ControlMathTest.cpp
8.64 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/****************************************************************************
*
* Copyright (C) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <gtest/gtest.h>
#include <ControlMath.hpp>
#include <px4_platform_common/defines.h>
using namespace matrix;
using namespace ControlMath;
TEST(ControlMathTest, LimitTiltUnchanged)
{
Vector3f body = Vector3f(0.f, 0.f, 1.f).normalized();
Vector3f body_before = body;
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 45.f);
EXPECT_EQ(body, body_before);
body = Vector3f(0.f, .1f, 1.f).normalized();
body_before = body;
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 45.f);
EXPECT_EQ(body, body_before);
}
TEST(ControlMathTest, LimitTiltOpposite)
{
Vector3f body = Vector3f(0.f, 0.f, -1.f).normalized();
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 45.f);
float angle = acosf(body.dot(Vector3f(0.f, 0.f, 1.f)));
EXPECT_NEAR(angle * M_RAD_TO_DEG_F, 45.f, 1e-4f);
EXPECT_FLOAT_EQ(body.length(), 1.f);
}
TEST(ControlMathTest, LimitTiltAlmostOpposite)
{
// This case doesn't trigger corner case handling but is very close to it
Vector3f body = Vector3f(0.001f, 0.f, -1.f).normalized();
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 45.f);
float angle = acosf(body.dot(Vector3f(0.f, 0.f, 1.f)));
EXPECT_NEAR(angle * M_RAD_TO_DEG_F, 45.f, 1e-4f);
EXPECT_FLOAT_EQ(body.length(), 1.f);
}
TEST(ControlMathTest, LimitTilt45degree)
{
Vector3f body = Vector3f(1.f, 0.f, 0.f);
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 45.f);
EXPECT_EQ(body, Vector3f(M_SQRT1_2_F, 0, M_SQRT1_2_F));
body = Vector3f(0.f, 1.f, 0.f);
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 45.f);
EXPECT_EQ(body, Vector3f(0.f, M_SQRT1_2_F, M_SQRT1_2_F));
}
TEST(ControlMathTest, LimitTilt10degree)
{
Vector3f body = Vector3f(1.f, 1.f, .1f).normalized();
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 10.f);
float angle = acosf(body.dot(Vector3f(0.f, 0.f, 1.f)));
EXPECT_NEAR(angle * M_RAD_TO_DEG_F, 10.f, 1e-4f);
EXPECT_FLOAT_EQ(body.length(), 1.f);
EXPECT_FLOAT_EQ(body(0), body(1));
body = Vector3f(1, 2, .2f);
limitTilt(body, Vector3f(0.f, 0.f, 1.f), M_DEG_TO_RAD_F * 10.f);
angle = acosf(body.dot(Vector3f(0.f, 0.f, 1.f)));
EXPECT_NEAR(angle * M_RAD_TO_DEG_F, 10.f, 1e-4f);
EXPECT_FLOAT_EQ(body.length(), 1.f);
EXPECT_FLOAT_EQ(2.f * body(0), body(1));
}
TEST(ControlMathTest, ThrottleAttitudeMapping)
{
/* expected: zero roll, zero pitch, zero yaw, full thr mag
* reason: thrust pointing full upward */
Vector3f thr{0.f, 0.f, -1.f};
float yaw = 0.f;
vehicle_attitude_setpoint_s att{};
thrustToAttitude(thr, yaw, att);
EXPECT_FLOAT_EQ(att.roll_body, 0.f);
EXPECT_FLOAT_EQ(att.pitch_body, 0.f);
EXPECT_FLOAT_EQ(att.yaw_body, 0.f);
EXPECT_FLOAT_EQ(att.thrust_body[2], -1.f);
/* expected: same as before but with 90 yaw
* reason: only yaw changed */
yaw = M_PI_2_F;
thrustToAttitude(thr, yaw, att);
EXPECT_FLOAT_EQ(att.roll_body, 0.f);
EXPECT_FLOAT_EQ(att.pitch_body, 0.f);
EXPECT_FLOAT_EQ(att.yaw_body, M_PI_2_F);
EXPECT_FLOAT_EQ(att.thrust_body[2], -1.f);
/* expected: same as before but roll 180
* reason: thrust points straight down and order Euler
* order is: 1. roll, 2. pitch, 3. yaw */
thr = Vector3f(0.f, 0.f, 1.f);
thrustToAttitude(thr, yaw, att);
EXPECT_FLOAT_EQ(att.roll_body, -M_PI_F);
EXPECT_FLOAT_EQ(att.pitch_body, 0.f);
EXPECT_FLOAT_EQ(att.yaw_body, M_PI_2_F);
EXPECT_FLOAT_EQ(att.thrust_body[2], -1.f);
}
TEST(ControlMathTest, ConstrainXYPriorities)
