FixedwingPositionControl.cpp
66.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
/****************************************************************************
*
* Copyright (c) 2013-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "FixedwingPositionControl.hpp"
#include <vtol_att_control/vtol_type.h>
using math::constrain;
using math::max;
using math::min;
using math::radians;
using matrix::Dcmf;
using matrix::Eulerf;
using matrix::Quatf;
using matrix::Vector2f;
using matrix::Vector2d;
using matrix::Vector3f;
using matrix::wrap_pi;
FixedwingPositionControl::FixedwingPositionControl(bool vtol) :
ModuleParams(nullptr),
WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
_attitude_sp_pub(vtol ? ORB_ID(fw_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle")),
_launchDetector(this),
_runway_takeoff(this)
{
if (vtol) {
_param_handle_airspeed_trans = param_find("VT_ARSP_TRANS");
// VTOL parameter VTOL_TYPE
int32_t vt_type = -1;
param_get(param_find("VT_TYPE"), &vt_type);
_vtol_tailsitter = (static_cast<vtol_type>(vt_type) == vtol_type::TAILSITTER);
}
// limit to 50 Hz
_local_pos_sub.set_interval_ms(20);
/* fetch initial parameter values */
parameters_update();
}
FixedwingPositionControl::~FixedwingPositionControl()
{
perf_free(_loop_perf);
}
bool
FixedwingPositionControl::init()
{
if (!_local_pos_sub.registerCallback()) {
PX4_ERR("vehicle local position callback registration failed!");
return false;
}
return true;
}
int
FixedwingPositionControl::parameters_update()
{
updateParams();
// VTOL parameter VT_ARSP_TRANS
if (_param_handle_airspeed_trans != PARAM_INVALID) {
param_get(_param_handle_airspeed_trans, &_param_airspeed_trans);
}
// L1 control parameters
_l1_control.set_l1_damping(_param_fw_l1_damping.get());
_l1_control.set_l1_period(_param_fw_l1_period.get());
_l1_control.set_l1_roll_limit(radians(_param_fw_r_lim.get()));
_l1_control.set_roll_slew_rate(radians(_param_fw_l1_r_slew_max.get()));
// TECS parameters
_tecs.set_max_climb_rate(_param_fw_t_clmb_max.get());
_tecs.set_max_sink_rate(_param_fw_t_sink_max.get());
_tecs.set_speed_weight(_param_fw_t_spdweight.get());
_tecs.set_equivalent_airspeed_min(_param_fw_airspd_min.get());
_tecs.set_equivalent_airspeed_max(_param_fw_airspd_max.get());
_tecs.set_min_sink_rate(_param_fw_t_sink_min.get());
_tecs.set_throttle_damp(_param_fw_t_thr_damp.get());
_tecs.set_integrator_gain_throttle(_param_fw_t_I_gain_thr.get());
_tecs.set_integrator_gain_pitch(_param_fw_t_I_gain_pit.get());
_tecs.set_throttle_slewrate(_param_fw_thr_slew_max.get());
_tecs.set_vertical_accel_limit(_param_fw_t_vert_acc.get());
_tecs.set_speed_comp_filter_omega(_param_fw_t_spd_omega.get());
_tecs.set_roll_throttle_compensation(_param_fw_t_rll2thr.get());
_tecs.set_pitch_damping(_param_fw_t_ptch_damp.get());
_tecs.set_height_error_time_constant(_param_fw_t_h_error_tc.get());
_tecs.set_heightrate_ff(_param_fw_t_hrate_ff.get());
_tecs.set_airspeed_error_time_constant(_param_fw_t_tas_error_tc.get());
_tecs.set_ste_rate_time_const(_param_ste_rate_time_const.get());
_tecs.set_speed_derivative_time_constant(_param_tas_rate_time_const.get());
_tecs.set_seb_rate_ff_gain(_param_seb_rate_ff.get());
// Landing slope
/* check if negative value for 2/3 of flare altitude is set for throttle cut */
float land_thrust_lim_alt_relative = _param_fw_lnd_tlalt.get();
if (land_thrust_lim_alt_relative < 0.0f) {
land_thrust_lim_alt_relative = 0.66f * _param_fw_lnd_flalt.get();
}
_landingslope.update(radians(_param_fw_lnd_ang.get()), _param_fw_lnd_flalt.get(), land_thrust_lim_alt_relative,
_param_fw_lnd_hvirt.get());
landing_status_publish();
// sanity check parameters
if ((_param_fw_airspd_max.get() < _param_fw_airspd_min.get()) ||
(_param_fw_airspd_max.get() < 5.0f) ||
(_param_fw_airspd_min.get() > 100.0f) ||
(_param_fw_airspd_trim.get() < _param_fw_airspd_min.get()) ||
(_param_fw_airspd_trim.get() > _param_fw_airspd_max.get())) {
mavlink_log_critical(&_mavlink_log_pub, "Airspeed parameters invalid");
return PX4_ERROR;
}
return PX4_OK;
}
void
FixedwingPositionControl::vehicle_control_mode_poll()
{
if (_control_mode_sub.updated()) {
const bool was_armed = _control_mode.flag_armed;
if (_control_mode_sub.copy(&_control_mode)) {
// reset state when arming
if (!was_armed && _control_mode.flag_armed) {
reset_takeoff_state(true);
reset_landing_state();
}
}
}
}
void
FixedwingPositionControl::vehicle_command_poll()
{
vehicle_command_s vehicle_command;
while (_vehicle_command_sub.update(&vehicle_command)) {
if (vehicle_command.command == vehicle_command_s::VEHICLE_CMD_DO_GO_AROUND) {
// only abort landing before point of no return (horizontal and vertical)
if (_control_mode.flag_control_auto_enabled &&
_pos_sp_triplet.current.valid &&
(_pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_LAND)) {
abort_landing(true);
}
}
}
}
void
FixedwingPositionControl::airspeed_poll()
{
bool airspeed_valid = _airspeed_valid;
airspeed_validated_s airspeed_validated;
if ((_param_fw_arsp_mode.get() == 0) && _airspeed_validated_sub.update(&airspeed_validated)) {
_eas2tas = 1.0f; //this is the default value, taken in case of invalid airspeed
if (PX4_ISFINITE(airspeed_validated.calibrated_airspeed_m_s)
&& PX4_ISFINITE(airspeed_validated.true_airspeed_m_s)
&& (airspeed_validated.calibrated_airspeed_m_s > 0.0f)) {
airspeed_valid = true;
_airspeed_last_valid = airspeed_validated.timestamp;
_airspeed = airspeed_validated.calibrated_airspeed_m_s;
_eas2tas = constrain(airspeed_validated.true_airspeed_m_s / airspeed_validated.calibrated_airspeed_m_s, 0.9f, 2.0f);
}
} else {
// no airspeed updates for one second
if (airspeed_valid && (hrt_elapsed_time(&_airspeed_last_valid) > 1_s)) {
airspeed_valid = false;
}
}
// update TECS if validity changed
if (airspeed_valid != _airspeed_valid) {
_tecs.enable_airspeed(airspeed_valid);
_airspeed_valid = airspeed_valid;
}
}
void
FixedwingPositionControl::manual_control_setpoint_poll()
{
_manual_control_setpoint_sub.update(&_manual_control_setpoint);
_manual_control_setpoint_altitude = _manual_control_setpoint.x;
_manual_control_setpoint_airspeed = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);
if (_param_fw_posctl_inv_st.get()) {
/* Alternate stick allocation (similar concept as for multirotor systems:
* demanding up/down with the throttle stick, and move faster/break with the pitch one.
