_sensors_temperature);
					_px4_accel[i].update(time, sensors.xacc, sensors.yacc, sensors.zacc);
					_last_accel[i] = matrix::Vector3f{sensors.xacc, sensors.yacc, sensors.zacc};
				}
			}
		}
	}

	// gyro
	if ((sensors.fields_updated & SensorSource::GYRO) == SensorSource::GYRO) {
		for (int i = 0; i < GYRO_COUNT_MAX; i++) {
			if (i == 0) {
				// gyro 0 is simulated FIFO
				static constexpr float GYRO_FIFO_SCALE = math::radians(2000.f / 32768.f);
				static constexpr float GYRO_FIFO_RANGE = math::radians(2000.f);

				_px4_gyro[i].set_scale(GYRO_FIFO_SCALE);
				_px4_gyro[i].set_range(GYRO_FIFO_RANGE);

				if (_gyro_stuck[i]) {
					_px4_gyro[i].updateFIFO(_last_gyro_fifo);

				} else if (!_gyro_blocked[i]) {
					_px4_gyro[i].set_temperature(_sensors_temperature);

					_last_gyro_fifo.samples = 1;
					_last_gyro_fifo.dt = time - _last_gyro_fifo.timestamp_sample;
					_last_gyro_fifo.timestamp_sample = time;
					_last_gyro_fifo.x[0] = sensors.xgyro / GYRO_FIFO_SCALE;
					_last_gyro_fifo.y[0] = sensors.ygyro / GYRO_FIFO_SCALE;
					_last_gyro_fifo.z[0] = sensors.zgyro / GYRO_FIFO_SCALE;

					_px4_gyro[i].updateFIFO(_last_gyro_fifo);
				}

			} else {
				if (_gyro_stuck[i]) {
					_px4_gyro[i].update(time, _last_gyro[i](0), _last_gyro[i](1), _last_gyro[i](2));

				} else if (!_gyro_blocked[i]) {
					_px4_gyro[i].set_temperature(_sensors_temperature);
					_px4_gyro[i].update(time, sensors.xgyro, sensors.ygyro, sensors.zgyro);
					_last_gyro[i] = matrix::Vector3f{sensors.xgyro, sensors.ygyro, sensors.zgyro};
				}
			}
		}
	}

	// magnetometer
	if ((sensors.fields_updated & SensorSource::MAG) == SensorSource::MAG && !_mag_blocked) {
		if (_mag_stuck) {
			_px4_mag_0.update(time, _last_magx, _last_magy, _last_magz);
			_px4_mag_1.update(time, _last_magx, _last_magy, _last_magz);

		} else {
			_px4_mag_0.update(time, sensors.xmag, sensors.ymag, sensors.zmag);
			_px4_mag_1.update(time, sensors.xmag, sensors.ymag, sensors.zmag);
			_last_magx = sensors.xmag;
			_last_magy = sensors.ymag;
			_last_magz = sensors.zmag;
		}
	}

	// baro
	if ((sensors.fields_updated & SensorSource::BARO) == SensorSource::BARO && !_baro_blocked) {
		if (_baro_stuck) {
			_px4_baro_0.update(time, _px4_baro_0.get().pressure);
			_px4_baro_0.set_temperature(_px4_baro_0.get().temperature);
			_px4_baro_1.update(time, _px4_baro_1.get().pressure);
			_px4_baro_1.set_temperature(_px4_baro_1.get().temperature);

		} else {
			_px4_baro_0.update(time, sensors.abs_pressure);
			_px4_baro_0.set_temperature(sensors.temperature);
			_px4_baro_1.update(time, sensors.abs_pressure);
			_px4_baro_1.set_temperature(sensors.temperature);
		}
	}

	// differential pressure
	if ((sensors.fields_updated & SensorSource::DIFF_PRESS) == SensorSource::DIFF_PRESS && !_airspeed_blocked) {
		differential_pressure_s report{};
		report.timestamp = time;
		report.temperature = _sensors_temperature;
		report.differential_pressure_filtered_pa = sensors.diff_pressure * 100.0f; // convert from millibar to bar;
		report.differential_pressure_raw_pa = sensors.diff_pressure * 100.0f; // convert from millibar to bar;

		_differential_pressure_pub.publish(report);
	}
}

void Simulator::handle_message(const mavlink_message_t *msg)
{
	switch (msg->msgid) {
	case MAVLINK_MSG_ID_HIL_SENSOR:
		handle_message_hil_sensor(msg);
		break;

	case MAVLINK_MSG_ID_HIL_OPTICAL_FLOW:
		handle_message_optical_flow(msg);
		break;

	case MAVLINK_MSG_ID_ODOMETRY:
		handle_message_odometry(msg);
		break;

	case MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE:
		handle_message_vision_position_estimate(msg);
		break;

	case MAVLINK_MSG_ID_DISTANCE_SENSOR:
		handle_message_distance_sensor(msg);
		break;

	case MAVLINK_MSG_ID_HIL_GPS:
		handle_message_hil_gps(msg);
		break;

	case MAVLINK_MSG_ID_RC_CHANNELS:
		handle_message_rc_channels(msg);
		break;

	case MAVLINK_MSG_ID_LANDING_TARGET:
		handle_message_landing_target(msg);
		break;

	case MAVLINK_MSG_ID_HIL_STATE_QUATERNION:
		handle_message_hil_state_quaternion(msg);
		break;
	}
}

void Simulator::handle_message_distance_sensor(const mavlink_message_t *msg)
{
	mavlink_distance_sensor_t dist;
	mavlink_msg_distance_sensor_decode(msg, &dist);
	publish_distance_topic(&dist);
}