{
const float max = 5.f;
// v0 already at max
Vector2f v0(max, 0.f);
Vector2f v1(v0(1), -v0(0));
Vector2f v_r = constrainXY(v0, v1, max);
EXPECT_FLOAT_EQ(v_r(0), max);
EXPECT_FLOAT_EQ(v_r(1), 0.f);
// norm of v1 exceeds max but v0 is zero
v0.zero();
v_r = constrainXY(v0, v1, max);
EXPECT_FLOAT_EQ(v_r(1), -max);
EXPECT_FLOAT_EQ(v_r(0), 0.f);
v0 = Vector2f(.5f, .5f);
v1 = Vector2f(.5f, -.5f);
v_r = constrainXY(v0, v1, max);
const float diff = Vector2f(v_r - (v0 + v1)).length();
EXPECT_FLOAT_EQ(diff, 0.f);
// v0 and v1 exceed max and are perpendicular
v0 = Vector2f(4.f, 0.f);
v1 = Vector2f(0.f, -4.f);
v_r = constrainXY(v0, v1, max);
EXPECT_FLOAT_EQ(v_r(0), v0(0));
EXPECT_GT(v_r(0), 0.f);
const float remaining = sqrtf(max * max - (v0(0) * v0(0)));
EXPECT_FLOAT_EQ(v_r(1), -remaining);
}
TEST(ControlMathTest, CrossSphereLine)
{
/* Testing 9 positions (+) around waypoints (o):
*
* Far + + +
*
* Near + + +
* On trajectory --+----o---------+---------o----+--
* prev curr
*
* Expected targets (1, 2, 3):
* Far + + +
*
*
* On trajectory -------1---------2---------3-------
*
*
* Near + + +
* On trajectory -------o---1---------2-----3-------
*
*
* On trajectory --+----o----1----+--------2/3---+-- */
const Vector3f prev = Vector3f(0.f, 0.f, 0.f);
const Vector3f curr = Vector3f(0.f, 0.f, 2.f);
Vector3f res;
bool retval = false;
// on line, near, before previous waypoint
retval = cross_sphere_line(Vector3f(0.f, 0.f, -.5f), 1.f, prev, curr, res);
EXPECT_TRUE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, 0.5f));
// on line, near, before target waypoint
retval = cross_sphere_line(Vector3f(0.f, 0.f, 1.f), 1.f, prev, curr, res);
EXPECT_TRUE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, 2.f));
// on line, near, after target waypoint
retval = cross_sphere_line(Vector3f(0.f, 0.f, 2.5f), 1.f, prev, curr, res);
EXPECT_TRUE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, 2.f));
// near, before previous waypoint
retval = cross_sphere_line(Vector3f(0.f, .5f, -.5f), 1.f, prev, curr, res);
EXPECT_TRUE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, .366025388f));
// near, before target waypoint
retval = cross_sphere_line(Vector3f(0.f, .5f, 1.f), 1.f, prev, curr, res);
EXPECT_TRUE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, 1.866025448f));
// near, after target waypoint
retval = ControlMath::cross_sphere_line(matrix::Vector3f(0.f, .5f, 2.5f), 1.f, prev, curr, res);
EXPECT_TRUE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, 2.f));
// far, before previous waypoint
retval = ControlMath::cross_sphere_line(matrix::Vector3f(0.f, 2.f, -.5f), 1.f, prev, curr, res);
EXPECT_FALSE(retval);
EXPECT_EQ(res, Vector3f());
// far, before target waypoint
retval = ControlMath::cross_sphere_line(matrix::Vector3f(0.f, 2.f, 1.f), 1.f, prev, curr, res);
EXPECT_FALSE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, 1.f));
// far, after target waypoint
retval = ControlMath::cross_sphere_line(matrix::Vector3f(0.f, 2.f, 2.5f), 1.f, prev, curr, res);
EXPECT_FALSE(retval);
EXPECT_EQ(res, Vector3f(0.f, 0.f, 2.f));
}
TEST(ControlMathTest, addIfNotNan)
{
float v = 1.f;
// regular addition
ControlMath::addIfNotNan(v, 2.f);
EXPECT_EQ(v, 3.f);
// addition is NAN and has no influence
ControlMath::addIfNotNan(v, NAN);
EXPECT_EQ(v, 3.f);
v = NAN;
// both summands are NAN
ControlMath::addIfNotNan(v, NAN);
EXPECT_TRUE(isnan(v));
// regular value gets added to NAN and overwrites it
ControlMath::addIfNotNan(v, 3.f);
EXPECT_EQ(v, 3.f);
}