*/
_manual_control_setpoint_altitude = -(math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f) * 2.f - 1.f);
_manual_control_setpoint_airspeed = math::constrain(_manual_control_setpoint.x, 0.0f, 1.0f) / 2.f + 0.5f;
}
}
void
FixedwingPositionControl::vehicle_attitude_poll()
{
vehicle_attitude_s att;
if (_vehicle_attitude_sub.update(&att)) {
vehicle_angular_velocity_s angular_velocity{};
_vehicle_angular_velocity_sub.copy(&angular_velocity);
const Vector3f rates{angular_velocity.xyz};
Dcmf R{Quatf(att.q)};
// if the vehicle is a tailsitter we have to rotate the attitude by the pitch offset
// between multirotor and fixed wing flight
if (_vtol_tailsitter) {
const Dcmf R_offset{Eulerf{0.f, M_PI_2_F, 0.f}};
R = R * R_offset;
_yawrate = rates(0);
} else {
_yawrate = rates(2);
}
const Eulerf euler_angles(R);
_pitch = euler_angles(1);
_yaw = euler_angles(2);
_body_acceleration = R.transpose() * Vector3f{_local_pos.ax, _local_pos.ay, _local_pos.az};
_body_velocity = R.transpose() * Vector3f{_local_pos.vx, _local_pos.vy, _local_pos.vz};
// update TECS load factor
const float load_factor = 1.f / cosf(euler_angles(0));
_tecs.set_load_factor(load_factor);
}
}
float
FixedwingPositionControl::get_demanded_airspeed()
{
float altctrl_airspeed = 0;
// neutral throttle corresponds to trim airspeed
if (_manual_control_setpoint_airspeed < 0.5f) {
// lower half of throttle is min to trim airspeed
altctrl_airspeed = _param_fw_airspd_min.get() +
(_param_fw_airspd_trim.get() - _param_fw_airspd_min.get()) *
_manual_control_setpoint_airspeed * 2;
} else {
// upper half of throttle is trim to max airspeed
altctrl_airspeed = _param_fw_airspd_trim.get() +
(_param_fw_airspd_max.get() - _param_fw_airspd_trim.get()) *
(_manual_control_setpoint_airspeed * 2 - 1);
}
return altctrl_airspeed;
}
float
FixedwingPositionControl::calculate_target_airspeed(float airspeed_demand, const Vector2f &ground_speed)
{
/*
* Calculate accelerated stall airspeed factor from commanded bank angle and use it to increase minimum airspeed.
*
* We don't know the stall speed of the aircraft, but assuming user defined
* minimum airspeed (FW_AIRSPD_MIN) is slightly larger than stall speed
* this is close enough.
*
* increase lift vector to balance additional weight in bank
* cos(bank angle) = W/L = 1/n
* n is the load factor
*
* lift is proportional to airspeed^2 so the increase in stall speed is
* Vsacc = Vs * sqrt(n)
*
*/
float adjusted_min_airspeed = _param_fw_airspd_min.get();
if (_airspeed_valid && PX4_ISFINITE(_att_sp.roll_body)) {
adjusted_min_airspeed = constrain(_param_fw_airspd_min.get() / sqrtf(cosf(_att_sp.roll_body)),
_param_fw_airspd_min.get(), _param_fw_airspd_max.get());
}
// groundspeed undershoot
if (!_l1_control.circle_mode()) {
/*
* This error value ensures that a plane (as long as its throttle capability is
* not exceeded) travels towards a waypoint (and is not pushed more and more away
* by wind). Not countering this would lead to a fly-away.
*/
const float ground_speed_body = _body_velocity(0);
if (ground_speed_body < _param_fw_gnd_spd_min.get()) {
airspeed_demand += max(_param_fw_gnd_spd_min.get() - ground_speed_body, 0.0f);
}
}
// add minimum ground speed undershoot (only non-zero in presence of sufficient wind)
// sanity check: limit to range
return constrain(airspeed_demand, adjusted_min_airspeed, _param_fw_airspd_max.get());
}
void
FixedwingPositionControl::tecs_status_publish()
{
tecs_status_s t{};
switch (_tecs.tecs_mode()) {
case TECS::ECL_TECS_MODE_NORMAL:
t.mode = tecs_status_s::TECS_MODE_NORMAL;
break;
case TECS::ECL_TECS_MODE_UNDERSPEED:
t.mode = tecs_status_s::TECS_MODE_UNDERSPEED;
break;
case TECS::ECL_TECS_MODE_BAD_DESCENT:
t.mode = tecs_status_s::TECS_MODE_BAD_DESCENT;
break;
case TECS::ECL_TECS_MODE_CLIMBOUT:
t.mode = tecs_status_s::TECS_MODE_CLIMBOUT;
break;
}
t.altitude_sp = _tecs.hgt_setpoint_adj();
t.altitude_filtered = _tecs.vert_pos_state();
t.true_airspeed_sp = _tecs.TAS_setpoint_adj();
t.true_airspeed_filtered = _tecs.tas_state();
t.height_rate_setpoint = _tecs.hgt_rate_setpoint();
t.height_rate = _tecs.vert_vel_state();
t.equivalent_airspeed_sp = _tecs.get_EAS_setpoint();
t.true_airspeed_derivative_sp = _tecs.TAS_rate_setpoint();
t.true_airspeed_derivative = _tecs.speed_derivative();
t.total_energy_error = _tecs.STE_error();
t.total_energy_rate_error = _tecs.STE_rate_error();
t.energy_distribution_error = _tecs.SEB_error();
t.energy_distribution_rate_error = _tecs.SEB_rate_error();
t.total_energy = _tecs.STE();
t.total_energy_rate = _tecs.STE_rate();
t.total_energy_balance = _tecs.SEB();
t.total_energy_balance_rate = _tecs.SEB_rate();
t.total_energy_sp = _tecs.STE_setpoint();
t.total_energy_rate_sp = _tecs.STE_rate_setpoint();
t.total_energy_balance_sp = _tecs.SEB_setpoint();
t.total_energy_balance_rate_sp = _tecs.SEB_rate_setpoint();
t.throttle_integ = _tecs.throttle_integ_state();
t.pitch_integ = _tecs.pitch_integ_state();
t.throttle_sp = _tecs.get_throttle_setpoint();
t.timestamp = hrt_absolute_time();
_tecs_status_pub.publish(t);
}
void
FixedwingPositionControl::status_publish()
{
position_controller_status_s pos_ctrl_status = {};
pos_ctrl_status.nav_roll = _att_sp.roll_body;
pos_ctrl_status.nav_pitch = _att_sp.pitch_body;
pos_ctrl_status.nav_bearing = _l1_control.nav_bearing();
pos_ctrl_status.target_bearing = _l1_control.target_bearing();
pos_ctrl_status.xtrack_error = _l1_control.crosstrack_error();
pos_ctrl_status.wp_dist = get_distance_to_next_waypoint(_current_latitude, _current_longitude,
_pos_sp_triplet.current.lat, _pos_sp_triplet.current.lon);
pos_ctrl_status.acceptance_radius = _l1_control.switch_distance(500.0f);
pos_ctrl_status.yaw_acceptance = NAN;
pos_ctrl_status.timestamp = hrt_absolute_time();
pos_ctrl_status.type = _type;
_pos_ctrl_status_pub.publish(pos_ctrl_status);
}
void
FixedwingPositionControl::landing_status_publish()
{
position_controller_landing_status_s pos_ctrl_landing_status = {};
pos_ctrl_landing_status.slope_angle_rad = _landingslope.landing_slope_angle_rad();
pos_ctrl_landing_status.horizontal_slope_displacement = _landingslope.horizontal_slope_displacement();
pos_ctrl_landing_status.flare_length = _landingslope.flare_length();
pos_ctrl_landing_status.abort_landing = _land_abort;
pos_ctrl_landing_status.timestamp = hrt_absolute_time();
_pos_ctrl_landing_status_pub.publish(pos_ctrl_landing_status);
}
void
FixedwingPositionControl::abort_landing(bool abort)
{
// only announce changes
if (abort && !_land_abort) {
mavlink_log_critical(&_mavlink_log_pub, "Landing aborted");
}
_land_abort = abort;
landing_status_publish();
}
void
FixedwingPositionControl::get_waypoint_heading_distance(float heading, position_setpoint_s &waypoint_prev,
position_setpoint_s &waypoint_next, bool flag_init)
{
position_setpoint_s temp_prev = waypoint_prev;
position_setpoint_s temp_next = waypoint_next;
if (flag_init) {
// previous waypoint: HDG_HOLD_SET_BACK_DIST meters behind us
waypoint_from_heading_and_distance(_current_latitude, _current_longitude, heading + radians(180.0f),
HDG_HOLD_SET_BACK_DIST, &temp_prev.lat, &temp_prev.lon);
// next waypoint: HDG_HOLD_DIST_NEXT meters in front of us
waypoint_from_heading_and_distance(_current_latitude, _current_longitude, heading,
HDG_HOLD_DIST_NEXT, &temp_next.lat, &temp_next.lon);
} else {
// use the existing flight path from prev to next
// previous waypoint: shifted HDG_HOLD_REACHED_DIST + HDG_HOLD_SET_BACK_DIST
create_waypoint_from_line_and_dist(waypoint_next.lat, waypoint_next.lon, waypoint_prev.lat, waypoint_prev.lon,
HDG_HOLD_REACHED_DIST + HDG_HOLD_SET_BACK_DIST, &temp_prev.lat, &temp_prev.lon);
// next waypoint: shifted -(HDG_HOLD_DIST_NEXT + HDG_HOLD_REACHED_DIST)
create_waypoint_from_line_and_dist(waypoint_next.lat, waypoint_next.lon, waypoint_prev.lat, waypoint_prev.lon,
-(HDG_HOLD_REACHED_DIST + HDG_HOLD_DIST_NEXT), &temp_next.lat, &temp_next.lon);
}
waypoint_prev = temp_prev;
waypoint_prev.alt = _hold_alt;
waypoint_prev.valid = true;
waypoint_next = temp_next;
waypoint_next.alt = _hold_alt;
waypoint_next.valid = true;
}
float
FixedwingPositionControl::get_terrain_altitude_takeoff(float takeoff_alt)
{
float terrain_alt = _local_pos.ref_alt - (_local_pos.dist_bottom + _local_pos.z);
if (PX4_ISFINITE(terrain_alt) && _local_pos.dist_bottom_valid) {
return terrain_alt;
}
return takeoff_alt;
}
void
FixedwingPositionControl::update_desired_altitude(float dt)
{
/*
* The complete range is -1..+1, so this is 6%
* of the up or down range or 3% of the total range.