void Simulator::handle_message_hil_gps(const mavlink_message_t *msg)
{
	mavlink_hil_gps_t hil_gps;
	mavlink_msg_hil_gps_decode(msg, &hil_gps);

	if (!_gps_blocked) {
		sensor_gps_s gps{};

		gps.timestamp = hrt_absolute_time();
		gps.time_utc_usec = hil_gps.time_usec;
		gps.fix_type = hil_gps.fix_type;
		gps.lat = hil_gps.lat;
		gps.lon = hil_gps.lon;
		gps.alt = hil_gps.alt;
		gps.eph = (float)hil_gps.eph * 1e-2f; // cm -> m
		gps.epv = (float)hil_gps.epv * 1e-2f; // cm -> m
		gps.vel_m_s = (float)(hil_gps.vel) / 100.0f; // cm/s -> m/s
		gps.vel_n_m_s = (float)(hil_gps.vn) / 100.0f; // cm/s -> m/s
		gps.vel_e_m_s = (float)(hil_gps.ve) / 100.0f; // cm/s -> m/s
		gps.vel_d_m_s = (float)(hil_gps.vd) / 100.0f; // cm/s -> m/s
		gps.cog_rad = math::radians((float)(hil_gps.cog) / 100.0f); // cdeg -> rad
		gps.satellites_used = hil_gps.satellites_visible;
		gps.s_variance_m_s = 0.25f;

		// New publishers will be created based on the HIL_GPS ID's being different or not
		for (size_t i = 0; i < sizeof(_gps_ids) / sizeof(_gps_ids[0]); i++) {
			if (_sensor_gps_pubs[i] && _gps_ids[i] == hil_gps.id) {
				_sensor_gps_pubs[i]->publish(gps);
				break;

			}

			if (_sensor_gps_pubs[i] == nullptr) {
				_sensor_gps_pubs[i] = new uORB::PublicationMulti<sensor_gps_s> {ORB_ID(sensor_gps)};
				_gps_ids[i] = hil_gps.id;
				_sensor_gps_pubs[i]->publish(gps);
				break;
			}
		}
	}
}

void Simulator::handle_message_hil_sensor(const mavlink_message_t *msg)
{
	if (_lockstep_component == -1) {
		_lockstep_component = px4_lockstep_register_component();
	}

	mavlink_hil_sensor_t imu;
	mavlink_msg_hil_sensor_decode(msg, &imu);

	struct timespec ts;
	abstime_to_ts(&ts, imu.time_usec);
	px4_clock_settime(CLOCK_MONOTONIC, &ts);

	hrt_abstime now_us = hrt_absolute_time();

#if 0
	// This is just for to debug missing HIL_SENSOR messages.
	static hrt_abstime last_time = 0;
	hrt_abstime diff = now_us - last_time;
	float step = diff / 4000.0f;

	if (step > 1.1f || step < 0.9f) {
		PX4_INFO("HIL_SENSOR: imu time_usec: %lu, time_usec: %lu, diff: %lu, step: %.2f", imu.time_usec, now_us, diff, step);
	}

	last_time = now_us;
#endif

	update_sensors(now_us, imu);

#if defined(ENABLE_LOCKSTEP_SCHEDULER)

	if (!_has_initialized.load()) {
		_has_initialized.store(true);
	}

#endif

	px4_lockstep_progress(_lockstep_component);
}

void Simulator::handle_message_hil_state_quaternion(const mavlink_message_t *msg)
{
	mavlink_hil_state_quaternion_t hil_state;
	mavlink_msg_hil_state_quaternion_decode(msg, &hil_state);

	uint64_t timestamp = hrt_absolute_time();

	/* angular velocity */
	vehicle_angular_velocity_s hil_angular_velocity{};
	{
		hil_angular_velocity.timestamp = timestamp;

		hil_angular_velocity.xyz[0] = hil_state.rollspeed;
		hil_angular_velocity.xyz[1] = hil_state.pitchspeed;
		hil_angular_velocity.xyz[2] = hil_state.yawspeed;

		// always publish ground truth attitude message
		_vehicle_angular_velocity_ground_truth_pub.publish(hil_angular_velocity);
	}

	/* attitude */
	vehicle_attitude_s hil_attitude{};
	{
		hil_attitude.timestamp = timestamp;

		matrix::Quatf q(hil_state.attitude_quaternion);
		q.copyTo(hil_attitude.q);

		// always publish ground truth attitude message
		_attitude_ground_truth_pub.publish(hil_attitude);
	}

	/* global position */
	vehicle_global_position_s hil_gpos{};
	{
		hil_gpos.timestamp = timestamp;

		hil_gpos.lat = hil_state.lat / 1E7;//1E7
		hil_gpos.lon = hil_state.lon / 1E7;//1E7
		hil_gpos.alt = hil_state.alt / 1E3;//1E3

		// always publish ground truth attitude message
		_gpos_ground_truth_pub.publish(hil_gpos);
	}

