rc_update.cpp
25.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/****************************************************************************
*
* Copyright (c) 2016-2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file rc_update.cpp
*
* @author Beat Kueng <beat-kueng@gmx.net>
*/
#include "rc_update.h"
using namespace time_literals;
namespace RCUpdate
{
// TODO: find a better home for this
static bool operator ==(const manual_control_switches_s &a, const manual_control_switches_s &b)
{
return (a.mode_slot == b.mode_slot &&
a.mode_switch == b.mode_switch &&
a.return_switch == b.return_switch &&
a.posctl_switch == b.posctl_switch &&
a.loiter_switch == b.loiter_switch &&
a.acro_switch == b.acro_switch &&
a.offboard_switch == b.offboard_switch &&
a.kill_switch == b.kill_switch &&
a.arm_switch == b.arm_switch &&
a.transition_switch == b.transition_switch &&
a.gear_switch == b.gear_switch &&
a.stab_switch == b.stab_switch &&
a.man_switch == b.man_switch);
}
static bool operator !=(const manual_control_switches_s &a, const manual_control_switches_s &b) { return !(a == b); }
RCUpdate::RCUpdate() :
ModuleParams(nullptr),
WorkItem(MODULE_NAME, px4::wq_configurations::hp_default)
{
// initialize parameter handles
for (unsigned i = 0; i < RC_MAX_CHAN_COUNT; i++) {
char nbuf[16];
/* min values */
sprintf(nbuf, "RC%d_MIN", i + 1);
_parameter_handles.min[i] = param_find(nbuf);
/* trim values */
sprintf(nbuf, "RC%d_TRIM", i + 1);
_parameter_handles.trim[i] = param_find(nbuf);
/* max values */
sprintf(nbuf, "RC%d_MAX", i + 1);
_parameter_handles.max[i] = param_find(nbuf);
/* channel reverse */
sprintf(nbuf, "RC%d_REV", i + 1);
_parameter_handles.rev[i] = param_find(nbuf);
/* channel deadzone */
sprintf(nbuf, "RC%d_DZ", i + 1);
_parameter_handles.dz[i] = param_find(nbuf);
}
// RC to parameter mapping for changing parameters with RC
for (int i = 0; i < rc_parameter_map_s::RC_PARAM_MAP_NCHAN; i++) {
// shifted by 1 because param name starts at 1
char name[rc_parameter_map_s::PARAM_ID_LEN];
snprintf(name, rc_parameter_map_s::PARAM_ID_LEN, "RC_MAP_PARAM%d", i + 1);
_parameter_handles.rc_map_param[i] = param_find(name);
}
rc_parameter_map_poll(true /* forced */);
parameters_updated();
}
RCUpdate::~RCUpdate()
{
perf_free(_loop_perf);
perf_free(_loop_interval_perf);
perf_free(_valid_data_interval_perf);
}
bool RCUpdate::init()
{
if (!_input_rc_sub.registerCallback()) {
PX4_ERR("input_rc callback registration failed!");
return false;
}
return true;
}
void RCUpdate::parameters_updated()
{
// rc values
for (unsigned int i = 0; i < RC_MAX_CHAN_COUNT; i++) {
float min = 0.f;
param_get(_parameter_handles.min[i], &min);
_parameters.min[i] = min;
float trim = 0.f;
param_get(_parameter_handles.trim[i], &trim);
_parameters.trim[i] = trim;
float max = 0.f;
param_get(_parameter_handles.max[i], &max);
_parameters.max[i] = max;
float rev = 0.f;
param_get(_parameter_handles.rev[i], &rev);
_parameters.rev[i] = (rev < 0.f);
float dz = 0.f;
param_get(_parameter_handles.dz[i], &dz);
_parameters.dz[i] = dz;
}
for (int i = 0; i < rc_parameter_map_s::RC_PARAM_MAP_NCHAN; i++) {
param_get(_parameter_handles.rc_map_param[i], &(_parameters.rc_map_param[i]));
}
update_rc_functions();
}
void RCUpdate::update_rc_functions()
{
/* update RC function mappings */
_rc.function[rc_channels_s::FUNCTION_THROTTLE] = _param_rc_map_throttle.get() - 1;
_rc.function[rc_channels_s::FUNCTION_ROLL] = _param_rc_map_roll.get() - 1;
_rc.function[rc_channels_s::FUNCTION_PITCH] = _param_rc_map_pitch.get() - 1;