*/
const float deadBand = 0.06f;
/*
* The correct scaling of the complete range needs
* to account for the missing part of the slope
* due to the deadband
*/
const float factor = 1.0f - deadBand;
/*
* Reset the hold altitude to the current altitude if the uncertainty
* changes significantly.
* This is to guard against uncommanded altitude changes
* when the altitude certainty increases or decreases.
*/
if (fabsf(_althold_epv - _local_pos.epv) > ALTHOLD_EPV_RESET_THRESH) {
_hold_alt = _current_altitude;
_althold_epv = _local_pos.epv;
}
/*
* Manual control has as convention the rotation around
* an axis. Positive X means to rotate positively around
* the X axis in NED frame, which is pitching down
*/
if (_manual_control_setpoint_altitude > deadBand) {
/* pitching down */
float pitch = -(_manual_control_setpoint_altitude - deadBand) / factor;
_hold_alt += (_param_fw_t_sink_max.get() * dt) * pitch;
_was_in_deadband = false;
} else if (_manual_control_setpoint_altitude < - deadBand) {
/* pitching up */
float pitch = -(_manual_control_setpoint_altitude + deadBand) / factor;
_hold_alt += (_param_fw_t_clmb_max.get() * dt) * pitch;
_was_in_deadband = false;
} else if (!_was_in_deadband) {
/* store altitude at which manual.x was inside deadBand
* The aircraft should immediately try to fly at this altitude
* as this is what the pilot expects when he moves the stick to the center */
_hold_alt = _current_altitude;
_althold_epv = _local_pos.epv;
_was_in_deadband = true;
}
if (_vehicle_status.is_vtol) {
if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING || _vehicle_status.in_transition_mode) {
_hold_alt = _current_altitude;
}
}
}
bool
FixedwingPositionControl::in_takeoff_situation()
{
// a VTOL does not need special takeoff handling
if (_vehicle_status.is_vtol) {
return false;
}
// in air for < 10s
return (hrt_elapsed_time(&_time_went_in_air) < 10_s)
&& (_current_altitude <= _takeoff_ground_alt + _param_fw_clmbout_diff.get());
}
void
FixedwingPositionControl::do_takeoff_help(float *hold_altitude, float *pitch_limit_min)
{
/* demand "climbout_diff" m above ground if user switched into this mode during takeoff */
if (in_takeoff_situation()) {
*hold_altitude = _takeoff_ground_alt + _param_fw_clmbout_diff.get();
*pitch_limit_min = radians(10.0f);
}
}
bool
FixedwingPositionControl::control_position(const hrt_abstime &now, const Vector2d &curr_pos,
const Vector2f &ground_speed,
const position_setpoint_s &pos_sp_prev, const position_setpoint_s &pos_sp_curr, const position_setpoint_s &pos_sp_next)
{
const float dt = math::constrain((now - _control_position_last_called) * 1e-6f, 0.01f, 0.05f);
_control_position_last_called = now;
_l1_control.set_dt(dt);
/* only run position controller in fixed-wing mode and during transitions for VTOL */
if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING && !_vehicle_status.in_transition_mode) {
_control_mode_current = FW_POSCTRL_MODE_OTHER;
return false;
}
bool setpoint = true;
_att_sp.fw_control_yaw = false; // by default we don't want yaw to be contoller directly with rudder
_att_sp.apply_flaps = vehicle_attitude_setpoint_s::FLAPS_OFF; // by default we don't use flaps
Vector2f nav_speed_2d{ground_speed};
if (_airspeed_valid) {
// l1 navigation logic breaks down when wind speed exceeds max airspeed
// compute 2D groundspeed from airspeed-heading projection
const Vector2f air_speed_2d{_airspeed * cosf(_yaw), _airspeed * sinf(_yaw)};
// angle between air_speed_2d and ground_speed
const float air_gnd_angle = acosf((air_speed_2d * ground_speed) / (air_speed_2d.length() * ground_speed.length()));
// if angle > 90 degrees or groundspeed is less than threshold, replace groundspeed with airspeed projection
if ((fabsf(air_gnd_angle) > M_PI_2_F) || (ground_speed.length() < 3.0f)) {
nav_speed_2d = air_speed_2d;
}
}
/* no throttle limit as default */
float throttle_max = 1.0f;
/* save time when airplane is in air */
if (!_was_in_air && !_landed) {
_was_in_air = true;
_time_went_in_air = now;
_takeoff_ground_alt = _current_altitude;
}
/* reset flag when airplane landed */
if (_landed) {
_was_in_air = false;
}
/* Reset integrators if switching to this mode from a other mode in which posctl was not active */
if (_control_mode_current == FW_POSCTRL_MODE_OTHER) {
/* reset integrators */
_tecs.reset_state();
}
if ((_control_mode.flag_control_auto_enabled || _control_mode.flag_control_offboard_enabled) && pos_sp_curr.valid) {
/* AUTONOMOUS FLIGHT */
_control_mode_current = FW_POSCTRL_MODE_AUTO;
/* reset hold altitude */
_hold_alt = _current_altitude;
/* reset hold yaw */
_hdg_hold_yaw = _yaw;
/* get circle mode */
bool was_circle_mode = _l1_control.circle_mode();
/* restore TECS parameters, in case changed intermittently (e.g. in landing handling) */
_tecs.set_speed_weight(_param_fw_t_spdweight.get());
_tecs.set_height_error_time_constant(_param_fw_t_h_error_tc.get());
Vector2d curr_wp{0, 0};
Vector2d prev_wp{0, 0};
if (_vehicle_status.in_transition_to_fw) {
if (!PX4_ISFINITE(_transition_waypoint(0))) {
double lat_transition, lon_transition;
// create a virtual waypoint HDG_HOLD_DIST_NEXT meters in front of the vehicle which the L1 controller can track
// during the transition
waypoint_from_heading_and_distance(_current_latitude, _current_longitude, _yaw, HDG_HOLD_DIST_NEXT, &lat_transition,
&lon_transition);
_transition_waypoint(0) = lat_transition;
_transition_waypoint(1) = lon_transition;
}
curr_wp = prev_wp = _transition_waypoint;
} else {
/* current waypoint (the one currently heading for) */
curr_wp = Vector2d(pos_sp_curr.lat, pos_sp_curr.lon);
if (pos_sp_prev.valid) {
prev_wp(0) = pos_sp_prev.lat;
prev_wp(1) = pos_sp_prev.lon;
} else {
/*
* No valid previous waypoint, go for the current wp.