	/* local position */
	vehicle_local_position_s hil_lpos{};
	{
		hil_lpos.timestamp = timestamp;

		double lat = hil_state.lat * 1e-7;
		double lon = hil_state.lon * 1e-7;

		if (!map_projection_initialized(&_global_local_proj_ref)) {
			map_projection_init(&_global_local_proj_ref, lat, lon);
			_global_local_alt0 = hil_state.alt / 1000.f;
		}

		float x;
		float y;
		map_projection_project(&_global_local_proj_ref, lat, lon, &x, &y);
		hil_lpos.timestamp = timestamp;
		hil_lpos.xy_valid = true;
		hil_lpos.z_valid = true;
		hil_lpos.v_xy_valid = true;
		hil_lpos.v_z_valid = true;
		hil_lpos.x = x;
		hil_lpos.y = y;
		hil_lpos.z = _global_local_alt0 - hil_state.alt / 1000.0f;
		hil_lpos.vx = hil_state.vx / 100.0f;
		hil_lpos.vy = hil_state.vy / 100.0f;
		hil_lpos.vz = hil_state.vz / 100.0f;
		matrix::Eulerf euler = matrix::Quatf(hil_attitude.q);
		hil_lpos.heading = euler.psi();
		hil_lpos.xy_global = true;
		hil_lpos.z_global = true;
		hil_lpos.ref_timestamp = _global_local_proj_ref.timestamp;
		hil_lpos.ref_lat = math::degrees(_global_local_proj_ref.lat_rad);
		hil_lpos.ref_lon = math::degrees(_global_local_proj_ref.lon_rad);
		hil_lpos.ref_alt = _global_local_alt0;
		hil_lpos.vxy_max = std::numeric_limits<float>::infinity();
		hil_lpos.vz_max = std::numeric_limits<float>::infinity();
		hil_lpos.hagl_min = std::numeric_limits<float>::infinity();
		hil_lpos.hagl_max = std::numeric_limits<float>::infinity();

		// always publish ground truth attitude message
		_lpos_ground_truth_pub.publish(hil_lpos);
	}
}

void Simulator::handle_message_landing_target(const mavlink_message_t *msg)
{
	mavlink_landing_target_t landing_target_mavlink;
	mavlink_msg_landing_target_decode(msg, &landing_target_mavlink);

	irlock_report_s report{};
	report.timestamp = hrt_absolute_time();
	report.signature = landing_target_mavlink.target_num;
	report.pos_x = landing_target_mavlink.angle_x;
	report.pos_y = landing_target_mavlink.angle_y;
	report.size_x = landing_target_mavlink.size_x;
	report.size_y = landing_target_mavlink.size_y;

	_irlock_report_pub.publish(report);
}

void Simulator::handle_message_odometry(const mavlink_message_t *msg)
{
	publish_odometry_topic(msg);
}

void Simulator::handle_message_optical_flow(const mavlink_message_t *msg)
{
	mavlink_hil_optical_flow_t flow;
	mavlink_msg_hil_optical_flow_decode(msg, &flow);
	publish_flow_topic(&flow);
}

void Simulator::handle_message_rc_channels(const mavlink_message_t *msg)
{
	mavlink_rc_channels_t rc_channels;
	mavlink_msg_rc_channels_decode(msg, &rc_channels);

	input_rc_s rc_input{};
	rc_input.timestamp_last_signal = hrt_absolute_time();
	rc_input.channel_count = rc_channels.chancount;
	rc_input.rssi = rc_channels.rssi;
	rc_input.values[0] = rc_channels.chan1_raw;
	rc_input.values[1] = rc_channels.chan2_raw;
	rc_input.values[2] = rc_channels.chan3_raw;
	rc_input.values[3] = rc_channels.chan4_raw;
	rc_input.values[4] = rc_channels.chan5_raw;
	rc_input.values[5] = rc_channels.chan6_raw;
	rc_input.values[6] = rc_channels.chan7_raw;
	rc_input.values[7] = rc_channels.chan8_raw;
	rc_input.values[8] = rc_channels.chan9_raw;
	rc_input.values[9] = rc_channels.chan10_raw;
	rc_input.values[10] = rc_channels.chan11_raw;
	rc_input.values[11] = rc_channels.chan12_raw;
	rc_input.values[12] = rc_channels.chan13_raw;
	rc_input.values[13] = rc_channels.chan14_raw;
	rc_input.values[14] = rc_channels.chan15_raw;
	rc_input.values[15] = rc_channels.chan16_raw;
	rc_input.values[16] = rc_channels.chan17_raw;
	rc_input.values[17] = rc_channels.chan18_raw;

	rc_input.timestamp = hrt_absolute_time();

	// publish message
	_input_rc_pub.publish(rc_input);
}

void Simulator::handle_message_vision_position_estimate(const mavlink_message_t *msg)
{
	publish_odometry_topic(msg);
}

void Simulator::send_mavlink_message(const mavlink_message_t &aMsg)
{
	uint8_t  buf[MAVLINK_MAX_PACKET_LEN];
	uint16_t bufLen = 0;

	bufLen = mavlink_msg_to_send_buffer(buf, &aMsg);

	ssize_t len;

	if (_ip == InternetProtocol::UDP) {
		len = ::sendto(_fd, buf, bufLen, 0, (struct sockaddr *)&_srcaddr, sizeof(_srcaddr));

	} else {
		len = ::send(_fd, buf, bufLen, 0);
	}

	if (len <= 0) {
		PX4_WARN("Failed sending mavlink message: %s", strerror(errno));
	}
}

void *Simulator::sending_trampoline(void * /*unused*/)
{
	_instance->send();
	return nullptr;
}

void Simulator::send()
{
#ifdef __PX4_DARWIN
	pthread_setname_np("sim_send");
#else
	pthread_setname_np(pthread_self(), "sim_send");
#endif

	// Subscribe to topics.
	// Only subscribe to the first actuator_outputs to fill a single HIL_ACTUATOR_CONTROLS.
	_actuator_outputs_sub = orb_subscribe_multi(ORB_ID(actuator_outputs), 0);