_rc.function[rc_channels_s::FUNCTION_YAW] = _param_rc_map_yaw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_MODE] = _param_rc_map_mode_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_RETURN] = _param_rc_map_return_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_POSCTL] = _param_rc_map_posctl_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_LOITER] = _param_rc_map_loiter_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_ACRO] = _param_rc_map_acro_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_OFFBOARD] = _param_rc_map_offb_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_KILLSWITCH] = _param_rc_map_kill_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_ARMSWITCH] = _param_rc_map_arm_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_TRANSITION] = _param_rc_map_trans_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_GEAR] = _param_rc_map_gear_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_STAB] = _param_rc_map_stab_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_MAN] = _param_rc_map_man_sw.get() - 1;
_rc.function[rc_channels_s::FUNCTION_FLAPS] = _param_rc_map_flaps.get() - 1;
_rc.function[rc_channels_s::FUNCTION_AUX_1] = _param_rc_map_aux1.get() - 1;
_rc.function[rc_channels_s::FUNCTION_AUX_2] = _param_rc_map_aux2.get() - 1;
_rc.function[rc_channels_s::FUNCTION_AUX_3] = _param_rc_map_aux3.get() - 1;
_rc.function[rc_channels_s::FUNCTION_AUX_4] = _param_rc_map_aux4.get() - 1;
_rc.function[rc_channels_s::FUNCTION_AUX_5] = _param_rc_map_aux5.get() - 1;
_rc.function[rc_channels_s::FUNCTION_AUX_6] = _param_rc_map_aux6.get() - 1;
for (int i = 0; i < rc_parameter_map_s::RC_PARAM_MAP_NCHAN; i++) {
_rc.function[rc_channels_s::FUNCTION_PARAM_1 + i] = _parameters.rc_map_param[i] - 1;
}
}
void RCUpdate::rc_parameter_map_poll(bool forced)
{
if (_rc_parameter_map_sub.updated() || forced) {
_rc_parameter_map_sub.copy(&_rc_parameter_map);
/* update parameter handles to which the RC channels are mapped */
for (int i = 0; i < rc_parameter_map_s::RC_PARAM_MAP_NCHAN; i++) {
if (_rc.function[rc_channels_s::FUNCTION_PARAM_1 + i] < 0 || !_rc_parameter_map.valid[i]) {
/* This RC channel is not mapped to a RC-Parameter Channel (e.g. RC_MAP_PARAM1 == 0)
* or no request to map this channel to a param has been sent via mavlink
*/
continue;
}
/* Set the handle by index if the index is set, otherwise use the id */
if (_rc_parameter_map.param_index[i] >= 0) {
_parameter_handles.rc_param[i] = param_for_used_index((unsigned)_rc_parameter_map.param_index[i]);
} else {
_parameter_handles.rc_param[i] = param_find(&_rc_parameter_map.param_id[i * (rc_parameter_map_s::PARAM_ID_LEN + 1)]);
}
}
PX4_DEBUG("rc to parameter map updated");
for (int i = 0; i < rc_parameter_map_s::RC_PARAM_MAP_NCHAN; i++) {
PX4_DEBUG("\ti %d param_id %s scale %.3f value0 %.3f, min %.3f, max %.3f",
i,
&_rc_parameter_map.param_id[i * (rc_parameter_map_s::PARAM_ID_LEN + 1)],
(double)_rc_parameter_map.scale[i],
(double)_rc_parameter_map.value0[i],
(double)_rc_parameter_map.value_min[i],
(double)_rc_parameter_map.value_max[i]
);
}
}
}
float RCUpdate::get_rc_value(uint8_t func, float min_value, float max_value) const
{
if (_rc.function[func] >= 0) {
return math::constrain(_rc.channels[_rc.function[func]], min_value, max_value);
}
return 0.f;
}
void RCUpdate::set_params_from_rc()
{
for (int i = 0; i < rc_parameter_map_s::RC_PARAM_MAP_NCHAN; i++) {
if (_rc.function[rc_channels_s::FUNCTION_PARAM_1 + i] < 0 || !_rc_parameter_map.valid[i]) {
/* This RC channel is not mapped to a RC-Parameter Channel (e.g. RC_MAP_PARAM1 == 0)
* or no request to map this channel to a param has been sent via mavlink
*/
continue;
}
float rc_val = get_rc_value((rc_channels_s::FUNCTION_PARAM_1 + i), -1.f, 1.f);
/* Check if the value has changed,