* This is automatically handled by the L1 library.
*/
prev_wp(0) = pos_sp_curr.lat;
prev_wp(1) = pos_sp_curr.lon;
}
/* reset transition waypoint, will be set upon entering front transition */
_transition_waypoint(0) = static_cast<double>(NAN);
_transition_waypoint(1) = static_cast<double>(NAN);
}
/* Initialize attitude controller integrator reset flags to 0 */
_att_sp.roll_reset_integral = false;
_att_sp.pitch_reset_integral = false;
_att_sp.yaw_reset_integral = false;
float mission_airspeed = _param_fw_airspd_trim.get();
if (PX4_ISFINITE(pos_sp_curr.cruising_speed) &&
pos_sp_curr.cruising_speed > 0.1f) {
mission_airspeed = pos_sp_curr.cruising_speed;
}
float mission_throttle = _param_fw_thr_cruise.get();
if (PX4_ISFINITE(pos_sp_curr.cruising_throttle) &&
pos_sp_curr.cruising_throttle >= 0.0f) {
mission_throttle = pos_sp_curr.cruising_throttle;
}
float tecs_fw_thr_min;
float tecs_fw_thr_max;
float tecs_fw_mission_throttle;
if (mission_throttle < _param_fw_thr_min.get()) {
/* enable gliding with this waypoint */
_tecs.set_speed_weight(2.0f);
tecs_fw_thr_min = 0.0;
tecs_fw_thr_max = 0.0;
tecs_fw_mission_throttle = 0.0;
} else {
tecs_fw_thr_min = _param_fw_thr_min.get();
tecs_fw_thr_max = _param_fw_thr_max.get();
tecs_fw_mission_throttle = mission_throttle;
}
const float acc_rad = _l1_control.switch_distance(500.0f);
uint8_t position_sp_type = pos_sp_curr.type;
if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF) {
// TAKEOFF: handle like a regular POSITION setpoint if already flying
if (!in_takeoff_situation() && (_airspeed >= _param_fw_airspd_min.get() || !_airspeed_valid)) {
// SETPOINT_TYPE_TAKEOFF -> SETPOINT_TYPE_POSITION
position_sp_type = position_setpoint_s::SETPOINT_TYPE_POSITION;
}
} else if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_POSITION
|| pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_LOITER) {
float dist_xy = -1.f;
float dist_z = -1.f;
const float dist = get_distance_to_point_global_wgs84(
(double)curr_wp(0), (double)curr_wp(1), pos_sp_curr.alt,
_current_latitude, _current_longitude, _current_altitude,
&dist_xy, &dist_z);
if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_POSITION) {
// POSITION: achieve position setpoint altitude via loiter
// close to waypoint, but altitude error greater than twice acceptance
if ((dist >= 0.f)
&& (dist_z > 2.f * _param_fw_clmbout_diff.get())
&& (dist_xy < 2.f * math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius)))) {
// SETPOINT_TYPE_POSITION -> SETPOINT_TYPE_LOITER
position_sp_type = position_setpoint_s::SETPOINT_TYPE_LOITER;
}
} else if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_LOITER) {
// LOITER: use SETPOINT_TYPE_POSITION to get to SETPOINT_TYPE_LOITER
if ((dist >= 0.f)
&& (dist_z > 2.f * _param_fw_clmbout_diff.get())
&& (dist_xy > 2.f * math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius)))) {
// SETPOINT_TYPE_LOITER -> SETPOINT_TYPE_POSITION
position_sp_type = position_setpoint_s::SETPOINT_TYPE_POSITION;
}
}
}
_type = position_sp_type;
if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_IDLE) {
_att_sp.thrust_body[0] = 0.0f;
_att_sp.roll_body = 0.0f;
_att_sp.pitch_body = radians(_param_fw_psp_off.get());
} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_POSITION) {
// waypoint is a plain navigation waypoint
float position_sp_alt = pos_sp_curr.alt;
// Altitude first order hold (FOH)
if (pos_sp_prev.valid && PX4_ISFINITE(pos_sp_prev.alt) &&
((pos_sp_prev.type == position_setpoint_s::SETPOINT_TYPE_POSITION) ||
(pos_sp_prev.type == position_setpoint_s::SETPOINT_TYPE_LOITER) ||
(pos_sp_prev.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF))
) {
const float d_curr_prev = get_distance_to_next_waypoint((double)curr_wp(0), (double)curr_wp(1),
pos_sp_prev.lat, pos_sp_prev.lon);
// Do not try to find a solution if the last waypoint is inside the acceptance radius of the current one
if (d_curr_prev > math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius))) {
// Calculate distance to current waypoint
const float d_curr = get_distance_to_next_waypoint((double)curr_wp(0), (double)curr_wp(1),
_current_latitude, _current_longitude);
// Save distance to waypoint if it is the smallest ever achieved, however make sure that
// _min_current_sp_distance_xy is never larger than the distance between the current and the previous wp
_min_current_sp_distance_xy = math::min(math::min(d_curr, _min_current_sp_distance_xy), d_curr_prev);
// if the minimal distance is smaller than the acceptance radius, we should be at waypoint alt
// navigator will soon switch to the next waypoint item (if there is one) as soon as we reach this altitude
if (_min_current_sp_distance_xy > math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius))) {
// The setpoint is set linearly and such that the system reaches the current altitude at the acceptance
// radius around the current waypoint
const float delta_alt = (pos_sp_curr.alt - pos_sp_prev.alt);
const float grad = -delta_alt / (d_curr_prev - math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius)));
const float a = pos_sp_prev.alt - grad * d_curr_prev;
position_sp_alt = a + grad * _min_current_sp_distance_xy;
}
}
}
_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, nav_speed_2d);
_att_sp.roll_body = _l1_control.get_roll_setpoint();
_att_sp.yaw_body = _l1_control.nav_bearing();
tecs_update_pitch_throttle(now, position_sp_alt,
calculate_target_airspeed(mission_airspeed, ground_speed),
radians(_param_fw_p_lim_min.get()),
radians(_param_fw_p_lim_max.get()),
tecs_fw_thr_min,
tecs_fw_thr_max,
tecs_fw_mission_throttle,
false,
radians(_param_fw_p_lim_min.get()));
} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_LOITER) {
/* waypoint is a loiter waypoint */
float loiter_radius = pos_sp_curr.loiter_radius;
uint8_t loiter_direction = pos_sp_curr.loiter_direction;
if (fabsf(pos_sp_curr.loiter_radius) < FLT_EPSILON) {
loiter_radius = _param_nav_loiter_rad.get();
loiter_direction = (loiter_radius > 0) ? 1 : -1;
}
_l1_control.navigate_loiter(curr_wp, curr_pos, loiter_radius, loiter_direction, nav_speed_2d);
_att_sp.roll_body = _l1_control.get_roll_setpoint();
_att_sp.yaw_body = _l1_control.nav_bearing();
float alt_sp = pos_sp_curr.alt;
if (pos_sp_next.type == position_setpoint_s::SETPOINT_TYPE_LAND && pos_sp_next.valid
&& _l1_control.circle_mode() && _param_fw_lnd_earlycfg.get()) {
// We're in a loiter directly before a landing WP. Enable our landing configuration (flaps,
// landing airspeed and potentially tighter altitude control) already such that we don't
// have to do this switch (which can cause significant altitude errors) close to the ground.