	// Before starting, we ought to send a heartbeat to initiate the SITL
	// simulator to start sending sensor data which will set the time and
	// get everything rolling.
	// Without this, we get stuck at px4_poll which waits for a time update.
	send_heartbeat();

	px4_pollfd_struct_t fds_actuator_outputs[1] = {};
	fds_actuator_outputs[0].fd = _actuator_outputs_sub;
	fds_actuator_outputs[0].events = POLLIN;

	while (true) {

		// Wait for up to 100ms for data.
		int pret = px4_poll(&fds_actuator_outputs[0], 1, 100);

		if (pret == 0) {
			// Timed out, try again.
			continue;
		}

		if (pret < 0) {
			PX4_ERR("poll error %s", strerror(errno));
			continue;
		}

		if (fds_actuator_outputs[0].revents & POLLIN) {
			// Got new data to read, update all topics.
			parameters_update(false);
			check_failure_injections();
			_vehicle_status_sub.update(&_vehicle_status);

			// Wait for other modules, such as logger or ekf2
			px4_lockstep_wait_for_components();

			send_controls();
		}
	}

	orb_unsubscribe(_actuator_outputs_sub);
}

void Simulator::request_hil_state_quaternion()
{
	mavlink_command_long_t cmd_long = {};
	mavlink_message_t message = {};
	cmd_long.command = MAV_CMD_SET_MESSAGE_INTERVAL;
	cmd_long.param1 = MAVLINK_MSG_ID_HIL_STATE_QUATERNION;
	cmd_long.param2 = 5e3;
	mavlink_msg_command_long_encode(_param_mav_sys_id.get(), _param_mav_comp_id.get(), &message, &cmd_long);
	send_mavlink_message(message);
}

void Simulator::send_heartbeat()
{
	mavlink_heartbeat_t hb = {};
	mavlink_message_t message = {};
	hb.autopilot = 12;
	hb.base_mode |= (_vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_ARMED) ? 128 : 0;
	mavlink_msg_heartbeat_encode(_param_mav_sys_id.get(), _param_mav_comp_id.get(), &message, &hb);
	send_mavlink_message(message);
}

void Simulator::run()
{
#ifdef __PX4_DARWIN
	pthread_setname_np("sim_rcv");
#else
	pthread_setname_np(pthread_self(), "sim_rcv");
#endif

	struct sockaddr_in _myaddr {};
	_myaddr.sin_family = AF_INET;
	_myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
	_myaddr.sin_port = htons(_port);

	if (_tcp_remote_ipaddr != nullptr) {
		_myaddr.sin_addr.s_addr = inet_addr(_tcp_remote_ipaddr);
	}

	if (_ip == InternetProtocol::UDP) {

		if ((_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
			PX4_ERR("Creating UDP socket failed: %s", strerror(errno));
			return;
		}

		if (bind(_fd, (struct sockaddr *)&_myaddr, sizeof(_myaddr)) < 0) {
			PX4_ERR("bind for UDP port %i failed (%i)", _port, errno);
			::close(_fd);
			return;
		}

		PX4_INFO("Waiting for simulator to connect on UDP port %u", _port);

		while (true) {
			// Once we receive something, we're most probably good and can carry on.
			int len = ::recvfrom(_fd, _buf, sizeof(_buf), 0,
					     (struct sockaddr *)&_srcaddr, (socklen_t *)&_addrlen);

			if (len > 0) {
				break;

			} else {
				system_usleep(500);
			}
		}

		PX4_INFO("Simulator connected on UDP port %u.", _port);

	} else {

		PX4_INFO("Waiting for simulator to accept connection on TCP port %u", _port);

		while (true) {
			if ((_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
				PX4_ERR("Creating TCP socket failed: %s", strerror(errno));
				return;
			}

			int yes = 1;
			int ret = setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, (char *) &yes, sizeof(int));

			if (ret != 0) {
				PX4_ERR("setsockopt failed: %s", strerror(errno));
			}

			socklen_t myaddr_len = sizeof(_myaddr);
			ret = connect(_fd, (struct sockaddr *)&_myaddr, myaddr_len);

			if (ret == 0) {
				break;

			} else {
				::close(_fd);
				system_usleep(500);
			}
		}

		PX4_INFO("Simulator connected on TCP port %u.", _port);

	}

	// Create a thread for sending data to the simulator.
	pthread_t sender_thread;

	pthread_attr_t sender_thread_attr;
	pthread_attr_init(&sender_thread_attr);
	pthread_attr_setstacksize(&sender_thread_attr, PX4_STACK_ADJUSTED(8000));

	struct sched_param param;
	(void)pthread_attr_getschedparam(&sender_thread_attr, &param);

	// sender thread should run immediately after new outputs are available
	//  to send the lockstep update to the simulation
	param.sched_priority = SCHED_PRIORITY_ACTUATOR_OUTPUTS + 1;
	(void)pthread_attr_setschedparam(&sender_thread_attr, &param);

	struct pollfd fds[2] = {};
	unsigned fd_count = 1;
	fds[0].fd = _fd;
	fds[0].events = POLLIN;

#ifdef ENABLE_UART_RC_INPUT
	// setup serial connection to autopilot (used to get manual controls)
	int serial_fd = openUart(PIXHAWK_DEVICE, PIXHAWK_DEVICE_BAUD);

	char serial_buf[1024];

	if (serial_fd >= 0) {
		fds[1].fd = serial_fd;
		fds[1].events = POLLIN;
		fd_count++;

		PX4_INFO("Start using %s for radio control input.", PIXHAWK_DEVICE);

	} else {
		PX4_INFO("Not using %s for radio control input. Assuming joystick input via MAVLink.", PIXHAWK_DEVICE);
	}