* maybe we need to introduce a more aggressive limit here */
if (rc_val > _param_rc_values[i] + FLT_EPSILON || rc_val < _param_rc_values[i] - FLT_EPSILON) {
_param_rc_values[i] = rc_val;
float param_val = math::constrain(
_rc_parameter_map.value0[i] + _rc_parameter_map.scale[i] * rc_val,
_rc_parameter_map.value_min[i], _rc_parameter_map.value_max[i]);
param_set(_parameter_handles.rc_param[i], ¶m_val);
}
}
}
void RCUpdate::Run()
{
if (should_exit()) {
_input_rc_sub.unregisterCallback();
exit_and_cleanup();
return;
}
perf_begin(_loop_perf);
perf_count(_loop_interval_perf);
// check for parameter updates
if (_parameter_update_sub.updated()) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
updateParams();
parameters_updated();
}
rc_parameter_map_poll();
/* read low-level values from FMU or IO RC inputs (PPM, Spektrum, S.Bus) */
input_rc_s input_rc;
if (_input_rc_sub.update(&input_rc)) {
// warn if the channel count is changing (possibly indication of error)
if (!input_rc.rc_lost) {
if ((_channel_count_previous != input_rc.channel_count)
&& (_channel_count_previous > 0)) {
PX4_WARN("channel count changed %d -> %d", _channel_count_previous, input_rc.channel_count);
}
if ((_input_source_previous != input_rc.input_source)
&& (_input_source_previous != input_rc_s::RC_INPUT_SOURCE_UNKNOWN)) {
PX4_WARN("input source changed %d -> %d", _input_source_previous, input_rc.input_source);
}
}
const bool input_source_stable = (input_rc.input_source == _input_source_previous);
const bool channel_count_stable = (input_rc.channel_count == _channel_count_previous);
_input_source_previous = input_rc.input_source;
_channel_count_previous = input_rc.channel_count;
const uint8_t channel_count_limited = math::min(input_rc.channel_count, RC_MAX_CHAN_COUNT);
if (channel_count_limited > _channel_count_max) {
_channel_count_max = channel_count_limited;
}
/* detect RC signal loss */
bool signal_lost = true;
/* check flags and require at least four channels to consider the signal valid */
if (input_rc.rc_lost || input_rc.rc_failsafe || input_rc.channel_count < 4) {
/* signal is lost or no enough channels */
signal_lost = true;
} else if ((input_rc.input_source == input_rc_s::RC_INPUT_SOURCE_PX4FMU_PPM ||
input_rc.input_source == input_rc_s::RC_INPUT_SOURCE_PX4IO_PPM)
&& input_rc.channel_count == 16) {
// This is a specific RC lost check for RFD 868+/900 Modems on PPM.
// The observation was that when RC is lost, 16 channels are active and the first 12 are 1000
// and the remaining ones are 0.
for (unsigned int i = 0; i < 16; i++) {
if (i < 12 && input_rc.values[i] > 999 && input_rc.values[i] < 1005) {
signal_lost = true;
} else if (input_rc.values[i] == 0) {
signal_lost = true;
} else {
signal_lost = false;
break;
}
}
} else {
/* signal looks good */
signal_lost = false;
/* check failsafe */
int8_t fs_ch = _rc.function[_param_rc_map_failsafe.get()]; // get channel mapped to throttle
if (_param_rc_map_failsafe.get() > 0) { // if not 0, use channel number instead of rc.function mapping
fs_ch = _param_rc_map_failsafe.get() - 1;
}
if (_param_rc_fails_thr.get() > 0 && fs_ch >= 0) {
/* failsafe configured */
if ((_param_rc_fails_thr.get() < _parameters.min[fs_ch] && input_rc.values[fs_ch] < _param_rc_fails_thr.get()) ||
(_param_rc_fails_thr.get() > _parameters.max[fs_ch] && input_rc.values[fs_ch] > _param_rc_fails_thr.get())) {
/* failsafe triggered, signal is lost by receiver */
signal_lost = true;
}
}
}
/* read out and scale values from raw message even if signal is invalid */
for (unsigned int i = 0; i < channel_count_limited; i++) {
/*
* 1) Constrain to min/max values, as later processing depends on bounds.