_tecs.set_height_error_time_constant(_param_fw_thrtc_sc.get() * _param_fw_t_h_error_tc.get());
mission_airspeed = _param_fw_lnd_airspd_sc.get() * _param_fw_airspd_min.get();
_att_sp.apply_flaps = true;
}
if (in_takeoff_situation()) {
alt_sp = max(alt_sp, _takeoff_ground_alt + _param_fw_clmbout_diff.get());
_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-5.0f), radians(5.0f));
}
if (_land_abort) {
if (pos_sp_curr.alt - _current_altitude < _param_fw_clmbout_diff.get()) {
// aborted landing complete, normal loiter over landing point
abort_landing(false);
} else {
// continue straight until vehicle has sufficient altitude
_att_sp.roll_body = 0.0f;
}
_tecs.set_height_error_time_constant(_param_fw_thrtc_sc.get() * _param_fw_t_h_error_tc.get());
}
tecs_update_pitch_throttle(now, alt_sp,
calculate_target_airspeed(mission_airspeed, ground_speed),
radians(_param_fw_p_lim_min.get()),
radians(_param_fw_p_lim_max.get()),
tecs_fw_thr_min,
tecs_fw_thr_max,
tecs_fw_mission_throttle,
false,
radians(_param_fw_p_lim_min.get()));
} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_LAND) {
control_landing(now, curr_pos, ground_speed, pos_sp_prev, pos_sp_curr);
} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF) {
control_takeoff(now, curr_pos, ground_speed, pos_sp_prev, pos_sp_curr);
}
/* reset landing state */
if (position_sp_type != position_setpoint_s::SETPOINT_TYPE_LAND) {
reset_landing_state();
}
/* reset takeoff/launch state */
if (position_sp_type != position_setpoint_s::SETPOINT_TYPE_TAKEOFF) {
reset_takeoff_state();
}
if (was_circle_mode && !_l1_control.circle_mode()) {
/* just kicked out of loiter, reset roll integrals */
_att_sp.roll_reset_integral = true;
}
} else if (_control_mode.flag_control_velocity_enabled &&
_control_mode.flag_control_altitude_enabled) {
/* POSITION CONTROL: pitch stick moves altitude setpoint, throttle stick sets airspeed,
heading is set to a distant waypoint */
if (_control_mode_current != FW_POSCTRL_MODE_POSITION) {
/* Need to init because last loop iteration was in a different mode */
_hold_alt = _current_altitude;
_hdg_hold_yaw = _yaw;
_hdg_hold_enabled = false; // this makes sure the waypoints are reset below
_yaw_lock_engaged = false;
/* reset setpoints from other modes (auto) otherwise we won't
* level out without new manual input */
_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());
_att_sp.yaw_body = 0;
}
_control_mode_current = FW_POSCTRL_MODE_POSITION;
float altctrl_airspeed = get_demanded_airspeed();
/* update desired altitude based on user pitch stick input */
update_desired_altitude(dt);
// if we assume that user is taking off then help by demanding altitude setpoint well above ground
// and set limit to pitch angle to prevent steering into ground
// this will only affect planes and not VTOL
float pitch_limit_min = _param_fw_p_lim_min.get();
do_takeoff_help(&_hold_alt, &pitch_limit_min);
/* throttle limiting */
throttle_max = _param_fw_thr_max.get();
if (_landed && (fabsf(_manual_control_setpoint_airspeed) < THROTTLE_THRESH)) {
throttle_max = 0.0f;
}
tecs_update_pitch_throttle(now, _hold_alt,
altctrl_airspeed,
radians(_param_fw_p_lim_min.get()),
radians(_param_fw_p_lim_max.get()),
_param_fw_thr_min.get(),
throttle_max,
_param_fw_thr_cruise.get(),
false,
pitch_limit_min,
tecs_status_s::TECS_MODE_NORMAL);
/* heading control */
if (fabsf(_manual_control_setpoint.y) < HDG_HOLD_MAN_INPUT_THRESH &&
fabsf(_manual_control_setpoint.r) < HDG_HOLD_MAN_INPUT_THRESH) {
/* heading / roll is zero, lock onto current heading */
if (fabsf(_yawrate) < HDG_HOLD_YAWRATE_THRESH && !_yaw_lock_engaged) {
// little yaw movement, lock to current heading
_yaw_lock_engaged = true;
}
/* user tries to do a takeoff in heading hold mode, reset the yaw setpoint on every iteration
to make sure the plane does not start rolling
*/
if (in_takeoff_situation()) {
_hdg_hold_enabled = false;
_yaw_lock_engaged = true;
}
if (_yaw_lock_engaged) {
/* just switched back from non heading-hold to heading hold */
if (!_hdg_hold_enabled) {
_hdg_hold_enabled = true;
_hdg_hold_yaw = _yaw;
get_waypoint_heading_distance(_hdg_hold_yaw, _hdg_hold_prev_wp, _hdg_hold_curr_wp, true);
}
/* we have a valid heading hold position, are we too close? */
float dist = get_distance_to_next_waypoint(_current_latitude, _current_longitude, _hdg_hold_curr_wp.lat,
_hdg_hold_curr_wp.lon);
if (dist < HDG_HOLD_REACHED_DIST) {
get_waypoint_heading_distance(_hdg_hold_yaw, _hdg_hold_prev_wp, _hdg_hold_curr_wp, false);
}
Vector2d prev_wp{_hdg_hold_prev_wp.lat, _hdg_hold_prev_wp.lon};
Vector2d curr_wp{_hdg_hold_curr_wp.lat, _hdg_hold_curr_wp.lon};
/* populate l1 control setpoint */
_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, ground_speed);
_att_sp.roll_body = _l1_control.get_roll_setpoint();
_att_sp.yaw_body = _l1_control.nav_bearing();
if (in_takeoff_situation()) {
/* limit roll motion to ensure enough lift */
_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-15.0f), radians(15.0f));
}
}
}
if (!_yaw_lock_engaged || fabsf(_manual_control_setpoint.y) >= HDG_HOLD_MAN_INPUT_THRESH ||
fabsf(_manual_control_setpoint.r) >= HDG_HOLD_MAN_INPUT_THRESH) {
_hdg_hold_enabled = false;
_yaw_lock_engaged = false;
_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());
_att_sp.yaw_body = 0;
}
} else if (_control_mode.flag_control_altitude_enabled) {
/* ALTITUDE CONTROL: pitch stick moves altitude setpoint, throttle stick sets airspeed */
if (_control_mode_current != FW_POSCTRL_MODE_POSITION && _control_mode_current != FW_POSCTRL_MODE_ALTITUDE) {
/* Need to init because last loop iteration was in a different mode */
_hold_alt = _current_altitude;
}
_control_mode_current = FW_POSCTRL_MODE_ALTITUDE;
/* Get demanded airspeed */
float altctrl_airspeed = get_demanded_airspeed();
/* update desired altitude based on user pitch stick input */
update_desired_altitude(dt);
// if we assume that user is taking off then help by demanding altitude setpoint well above ground
// and set limit to pitch angle to prevent steering into ground
// this will only affect planes and not VTOL
float pitch_limit_min = _param_fw_p_lim_min.get();
do_takeoff_help(&_hold_alt, &pitch_limit_min);
/* throttle limiting */
throttle_max = _param_fw_thr_max.get();
if (_landed && (fabsf(_manual_control_setpoint_airspeed) < THROTTLE_THRESH)) {
throttle_max = 0.0f;
}
tecs_update_pitch_throttle(now, _hold_alt,
altctrl_airspeed,
radians(_param_fw_p_lim_min.get()),
radians(_param_fw_p_lim_max.get()),
_param_fw_thr_min.get(),
throttle_max,
_param_fw_thr_cruise.get(),
false,
pitch_limit_min,
tecs_status_s::TECS_MODE_NORMAL);
_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());
_att_sp.yaw_body = 0;
} else {
_control_mode_current = FW_POSCTRL_MODE_OTHER;
/* do not publish the setpoint */
setpoint = false;
// reset hold altitude
_hold_alt = _current_altitude;
/* reset landing and takeoff state */
if (!_last_manual) {
reset_landing_state();
reset_takeoff_state();
}
}
/* Copy thrust output for publication */
if (_control_mode_current == FW_POSCTRL_MODE_AUTO && // launchdetector only available in auto
pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF &&
_launch_detection_state != LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS &&
!_runway_takeoff.runwayTakeoffEnabled()) {
/* making sure again that the correct thrust is used,
* without depending on library calls for safety reasons.