#endif

	// got data from simulator, now activate the sending thread
	pthread_create(&sender_thread, &sender_thread_attr, Simulator::sending_trampoline, nullptr);
	pthread_attr_destroy(&sender_thread_attr);

	mavlink_status_t mavlink_status = {};

	// Request HIL_STATE_QUATERNION for ground truth.
	request_hil_state_quaternion();

	while (true) {

		// wait for new mavlink messages to arrive
		int pret = ::poll(&fds[0], fd_count, 1000);

		if (pret == 0) {
			// Timed out.
			PX4_ERR("poll timeout %d, %d", pret, errno);
			continue;
		}

		if (pret < 0) {
			PX4_ERR("poll error %d, %d", pret, errno);
			continue;
		}

		if (fds[0].revents & POLLIN) {

			int len = ::recvfrom(_fd, _buf, sizeof(_buf), 0, (struct sockaddr *)&_srcaddr, (socklen_t *)&_addrlen);

			if (len > 0) {
				mavlink_message_t msg;

				for (int i = 0; i < len; i++) {
					if (mavlink_parse_char(MAVLINK_COMM_0, _buf[i], &msg, &mavlink_status)) {
						handle_message(&msg);
					}
				}
			}
		}

#ifdef ENABLE_UART_RC_INPUT

		// got data from PIXHAWK
		if (fd_count > 1 && fds[1].revents & POLLIN) {
			int len = ::read(serial_fd, serial_buf, sizeof(serial_buf));

			if (len > 0) {
				mavlink_message_t msg;

				mavlink_status_t serial_status = {};

				for (int i = 0; i < len; ++i) {
					if (mavlink_parse_char(MAVLINK_COMM_1, serial_buf[i], &msg, &serial_status)) {
						handle_message(&msg);
					}
				}
			}
		}

#endif
	}
}

#ifdef ENABLE_UART_RC_INPUT
int openUart(const char *uart_name, int baud)
{
	/* process baud rate */
	int speed;

	switch (baud) {
	case 0:      speed = B0;      break;

	case 50:     speed = B50;     break;

	case 75:     speed = B75;     break;

	case 110:    speed = B110;    break;

	case 134:    speed = B134;    break;

	case 150:    speed = B150;    break;

	case 200:    speed = B200;    break;

	case 300:    speed = B300;    break;

	case 600:    speed = B600;    break;

	case 1200:   speed = B1200;   break;

	case 1800:   speed = B1800;   break;

	case 2400:   speed = B2400;   break;

	case 4800:   speed = B4800;   break;

	case 9600:   speed = B9600;   break;

	case 19200:  speed = B19200;  break;

	case 38400:  speed = B38400;  break;

	case 57600:  speed = B57600;  break;

	case 115200: speed = B115200; break;

	case 230400: speed = B230400; break;

	case 460800: speed = B460800; break;

	case 921600: speed = B921600; break;

	default:
		PX4_ERR("Unsupported baudrate: %d", baud);
		return -EINVAL;
	}

	/* open uart */
	int uart_fd = ::open(uart_name, O_RDWR | O_NOCTTY);

	if (uart_fd < 0) {
		return uart_fd;
	}


	/* Try to set baud rate */
	struct termios uart_config = {};

	int termios_state;

	/* Back up the original uart configuration to restore it after exit */
	if ((termios_state = tcgetattr(uart_fd, &uart_config)) < 0) {
		PX4_ERR("tcgetattr failed for %s: %s\n", uart_name, strerror(errno));
		::close(uart_fd);
		return -1;
	}

	/* Set baud rate */
	if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) {
		PX4_ERR("cfsetispeed or cfsetospeed failed for %s: %s\n", uart_name, strerror(errno));
		::close(uart_fd);
		return -1;
	}

	// Make raw
	cfmakeraw(&uart_config);

	if ((termios_state = tcsetattr(uart_fd, TCSANOW, &uart_config)) < 0) {
		PX4_ERR("tcsetattr failed for %s: %s\n", uart_name, strerror(errno));
		::close(uart_fd);
		return -1;
	}

	return uart_fd;
}
#endif

void Simulator::check_failure_injections()
{
	vehicle_command_s vehicle_command;

	while (_vehicle_command_sub.update(&vehicle_command)) {
		if (vehicle_command.command != vehicle_command_s::VEHICLE_CMD_INJECT_FAILURE) {
			continue;
		}

		bool handled = false;
		bool supported = false;

		const int failure_unit = static_cast<int>(vehicle_command.param1 + 0.5f);
		const int failure_type = static_cast<int>(vehicle_command.param2 + 0.5f);
		const int instance = static_cast<int>(vehicle_command.param3 + 0.5f);

		if (failure_unit == vehicle_command_s::FAILURE_UNIT_SENSOR_GPS) {
			handled = true;

			if (failure_type == vehicle_command_s::FAILURE_TYPE_OFF) {
				PX4_WARN("CMD_INJECT_FAILURE, GPS off");
				supported = true;
				_gps_blocked = true;

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_OK) {
				PX4_INFO("CMD_INJECT_FAILURE, GPS ok");
				supported = true;
				_gps_blocked = false;
			}

		} else if (failure_unit == vehicle_command_s::FAILURE_UNIT_SENSOR_ACCEL) {
			handled = true;

			if (failure_type == vehicle_command_s::FAILURE_TYPE_OFF) {
				supported = true;

				// 0 to signal all
				if (instance == 0) {
					for (int i = 0; i < ACCEL_COUNT_MAX; i++) {
						PX4_WARN("CMD_INJECT_FAILURE, accel %d off", i);
						_accel_blocked[i] = true;
						_accel_stuck[i] = false;
					}