*/
input_rc.values[i] = math::constrain(input_rc.values[i], _parameters.min[i], _parameters.max[i]);
/*
* 2) Scale around the mid point differently for lower and upper range.
*
* This is necessary as they don't share the same endpoints and slope.
*
* First normalize to 0..1 range with correct sign (below or above center),
* the total range is 2 (-1..1).
* If center (trim) == min, scale to 0..1, if center (trim) == max,
* scale to -1..0.
*
* As the min and max bounds were enforced in step 1), division by zero
* cannot occur, as for the case of center == min or center == max the if
* statement is mutually exclusive with the arithmetic NaN case.
*
* DO NOT REMOVE OR ALTER STEP 1!
*/
if (input_rc.values[i] > (_parameters.trim[i] + _parameters.dz[i])) {
_rc.channels[i] = (input_rc.values[i] - _parameters.trim[i] - _parameters.dz[i]) / (float)(
_parameters.max[i] - _parameters.trim[i] - _parameters.dz[i]);
} else if (input_rc.values[i] < (_parameters.trim[i] - _parameters.dz[i])) {
_rc.channels[i] = (input_rc.values[i] - _parameters.trim[i] + _parameters.dz[i]) / (float)(
_parameters.trim[i] - _parameters.min[i] - _parameters.dz[i]);
} else {
/* in the configured dead zone, output zero */
_rc.channels[i] = 0.f;
}
if (_parameters.rev[i]) {
_rc.channels[i] = -_rc.channels[i];
}
/* handle any parameter-induced blowups */
if (!PX4_ISFINITE(_rc.channels[i])) {
_rc.channels[i] = 0.f;
}
}
_rc.channel_count = input_rc.channel_count;
_rc.rssi = input_rc.rssi;
_rc.signal_lost = signal_lost;
_rc.timestamp = input_rc.timestamp_last_signal;
_rc.frame_drop_count = input_rc.rc_lost_frame_count;
/* publish rc_channels topic even if signal is invalid, for debug */
_rc_channels_pub.publish(_rc);
/* only publish manual control if the signal is present */
if (input_source_stable && channel_count_stable && !signal_lost
&& (input_rc.timestamp_last_signal > _last_timestamp_signal)) {
_last_timestamp_signal = input_rc.timestamp_last_signal;
perf_count(_valid_data_interval_perf);
// check if channels actually updated
bool rc_updated = false;
for (unsigned i = 0; i < channel_count_limited; i++) {
if (_rc_values_previous[i] != input_rc.values[i]) {
rc_updated = true;
break;
}
}
// limit processing if there's no update
if (rc_updated || (hrt_elapsed_time(&_last_manual_control_setpoint_publish) > 300_ms)) {
UpdateManualSetpoint(input_rc.timestamp_last_signal);
}
UpdateManualSwitches(input_rc.timestamp_last_signal);
/* Update parameters from RC Channels (tuning with RC) if activated */
if (hrt_elapsed_time(&_last_rc_to_param_map_time) > 1_s) {
set_params_from_rc();
_last_rc_to_param_map_time = hrt_absolute_time();
}
}
memcpy(_rc_values_previous, input_rc.values, sizeof(input_rc.values[0]) * channel_count_limited);
static_assert(sizeof(_rc_values_previous) == sizeof(input_rc.values), "check sizeof(_rc_values_previous)");
}
perf_end(_loop_perf);
}
switch_pos_t RCUpdate::get_rc_sw3pos_position(uint8_t func, float on_th, float mid_th) const
{
if (_rc.function[func] >= 0) {
const bool on_inv = (on_th < 0.f);
const bool mid_inv = (mid_th < 0.f);
const float value = 0.5f * _rc.channels[_rc.function[func]] + 0.5f;
if (on_inv ? value < on_th : value > on_th) {
return manual_control_switches_s::SWITCH_POS_ON;
} else if (mid_inv ? value < mid_th : value > mid_th) {
return manual_control_switches_s::SWITCH_POS_MIDDLE;
} else {
return manual_control_switches_s::SWITCH_POS_OFF;
}
}
return manual_control_switches_s::SWITCH_POS_NONE;
}
switch_pos_t RCUpdate::get_rc_sw2pos_position(uint8_t func, float on_th) const
{
if (_rc.function[func] >= 0) {
const bool on_inv = (on_th < 0.f);
const float value = 0.5f * _rc.channels[_rc.function[func]] + 0.5f;
if (on_inv ? value < on_th : value > on_th) {
return manual_control_switches_s::SWITCH_POS_ON;
} else {
return manual_control_switches_s::SWITCH_POS_OFF;
}
}
return manual_control_switches_s::SWITCH_POS_NONE;
}
void RCUpdate::UpdateManualSwitches(const hrt_abstime ×tamp_sample)
{
manual_control_switches_s switches{};
switches.timestamp_sample = timestamp_sample;
// check mode slot (RC_MAP_FLTMODE) or legacy mode switch (RC_MAP_MODE_SW), but not both
if (_param_rc_map_fltmode.get() > 0) {
// number of valid slots
static constexpr int num_slots = manual_control_switches_s::MODE_SLOT_NUM;
// the half width of the range of a slot is the total range
// divided by the number of slots, again divided by two
static constexpr float slot_width_half = 1.f / num_slots;
// min is -1, max is +1, range is 2. We offset below min and max
static constexpr float slot_min = -1.f - 0.05f;
static constexpr float slot_max = 1.f + 0.05f;
// the slot gets mapped by first normalizing into a 0..1 interval using min
// and max. Then the right slot is obtained by multiplying with the number of
// slots. And finally we add half a slot width to ensure that integer rounding
// will take us to the correct final index.