the pre-takeoff throttle and the idle throttle normally map to the same parameter. */
_att_sp.thrust_body[0] = _param_fw_thr_idle.get();
} else if (_control_mode_current == FW_POSCTRL_MODE_AUTO &&
pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF &&
_runway_takeoff.runwayTakeoffEnabled()) {
_att_sp.thrust_body[0] = _runway_takeoff.getThrottle(now, min(get_tecs_thrust(), throttle_max));
} else if (_control_mode_current == FW_POSCTRL_MODE_AUTO &&
pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_IDLE) {
_att_sp.thrust_body[0] = 0.0f;
} else if (_control_mode_current == FW_POSCTRL_MODE_OTHER) {
_att_sp.thrust_body[0] = min(_att_sp.thrust_body[0], _param_fw_thr_max.get());
} else {
/* Copy thrust and pitch values from tecs */
if (_landed) {
// when we are landed state we want the motor to spin at idle speed
_att_sp.thrust_body[0] = min(_param_fw_thr_idle.get(), throttle_max);
} else {
_att_sp.thrust_body[0] = min(get_tecs_thrust(), throttle_max);
}
}
// decide when to use pitch setpoint from TECS because in some cases pitch
// setpoint is generated by other means
bool use_tecs_pitch = true;
// auto runway takeoff
use_tecs_pitch &= !(_control_mode_current == FW_POSCTRL_MODE_AUTO &&
pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF &&
(_launch_detection_state == LAUNCHDETECTION_RES_NONE || _runway_takeoff.runwayTakeoffEnabled()));
// flaring during landing
use_tecs_pitch &= !(pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_LAND && _land_noreturn_vertical);
// manual attitude control
use_tecs_pitch &= !(_control_mode_current == FW_POSCTRL_MODE_OTHER);
if (use_tecs_pitch) {
_att_sp.pitch_body = get_tecs_pitch();
}
if (_control_mode.flag_control_position_enabled) {
_last_manual = false;
} else {
_last_manual = true;
}
return setpoint;
}
void
FixedwingPositionControl::control_takeoff(const hrt_abstime &now, const Vector2d &curr_pos,
const Vector2f &ground_speed, const position_setpoint_s &pos_sp_prev, const position_setpoint_s &pos_sp_curr)
{
/* current waypoint (the one currently heading for) */
Vector2d curr_wp(pos_sp_curr.lat, pos_sp_curr.lon);
Vector2d prev_wp{0, 0}; /* previous waypoint */
if (pos_sp_prev.valid) {
prev_wp(0) = pos_sp_prev.lat;
prev_wp(1) = pos_sp_prev.lon;
} else {
/*
* No valid previous waypoint, go for the current wp.
* This is automatically handled by the L1 library.
*/
prev_wp(0) = pos_sp_curr.lat;
prev_wp(1) = pos_sp_curr.lon;
}
// apply flaps for takeoff according to the corresponding scale factor set
// via FW_FLAPS_TO_SCL
_att_sp.apply_flaps = vehicle_attitude_setpoint_s::FLAPS_TAKEOFF;
// continuously reset launch detection and runway takeoff until armed
if (!_control_mode.flag_armed) {
_launchDetector.reset();
_launch_detection_state = LAUNCHDETECTION_RES_NONE;
_launch_detection_notify = 0;
}
if (_runway_takeoff.runwayTakeoffEnabled()) {
if (!_runway_takeoff.isInitialized()) {
_runway_takeoff.init(now, _yaw, _current_latitude, _current_longitude);
/* need this already before takeoff is detected
* doesn't matter if it gets reset when takeoff is detected eventually */
_takeoff_ground_alt = _current_altitude;
mavlink_log_info(&_mavlink_log_pub, "Takeoff on runway");
}
float terrain_alt = get_terrain_altitude_takeoff(_takeoff_ground_alt);
// update runway takeoff helper
_runway_takeoff.update(now, _airspeed, _current_altitude - terrain_alt,
_current_latitude, _current_longitude, &_mavlink_log_pub);
/*
* Update navigation: _runway_takeoff returns the start WP according to mode and phase.
* If we use the navigator heading or not is decided later.
*/
_l1_control.navigate_waypoints(_runway_takeoff.getStartWP(), curr_wp, curr_pos, ground_speed);
// update tecs
const float takeoff_pitch_max_deg = _runway_takeoff.getMaxPitch(_param_fw_p_lim_max.get());
tecs_update_pitch_throttle(now, pos_sp_curr.alt,
calculate_target_airspeed(_runway_takeoff.getMinAirspeedScaling() * _param_fw_airspd_min.get(), ground_speed),
radians(_param_fw_p_lim_min.get()),
radians(takeoff_pitch_max_deg),
_param_fw_thr_min.get(),
_param_fw_thr_max.get(), // XXX should we also set runway_takeoff_throttle here?
_param_fw_thr_cruise.get(),
_runway_takeoff.climbout(),
radians(_runway_takeoff.getMinPitch(_takeoff_pitch_min.get(), _param_fw_p_lim_min.get())),
tecs_status_s::TECS_MODE_TAKEOFF);
// assign values
_att_sp.roll_body = _runway_takeoff.getRoll(_l1_control.get_roll_setpoint());
_att_sp.yaw_body = _runway_takeoff.getYaw(_l1_control.nav_bearing());
_att_sp.fw_control_yaw = _runway_takeoff.controlYaw();
_att_sp.pitch_body = _runway_takeoff.getPitch(get_tecs_pitch());
// reset integrals except yaw (which also counts for the wheel controller)
_att_sp.roll_reset_integral = _runway_takeoff.resetIntegrators();
_att_sp.pitch_reset_integral = _runway_takeoff.resetIntegrators();
} else {
/* Perform launch detection */
if (_launchDetector.launchDetectionEnabled() &&
_launch_detection_state != LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS) {
if (_control_mode.flag_armed) {
/* Perform launch detection */
/* Inform user that launchdetection is running every 4s */
if ((now - _launch_detection_notify) > 4_s) {
mavlink_log_critical(&_mavlink_log_pub, "Launch detection running");
_launch_detection_notify = now;
}
/* Detect launch using body X (forward) acceleration */
_launchDetector.update(now, _body_acceleration(0));
/* update our copy of the launch detection state */
_launch_detection_state = _launchDetector.getLaunchDetected();
}
} else {
/* no takeoff detection --> fly */
_launch_detection_state = LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS;
}
/* Set control values depending on the detection state */
if (_launch_detection_state != LAUNCHDETECTION_RES_NONE) {
/* Launch has been detected, hence we have to control the plane. */
_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, ground_speed);
_att_sp.roll_body = _l1_control.get_roll_setpoint();
_att_sp.yaw_body = _l1_control.nav_bearing();
/* Select throttle: only in LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS we want to use
* full throttle, otherwise we use idle throttle */
float takeoff_throttle = _param_fw_thr_max.get();
if (_launch_detection_state != LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS) {
takeoff_throttle = _param_fw_thr_idle.get();
}
/* select maximum pitch: the launchdetector may impose another limit for the pitch
* depending on the state of the launch */
const float takeoff_pitch_max_deg = _launchDetector.getPitchMax(_param_fw_p_lim_max.get());
const float altitude_error = pos_sp_curr.alt - _current_altitude;
/* apply minimum pitch and limit roll if target altitude is not within climbout_diff meters */
if (_param_fw_clmbout_diff.get() > 0.0f && altitude_error > _param_fw_clmbout_diff.get()) {
/* enforce a minimum of 10 degrees pitch up on takeoff, or take parameter */
tecs_update_pitch_throttle(now, pos_sp_curr.alt,
_param_fw_airspd_trim.get(),
radians(_param_fw_p_lim_min.get()),
radians(takeoff_pitch_max_deg),
_param_fw_thr_min.get(),
takeoff_throttle,
_param_fw_thr_cruise.get(),
true,
radians(_takeoff_pitch_min.get()),
tecs_status_s::TECS_MODE_TAKEOFF);
/* limit roll motion to ensure enough lift */
_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-15.0f), radians(15.0f));
} else {
tecs_update_pitch_throttle(now, pos_sp_curr.alt,
calculate_target_airspeed(_param_fw_airspd_trim.get(), ground_speed),
radians(_param_fw_p_lim_min.get()),
radians(_param_fw_p_lim_max.get()),
_param_fw_thr_min.get(),
takeoff_throttle,
_param_fw_thr_cruise.get(),
false,
radians(_param_fw_p_lim_min.get()));
}
} else {
/* Tell the attitude controller to stop integrating while we are waiting
* for the launch */
_att_sp.roll_reset_integral = true;
_att_sp.pitch_reset_integral = true;
_att_sp.yaw_reset_integral = true;
/* Set default roll and pitch setpoints during detection phase */
_att_sp.roll_body = 0.0f;
_att_sp.pitch_body = radians(_takeoff_pitch_min.get());
}
}
}
void
FixedwingPositionControl::control_landing(const hrt_abstime &now, const Vector2d &curr_pos,
const Vector2f &ground_speed, const position_setpoint_s &pos_sp_prev, const position_setpoint_s &pos_sp_curr)
{
/* current waypoint (the one currently heading for) */
Vector2d curr_wp(pos_sp_curr.lat, pos_sp_curr.lon);
Vector2d prev_wp{0, 0}; /* previous waypoint */
if (pos_sp_prev.valid) {
prev_wp(0) = pos_sp_prev.lat;
prev_wp(1) = pos_sp_prev.lon;
} else {
/*
* No valid previous waypoint, go for the current wp.