				} else if (instance >= 1 && instance <= ACCEL_COUNT_MAX) {
					PX4_WARN("CMD_INJECT_FAILURE, accel %d off", instance - 1);
					_accel_blocked[instance - 1] = true;
					_accel_stuck[instance - 1] = false;
				}

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_STUCK) {
				supported = true;

				// 0 to signal all
				if (instance == 0) {
					for (int i = 0; i < ACCEL_COUNT_MAX; i++) {
						PX4_WARN("CMD_INJECT_FAILURE, accel %d stuck", i);
						_accel_blocked[i] = false;
						_accel_stuck[i] = true;
					}

				} else if (instance >= 1 && instance <= ACCEL_COUNT_MAX) {
					PX4_WARN("CMD_INJECT_FAILURE, accel %d stuck", instance - 1);
					_accel_blocked[instance - 1] = false;
					_accel_stuck[instance - 1] = true;
				}

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_OK) {
				supported = true;

				// 0 to signal all
				if (instance == 0) {
					for (int i = 0; i < ACCEL_COUNT_MAX; i++) {
						PX4_INFO("CMD_INJECT_FAILURE, accel %d ok", i);
						_accel_blocked[i] = false;
						_accel_stuck[i] = false;
					}

				} else if (instance >= 1 && instance <= ACCEL_COUNT_MAX) {
					PX4_INFO("CMD_INJECT_FAILURE, accel %d ok", instance - 1);
					_accel_blocked[instance - 1] = false;
					_accel_stuck[instance - 1] = false;
				}
			}

		} else if (failure_unit == vehicle_command_s::FAILURE_UNIT_SENSOR_GYRO) {
			handled = true;

			if (failure_type == vehicle_command_s::FAILURE_TYPE_OFF) {
				supported = true;

				// 0 to signal all
				if (instance == 0) {
					for (int i = 0; i < GYRO_COUNT_MAX; i++) {
						PX4_WARN("CMD_INJECT_FAILURE, gyro %d off", i);
						_gyro_blocked[i] = true;
						_gyro_stuck[i] = false;
					}

				} else if (instance >= 1 && instance <= GYRO_COUNT_MAX) {
					PX4_WARN("CMD_INJECT_FAILURE, gyro %d off", instance - 1);
					_gyro_blocked[instance - 1] = true;
					_gyro_stuck[instance - 1] = false;
				}

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_STUCK) {
				supported = true;

				// 0 to signal all
				if (instance == 0) {
					for (int i = 0; i < GYRO_COUNT_MAX; i++) {
						PX4_WARN("CMD_INJECT_FAILURE, gyro %d stuck", i);
						_gyro_blocked[i] = false;
						_gyro_stuck[i] = true;
					}

				} else if (instance >= 1 && instance <= GYRO_COUNT_MAX) {
					PX4_INFO("CMD_INJECT_FAILURE, gyro %d stuck", instance - 1);
					_gyro_blocked[instance - 1] = false;
					_gyro_stuck[instance - 1] = true;
				}

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_OK) {
				supported = true;

				// 0 to signal all
				if (instance == 0) {
					for (int i = 0; i < GYRO_COUNT_MAX; i++) {
						PX4_INFO("CMD_INJECT_FAILURE, gyro %d ok", i);
						_gyro_blocked[i] = false;
						_gyro_stuck[i] = false;
					}

				} else if (instance >= 1 && instance <= GYRO_COUNT_MAX) {
					PX4_INFO("CMD_INJECT_FAILURE, gyro %d ok", instance - 1);
					_gyro_blocked[instance - 1] = false;
					_gyro_stuck[instance - 1] = false;
				}
			}

		} else if (failure_unit == vehicle_command_s::FAILURE_UNIT_SENSOR_MAG) {
			handled = true;

			if (failure_type == vehicle_command_s::FAILURE_TYPE_OFF) {
				PX4_WARN("CMD_INJECT_FAILURE, mag off");
				supported = true;
				_mag_blocked = true;

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_STUCK) {
				PX4_WARN("CMD_INJECT_FAILURE, mag stuck");
				supported = true;
				_mag_stuck = true;
				_mag_blocked = false;

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_OK) {
				PX4_INFO("CMD_INJECT_FAILURE, mag ok");
				supported = true;
				_mag_blocked = false;
			}

		} else if (failure_unit == vehicle_command_s::FAILURE_UNIT_SENSOR_BARO) {
			handled = true;

			if (failure_type == vehicle_command_s::FAILURE_TYPE_OFF) {
				PX4_WARN("CMD_INJECT_FAILURE, baro off");
				supported = true;
				_baro_blocked = true;

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_STUCK) {
				PX4_WARN("CMD_INJECT_FAILURE, baro stuck");
				supported = true;
				_baro_stuck = true;
				_baro_blocked = false;

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_OK) {
				PX4_INFO("CMD_INJECT_FAILURE, baro ok");
				supported = true;
				_baro_blocked = false;
			}

		} else if (failure_unit == vehicle_command_s::FAILURE_UNIT_SENSOR_AIRSPEED) {
			handled = true;

			if (failure_type == vehicle_command_s::FAILURE_TYPE_OFF) {
				PX4_WARN("CMD_INJECT_FAILURE, airspeed off");
				supported = true;
				_airspeed_blocked = true;