const float value = _rc.channels[_param_rc_map_fltmode.get() - 1];
switches.mode_slot = (((((value - slot_min) * num_slots) + slot_width_half) / (slot_max - slot_min)) +
slot_width_half) + 1;
if (switches.mode_slot > num_slots) {
switches.mode_slot = num_slots;
}
} else if (_param_rc_map_mode_sw.get() > 0) {
switches.mode_switch = get_rc_sw3pos_position(rc_channels_s::FUNCTION_MODE,
_param_rc_auto_th.get(), _param_rc_assist_th.get());
// only used with legacy mode switch
switches.man_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_MAN, _param_rc_man_th.get());
switches.acro_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_ACRO, _param_rc_acro_th.get());
switches.stab_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_STAB, _param_rc_stab_th.get());
switches.posctl_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_POSCTL, _param_rc_posctl_th.get());
}
switches.return_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_RETURN, _param_rc_return_th.get());
switches.loiter_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_LOITER, _param_rc_loiter_th.get());
switches.offboard_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_OFFBOARD, _param_rc_offb_th.get());
switches.kill_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_KILLSWITCH, _param_rc_killswitch_th.get());
switches.arm_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_ARMSWITCH, _param_rc_armswitch_th.get());
switches.transition_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_TRANSITION, _param_rc_trans_th.get());
switches.gear_switch = get_rc_sw2pos_position(rc_channels_s::FUNCTION_GEAR, _param_rc_gear_th.get());
// last 2 switch updates identical (simple protection from bad RC data)
if (switches == _manual_switches_previous) {
const bool switches_changed = (switches != _manual_switches_last_publish);
// publish immediately on change or at ~1 Hz
if (switches_changed || (hrt_elapsed_time(&_manual_switches_last_publish.timestamp) >= 1_s)) {
uint32_t switch_changes = _manual_switches_last_publish.switch_changes;
if (switches_changed) {
switch_changes++;
}
_manual_switches_last_publish = switches;
_manual_switches_last_publish.switch_changes = switch_changes;
_manual_switches_last_publish.timestamp_sample = _manual_switches_previous.timestamp_sample;
_manual_switches_last_publish.timestamp = hrt_absolute_time();
_manual_control_switches_pub.publish(_manual_switches_last_publish);
}
}
_manual_switches_previous = switches;
}
void RCUpdate::UpdateManualSetpoint(const hrt_abstime ×tamp_sample)
{
manual_control_setpoint_s manual_control_setpoint{};
manual_control_setpoint.timestamp_sample = timestamp_sample;
manual_control_setpoint.data_source = manual_control_setpoint_s::SOURCE_RC;
// limit controls
manual_control_setpoint.y = get_rc_value(rc_channels_s::FUNCTION_ROLL, -1.f, 1.f);
manual_control_setpoint.x = get_rc_value(rc_channels_s::FUNCTION_PITCH, -1.f, 1.f);
manual_control_setpoint.r = get_rc_value(rc_channels_s::FUNCTION_YAW, -1.f, 1.f);
manual_control_setpoint.z = get_rc_value(rc_channels_s::FUNCTION_THROTTLE, -1.f, 1.f);
manual_control_setpoint.flaps = get_rc_value(rc_channels_s::FUNCTION_FLAPS, -1.f, 1.f);
manual_control_setpoint.aux1 = get_rc_value(rc_channels_s::FUNCTION_AUX_1, -1.f, 1.f);
manual_control_setpoint.aux2 = get_rc_value(rc_channels_s::FUNCTION_AUX_2, -1.f, 1.f);
manual_control_setpoint.aux3 = get_rc_value(rc_channels_s::FUNCTION_AUX_3, -1.f, 1.f);
manual_control_setpoint.aux4 = get_rc_value(rc_channels_s::FUNCTION_AUX_4, -1.f, 1.f);