* This is automatically handled by the L1 library.
*/
prev_wp(0) = pos_sp_curr.lat;
prev_wp(1) = pos_sp_curr.lon;
}
// apply full flaps for landings. this flag will also trigger the use of flaperons
// if they have been enabled using the corresponding parameter
_att_sp.apply_flaps = vehicle_attitude_setpoint_s::FLAPS_LAND;
// Enable tighter altitude control for landings
_tecs.set_height_error_time_constant(_param_fw_thrtc_sc.get() * _param_fw_t_h_error_tc.get());
// save time at which we started landing and reset abort_landing
if (_time_started_landing == 0) {
reset_landing_state();
_time_started_landing = now;
}
const float bearing_airplane_currwp = get_bearing_to_next_waypoint((double)curr_pos(0), (double)curr_pos(1),
(double)curr_wp(0), (double)curr_wp(1));
float bearing_lastwp_currwp = bearing_airplane_currwp;
if (pos_sp_prev.valid) {
bearing_lastwp_currwp = get_bearing_to_next_waypoint((double)prev_wp(0), (double)prev_wp(1), (double)curr_wp(0),
(double)curr_wp(1));
}
/* Horizontal landing control */
/* switch to heading hold for the last meters, continue heading hold after */
float wp_distance = get_distance_to_next_waypoint((double)curr_pos(0), (double)curr_pos(1), (double)curr_wp(0),
(double)curr_wp(1));
/* calculate a waypoint distance value which is 0 when the aircraft is behind the waypoint */
float wp_distance_save = wp_distance;
if (fabsf(wrap_pi(bearing_airplane_currwp - bearing_lastwp_currwp)) >= radians(90.0f)) {
wp_distance_save = 0.0f;
}
// create virtual waypoint which is on the desired flight path but
// some distance behind landing waypoint. This will make sure that the plane
// will always follow the desired flight path even if we get close or past
// the landing waypoint
if (pos_sp_prev.valid) {
double lat = pos_sp_curr.lat;
double lon = pos_sp_curr.lon;
create_waypoint_from_line_and_dist(pos_sp_curr.lat, pos_sp_curr.lon,
pos_sp_prev.lat, pos_sp_prev.lon, -1000.0f, &lat, &lon);
curr_wp(0) = lat;
curr_wp(1) = lon;
}
// we want the plane to keep tracking the desired flight path until we start flaring
// if we go into heading hold mode earlier then we risk to be pushed away from the runway by cross winds
if ((_param_fw_lnd_hhdist.get() > 0.0f) && !_land_noreturn_horizontal &&
((wp_distance < _param_fw_lnd_hhdist.get()) || _land_noreturn_vertical)) {
if (pos_sp_prev.valid) {
/* heading hold, along the line connecting this and the last waypoint */
_target_bearing = bearing_lastwp_currwp;
} else {
_target_bearing = _yaw;
}
_land_noreturn_horizontal = true;
mavlink_log_info(&_mavlink_log_pub, "Landing, heading hold");
}
if (_land_noreturn_horizontal) {
// heading hold
_l1_control.navigate_heading(_target_bearing, _yaw, ground_speed);
} else {
// normal navigation
_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, ground_speed);
}
_att_sp.roll_body = _l1_control.get_roll_setpoint();
_att_sp.yaw_body = _l1_control.nav_bearing();
if (_land_noreturn_horizontal) {
/* limit roll motion to prevent wings from touching the ground first */
_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-10.0f), radians(10.0f));
}
/* Vertical landing control */
/* apply minimum pitch (flare) and limit roll if close to touch down, altitude error is negative (going down) */
// default to no terrain estimation, just use landing waypoint altitude
float terrain_alt = pos_sp_curr.alt;
if (_param_fw_lnd_useter.get() == 1) {
if (_local_pos.dist_bottom_valid) {
// all good, have valid terrain altitude
float terrain_vpos = _local_pos.dist_bottom + _local_pos.z;
terrain_alt = (_local_pos.ref_alt - terrain_vpos);
_t_alt_prev_valid = terrain_alt;
_time_last_t_alt = now;
} else if (_time_last_t_alt == 0) {
// we have started landing phase but don't have valid terrain
// wait for some time, maybe we will soon get a valid estimate
// until then just use the altitude of the landing waypoint
if ((now - _time_started_landing) < 10_s) {
terrain_alt = pos_sp_curr.alt;
} else {
// still no valid terrain, abort landing
terrain_alt = pos_sp_curr.alt;
abort_landing(true);
}
} else if ((!_local_pos.dist_bottom_valid && (now - _time_last_t_alt) < T_ALT_TIMEOUT)
|| _land_noreturn_vertical) {
// use previous terrain estimate for some time and hope to recover
// if we are already flaring (land_noreturn_vertical) then just
// go with the old estimate
terrain_alt = _t_alt_prev_valid;
} else {
// terrain alt was not valid for long time, abort landing
terrain_alt = _t_alt_prev_valid;
abort_landing(true);
}
}
/* Check if we should start flaring with a vertical and a
* horizontal limit (with some tolerance)
* The horizontal limit is only applied when we are in front of the wp
*/
if ((_current_altitude < terrain_alt + _landingslope.flare_relative_alt()) ||
_land_noreturn_vertical) { //checking for land_noreturn to avoid unwanted climb out
/* land with minimal speed */
/* force TECS to only control speed with pitch, altitude is only implicitly controlled now */
// _tecs.set_speed_weight(2.0f);
/* kill the throttle if param requests it */
float throttle_max = _param_fw_thr_max.get();
/* enable direct yaw control using rudder/wheel */
if (_land_noreturn_horizontal) {
_att_sp.yaw_body = _target_bearing;
_att_sp.fw_control_yaw = true;
}
if (((_current_altitude < terrain_alt + _landingslope.motor_lim_relative_alt()) &&
(wp_distance_save < _landingslope.flare_length() + 5.0f)) || // Only kill throttle when close to WP
_land_motor_lim) {
throttle_max = min(throttle_max, _param_fw_thr_lnd_max.get());
if (!_land_motor_lim) {
_land_motor_lim = true;
mavlink_log_info(&_mavlink_log_pub, "Landing, limiting throttle");
}
}
float flare_curve_alt_rel = _landingslope.getFlareCurveRelativeAltitudeSave(wp_distance, bearing_lastwp_currwp,
bearing_airplane_currwp);
/* avoid climbout */
if ((_flare_curve_alt_rel_last < flare_curve_alt_rel && _land_noreturn_vertical) || _land_stayonground) {
flare_curve_alt_rel = 0.0f; // stay on ground
_land_stayonground = true;
}
const float airspeed_land = _param_fw_lnd_airspd_sc.get() * _param_fw_airspd_min.get();
const float throttle_land = _param_fw_thr_min.get() + (_param_fw_thr_max.get() - _param_fw_thr_min.get()) * 0.1f;