			} else if (failure_type == vehicle_command_s::FAILURE_TYPE_OK) {
				PX4_INFO("CMD_INJECT_FAILURE, airspeed ok");
				supported = true;
				_airspeed_blocked = false;
			}
		}

		if (handled) {
			vehicle_command_ack_s ack{};
			ack.command = vehicle_command.command;
			ack.from_external = false;
			ack.result = supported ?
				     vehicle_command_ack_s::VEHICLE_RESULT_ACCEPTED :
				     vehicle_command_ack_s::VEHICLE_RESULT_UNSUPPORTED;
			ack.timestamp = hrt_absolute_time();
			_command_ack_pub.publish(ack);
		}
	}
}

int Simulator::publish_flow_topic(const mavlink_hil_optical_flow_t *flow_mavlink)
{
	optical_flow_s flow = {};
	flow.sensor_id = flow_mavlink->sensor_id;
	flow.timestamp = hrt_absolute_time();
	flow.time_since_last_sonar_update = 0;
	flow.frame_count_since_last_readout = 0; // ?
	flow.integration_timespan = flow_mavlink->integration_time_us;

	flow.ground_distance_m = flow_mavlink->distance;
	flow.gyro_temperature = flow_mavlink->temperature;
	flow.gyro_x_rate_integral = flow_mavlink->integrated_xgyro;
	flow.gyro_y_rate_integral = flow_mavlink->integrated_ygyro;
	flow.gyro_z_rate_integral = flow_mavlink->integrated_zgyro;
	flow.pixel_flow_x_integral = flow_mavlink->integrated_x;
	flow.pixel_flow_y_integral = flow_mavlink->integrated_y;
	flow.quality = flow_mavlink->quality;

	/* fill in sensor limits */
	float flow_rate_max;
	param_get(param_find("SENS_FLOW_MAXR"), &flow_rate_max);
	float flow_min_hgt;
	param_get(param_find("SENS_FLOW_MINHGT"), &flow_min_hgt);
	float flow_max_hgt;
	param_get(param_find("SENS_FLOW_MAXHGT"), &flow_max_hgt);

	flow.max_flow_rate = flow_rate_max;
	flow.min_ground_distance = flow_min_hgt;
	flow.max_ground_distance = flow_max_hgt;

	/* rotate measurements according to parameter */
	int32_t flow_rot_int;
	param_get(param_find("SENS_FLOW_ROT"), &flow_rot_int);
	const enum Rotation flow_rot = (Rotation)flow_rot_int;

	float zeroval = 0.0f;
	rotate_3f(flow_rot, flow.pixel_flow_x_integral, flow.pixel_flow_y_integral, zeroval);
	rotate_3f(flow_rot, flow.gyro_x_rate_integral, flow.gyro_y_rate_integral, flow.gyro_z_rate_integral);

	_flow_pub.publish(flow);

	return PX4_OK;
}

int Simulator::publish_odometry_topic(const mavlink_message_t *odom_mavlink)
{
	uint64_t timestamp = hrt_absolute_time();

	struct vehicle_odometry_s odom;

	odom.timestamp = timestamp;
	odom.timestamp_sample = timestamp;

	const size_t POS_URT_SIZE = sizeof(odom.pose_covariance) / sizeof(odom.pose_covariance[0]);

	if (odom_mavlink->msgid == MAVLINK_MSG_ID_ODOMETRY) {
		mavlink_odometry_t odom_msg;
		mavlink_msg_odometry_decode(odom_mavlink, &odom_msg);

		/* The position in the local NED frame */
		odom.x = odom_msg.x;
		odom.y = odom_msg.y;
		odom.z = odom_msg.z;

		/* The quaternion of the ODOMETRY msg represents a rotation from
		 * NED earth/local frame to XYZ body frame */
		matrix::Quatf q(odom_msg.q[0], odom_msg.q[1], odom_msg.q[2], odom_msg.q[3]);
		q.copyTo(odom.q);

		if (odom_msg.frame_id == MAV_FRAME_LOCAL_NED) {
			odom.local_frame = vehicle_odometry_s::LOCAL_FRAME_NED;

		} else {
			odom.local_frame = vehicle_odometry_s::LOCAL_FRAME_FRD;
		}

		static_assert(POS_URT_SIZE == (sizeof(odom_msg.pose_covariance) / sizeof(odom_msg.pose_covariance[0])),
			      "Odometry Pose Covariance matrix URT array size mismatch");

		/* The pose covariance URT */
		for (size_t i = 0; i < POS_URT_SIZE; i++) {
			odom.pose_covariance[i] = odom_msg.pose_covariance[i];
		}

		/* The velocity in the body-fixed frame */
		odom.velocity_frame = vehicle_odometry_s::BODY_FRAME_FRD;
		odom.vx = odom_msg.vx;
		odom.vy = odom_msg.vy;
		odom.vz = odom_msg.vz;

		/* The angular velocity in the body-fixed frame */
		odom.rollspeed = odom_msg.rollspeed;
		odom.pitchspeed = odom_msg.pitchspeed;
		odom.yawspeed = odom_msg.yawspeed;

		// velocity_covariance
		static constexpr size_t VEL_URT_SIZE = sizeof(odom.velocity_covariance) / sizeof(odom.velocity_covariance[0]);
		static_assert(VEL_URT_SIZE == (sizeof(odom_msg.velocity_covariance) / sizeof(odom_msg.velocity_covariance[0])),
			      "Odometry Velocity Covariance matrix URT array size mismatch");

		/* The velocity covariance URT */
		for (size_t i = 0; i < VEL_URT_SIZE; i++) {
			odom.velocity_covariance[i] = odom_msg.velocity_covariance[i];
		}

		/* Publish the odometry based on the source */
		if (odom_msg.estimator_type == MAV_ESTIMATOR_TYPE_VISION || odom_msg.estimator_type == MAV_ESTIMATOR_TYPE_VIO) {
			_visual_odometry_pub.publish(odom);