manual_control_setpoint.aux5 = get_rc_value(rc_channels_s::FUNCTION_AUX_5, -1.f, 1.f);
manual_control_setpoint.aux6 = get_rc_value(rc_channels_s::FUNCTION_AUX_6, -1.f, 1.f);
// publish manual_control_setpoint topic
manual_control_setpoint.timestamp = hrt_absolute_time();
_manual_control_setpoint_pub.publish(manual_control_setpoint);
_last_manual_control_setpoint_publish = manual_control_setpoint.timestamp;
actuator_controls_s actuator_group_3{};
// copy in previous actuator control setpoint in case aux{1, 2, 3} isn't changed
_actuator_controls_3_sub.update(&actuator_group_3);
// populate and publish actuator_controls_3 copied from mapped manual_control_setpoint
actuator_group_3.control[0] = manual_control_setpoint.y;
actuator_group_3.control[1] = manual_control_setpoint.x;
actuator_group_3.control[2] = manual_control_setpoint.r;
actuator_group_3.control[3] = manual_control_setpoint.z;
actuator_group_3.control[4] = manual_control_setpoint.flaps;
float new_aux_values[3];
new_aux_values[0] = manual_control_setpoint.aux1;
new_aux_values[1] = manual_control_setpoint.aux2;
new_aux_values[2] = manual_control_setpoint.aux3;
// if AUX RC was already active, we update. otherwise, we check
// if there is a major stick movement to re-activate RC mode
bool major_movement[3] = {false, false, false};
// detect a big stick movement
for (int i = 0; i < 3; i++) {
if (fabsf(_last_manual_control_setpoint[i] - new_aux_values[i]) > 0.1f) {
major_movement[i] = true;
}
}
for (int i = 0; i < 3; i++) {
// if someone else (DO_SET_ACTUATOR) updated the actuator control
// and we haven't had a major movement, switch back to automatic control
if ((fabsf(_last_manual_control_setpoint[i] - actuator_group_3.control[5 + i])
> 0.0001f) && (!major_movement[i])) {
_aux_already_active[i] = false;
}
if (_aux_already_active[i] || major_movement[i]) {
_aux_already_active[i] = true;
_last_manual_control_setpoint[i] = new_aux_values[i];
actuator_group_3.control[5 + i] = new_aux_values[i];
}
}
actuator_group_3.timestamp = hrt_absolute_time();
_actuator_group_3_pub.publish(actuator_group_3);
}
int RCUpdate::task_spawn(int argc, char *argv[])
{
RCUpdate *instance = new RCUpdate();
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int RCUpdate::print_status()
{
PX4_INFO_RAW("Running\n");
if (_channel_count_max > 0) {
PX4_INFO_RAW(" # MIN MAX TRIM DZ REV\n");
for (int i = 0; i < _channel_count_max; i++) {
PX4_INFO_RAW("%2d %4d %4d %4d %3d %3d\n", i, _parameters.min[i], _parameters.max[i], _parameters.trim[i],
_parameters.dz[i], _parameters.rev[i]);
}
}
perf_print_counter(_loop_perf);
perf_print_counter(_loop_interval_perf);
perf_print_counter(_valid_data_interval_perf);
return 0;
}
int RCUpdate::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int RCUpdate::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
The rc_update module handles RC channel mapping: read the raw input channels (`input_rc`),
then apply the calibration, map the RC channels to the configured channels & mode switches
and then publish as `rc_channels` and `manual_control_setpoint`.
### Implementation
To reduce control latency, the module is scheduled on input_rc publications.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("rc_update", "system");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
} // namespace RCUpdate
extern "C" __EXPORT int rc_update_main(int argc, char *argv[])
{
return RCUpdate::RCUpdate::main(argc, argv);
}