		} else if (odom_msg.estimator_type == MAV_ESTIMATOR_TYPE_MOCAP) {
			_mocap_odometry_pub.publish(odom);

		} else {
			PX4_ERR("Estimator source %u not supported. Unable to publish pose and velocity", odom_msg.estimator_type);
		}

	} else if (odom_mavlink->msgid == MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE) {
		mavlink_vision_position_estimate_t ev;
		mavlink_msg_vision_position_estimate_decode(odom_mavlink, &ev);
		/* The position in the local NED frame */
		odom.x = ev.x;
		odom.y = ev.y;
		odom.z = ev.z;
		/* The euler angles of the VISUAL_POSITION_ESTIMATE msg represent a
		 * rotation from NED earth/local frame to XYZ body frame */
		matrix::Quatf q(matrix::Eulerf(ev.roll, ev.pitch, ev.yaw));
		q.copyTo(odom.q);

		odom.local_frame = vehicle_odometry_s::LOCAL_FRAME_NED;

		static_assert(POS_URT_SIZE == (sizeof(ev.covariance) / sizeof(ev.covariance[0])),
			      "Vision Position Estimate Pose Covariance matrix URT array size mismatch");

		/* The pose covariance URT */
		for (size_t i = 0; i < POS_URT_SIZE; i++) {
			odom.pose_covariance[i] = ev.covariance[i];
		}

		/* The velocity in the local NED frame - unknown */
		odom.vx = NAN;
		odom.vy = NAN;
		odom.vz = NAN;
		/* The angular velocity in body-fixed frame - unknown */
		odom.rollspeed = NAN;
		odom.pitchspeed = NAN;
		odom.yawspeed = NAN;

		/* The velocity covariance URT - unknown */
		odom.velocity_covariance[0] = NAN;

		/* Publish the odometry */
		_visual_odometry_pub.publish(odom);
	}

	return PX4_OK;
}

int Simulator::publish_distance_topic(const mavlink_distance_sensor_t *dist_mavlink)
{
	distance_sensor_s dist{};
	dist.timestamp = hrt_absolute_time();
	dist.min_distance = dist_mavlink->min_distance / 100.0f;
	dist.max_distance = dist_mavlink->max_distance / 100.0f;
	dist.current_distance = dist_mavlink->current_distance / 100.0f;
	dist.type = dist_mavlink->type;
	dist.variance = dist_mavlink->covariance * 1e-4f; // cm^2 to m^2

	device::Device::DeviceId device_id {};
	device_id.devid_s.bus_type = device::Device::DeviceBusType_SIMULATION;
	device_id.devid_s.address = dist_mavlink->id;
	device_id.devid_s.devtype = DRV_DIST_DEVTYPE_SIM;

	dist.device_id = device_id.devid;

	// MAVLink DISTANCE_SENSOR signal_quality value of 0 means unset/unknown
	// quality value. Also it comes normalised between 1 and 100 while the uORB
	// signal quality is normalised between 0 and 100.
	dist.signal_quality = dist_mavlink->signal_quality == 0 ? -1 : 100 * (dist_mavlink->signal_quality - 1) / 99;

	switch (dist_mavlink->orientation) {
	case MAV_SENSOR_ORIENTATION::MAV_SENSOR_ROTATION_PITCH_270:
		dist.orientation = distance_sensor_s::ROTATION_DOWNWARD_FACING;
		break;

	case MAV_SENSOR_ORIENTATION::MAV_SENSOR_ROTATION_PITCH_90:
		dist.orientation = distance_sensor_s::ROTATION_UPWARD_FACING;
		break;

	case MAV_SENSOR_ORIENTATION::MAV_SENSOR_ROTATION_PITCH_180:
		dist.orientation = distance_sensor_s::ROTATION_BACKWARD_FACING;
		break;

	case MAV_SENSOR_ORIENTATION::MAV_SENSOR_ROTATION_NONE:
		dist.orientation = distance_sensor_s::ROTATION_FORWARD_FACING;
		break;

	case MAV_SENSOR_ORIENTATION::MAV_SENSOR_ROTATION_YAW_270:
		dist.orientation = distance_sensor_s::ROTATION_LEFT_FACING;
		break;

	case MAV_SENSOR_ORIENTATION::MAV_SENSOR_ROTATION_YAW_90:
		dist.orientation = distance_sensor_s::ROTATION_RIGHT_FACING;
		break;

	default:
		dist.orientation = distance_sensor_s::ROTATION_CUSTOM;
	}

	dist.h_fov = dist_mavlink->horizontal_fov;
	dist.v_fov = dist_mavlink->vertical_fov;
	dist.q[0] = dist_mavlink->quaternion[0];
	dist.q[1] = dist_mavlink->quaternion[1];
	dist.q[2] = dist_mavlink->quaternion[2];
	dist.q[3] = dist_mavlink->quaternion[3];

	// New publishers will be created based on the sensor ID's being different or not
	for (size_t i = 0; i < sizeof(_dist_sensor_ids) / sizeof(_dist_sensor_ids[0]); i++) {
		if (_dist_pubs[i] && _dist_sensor_ids[i] == dist.device_id) {
			_dist_pubs[i]->publish(dist);
			break;

		}

		if (_dist_pubs[i] == nullptr) {
			_dist_pubs[i] = new uORB::PublicationMulti<distance_sensor_s> {ORB_ID(distance_sensor)};
			_dist_sensor_ids[i] = dist.device_id;
			_dist_pubs[i]->publish(dist);
			break;
		}
	}

	return PX4_OK;
}