tecs_update_pitch_throttle(now, terrain_alt + flare_curve_alt_rel,
calculate_target_airspeed(airspeed_land, ground_speed),
radians(_param_fw_lnd_fl_pmin.get()),
radians(_param_fw_lnd_fl_pmax.get()),
0.0f,
throttle_max,
throttle_land,
false,
_land_motor_lim ? radians(_param_fw_lnd_fl_pmin.get()) : radians(_param_fw_p_lim_min.get()),
_land_motor_lim ? tecs_status_s::TECS_MODE_LAND_THROTTLELIM : tecs_status_s::TECS_MODE_LAND);
if (!_land_noreturn_vertical) {
// just started with the flaring phase
_flare_pitch_sp = radians(_param_fw_psp_off.get());
_flare_height = _current_altitude - terrain_alt;
mavlink_log_info(&_mavlink_log_pub, "Landing, flaring");
_land_noreturn_vertical = true;
} else {
if (_local_pos.vz > 0.1f) {
_flare_pitch_sp = radians(_param_fw_lnd_fl_pmin.get()) *
constrain((_flare_height - (_current_altitude - terrain_alt)) / _flare_height, 0.0f, 1.0f);
}
// otherwise continue using previous _flare_pitch_sp
}
_att_sp.pitch_body = _flare_pitch_sp;
_flare_curve_alt_rel_last = flare_curve_alt_rel;
} else {
/* intersect glide slope:
* minimize speed to approach speed
* if current position is higher than the slope follow the glide slope (sink to the
* glide slope)
* also if the system captures the slope it should stay
* on the slope (bool land_onslope)
* if current position is below the slope continue at previous wp altitude
* until the intersection with slope
* */
float altitude_desired = terrain_alt;
const float landing_slope_alt_rel_desired = _landingslope.getLandingSlopeRelativeAltitudeSave(wp_distance,
bearing_lastwp_currwp, bearing_airplane_currwp);
if (_current_altitude > terrain_alt + landing_slope_alt_rel_desired || _land_onslope) {
/* stay on slope */
altitude_desired = terrain_alt + landing_slope_alt_rel_desired;
if (!_land_onslope) {
mavlink_log_info(&_mavlink_log_pub, "Landing, on slope");
_land_onslope = true;
}
} else {
/* continue horizontally */
if (pos_sp_prev.valid) {
altitude_desired = pos_sp_prev.alt;
} else {
altitude_desired = _current_altitude;
}
}
const float airspeed_approach = _param_fw_lnd_airspd_sc.get() * _param_fw_airspd_min.get();
tecs_update_pitch_throttle(now, altitude_desired,
calculate_target_airspeed(airspeed_approach, ground_speed),
radians(_param_fw_p_lim_min.get()),
radians(_param_fw_p_lim_max.get()),
_param_fw_thr_min.get(),
_param_fw_thr_max.get(),
_param_fw_thr_cruise.get(),
false,
radians(_param_fw_p_lim_min.get()));
}
}
float
FixedwingPositionControl::get_tecs_pitch()
{
if (_is_tecs_running) {
return _tecs.get_pitch_setpoint() + radians(_param_fw_psp_off.get());
}
// return level flight pitch offset to prevent stale tecs state when it's not running
return radians(_param_fw_psp_off.get());
}
float
FixedwingPositionControl::get_tecs_thrust()
{
if (_is_tecs_running) {
return _tecs.get_throttle_setpoint();
}
// return 0 to prevent stale tecs state when it's not running
return 0.0f;
}
void
FixedwingPositionControl::Run()
{
if (should_exit()) {
_local_pos_sub.unregisterCallback();
exit_and_cleanup();
return;
}
perf_begin(_loop_perf);
/* only run controller if position changed */
if (_local_pos_sub.update(&_local_pos)) {
// check for parameter updates
if (_parameter_update_sub.updated()) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
parameters_update();
}
vehicle_global_position_s gpos;
if (_global_pos_sub.update(&gpos)) {
_current_latitude = gpos.lat;
_current_longitude = gpos.lon;
}
_current_altitude = -_local_pos.z + _local_pos.ref_alt; // Altitude AMSL in meters
// handle estimator reset events. we only adjust setpoins for manual modes
if (_control_mode.flag_control_manual_enabled) {
if (_control_mode.flag_control_altitude_enabled && _local_pos.vz_reset_counter != _alt_reset_counter) {
_hold_alt += -_local_pos.delta_z;
// make TECS accept step in altitude and demanded altitude
_tecs.handle_alt_step(-_local_pos.delta_z, _current_altitude);
}
// adjust navigation waypoints in position control mode
if (_control_mode.flag_control_altitude_enabled && _control_mode.flag_control_velocity_enabled
&& _local_pos.vxy_reset_counter != _pos_reset_counter) {
// reset heading hold flag, which will re-initialise position control
_hdg_hold_enabled = false;
}
}
// update the reset counters in any case
_alt_reset_counter = _local_pos.vz_reset_counter;
_pos_reset_counter = _local_pos.vxy_reset_counter;
if (_control_mode.flag_control_offboard_enabled) {
// Convert Local setpoints to global setpoints
if (!map_projection_initialized(&_global_local_proj_ref)
|| (_global_local_proj_ref.timestamp != _local_pos.ref_timestamp)) {
map_projection_init_timestamped(&_global_local_proj_ref, _local_pos.ref_lat, _local_pos.ref_lon,
_local_pos.ref_timestamp);
_global_local_alt0 = _local_pos.ref_alt;
}
vehicle_local_position_setpoint_s trajectory_setpoint;
if (_trajectory_setpoint_sub.update(&trajectory_setpoint)) {
if (PX4_ISFINITE(trajectory_setpoint.x) && PX4_ISFINITE(trajectory_setpoint.y) && PX4_ISFINITE(trajectory_setpoint.z)) {
double lat;
double lon;
if (map_projection_reproject(&_global_local_proj_ref, trajectory_setpoint.x, trajectory_setpoint.y, &lat, &lon) == 0) {
_pos_sp_triplet = {}; // clear any existing
_pos_sp_triplet.timestamp = trajectory_setpoint.timestamp;
_pos_sp_triplet.current.timestamp = trajectory_setpoint.timestamp;
_pos_sp_triplet.current.valid = true;
_pos_sp_triplet.current.type = position_setpoint_s::SETPOINT_TYPE_POSITION;
_pos_sp_triplet.current.lat = lat;
_pos_sp_triplet.current.lon = lon;
_pos_sp_triplet.current.alt = _global_local_alt0 - trajectory_setpoint.z;
_pos_sp_triplet.current.cruising_speed = NAN; // ignored
_pos_sp_triplet.current.cruising_throttle = NAN; // ignored
}
} else {
mavlink_log_critical(&_mavlink_log_pub, "Invalid offboard setpoint");
}
}
} else {
if (_pos_sp_triplet_sub.update(&_pos_sp_triplet)) {
// reset the altitude foh (first order hold) logic
_min_current_sp_distance_xy = FLT_MAX;
}
}
airspeed_poll();
manual_control_setpoint_poll();
vehicle_attitude_poll();
vehicle_command_poll();
vehicle_control_mode_poll();
if (_vehicle_land_detected_sub.updated()) {
vehicle_land_detected_s vehicle_land_detected;
if (_vehicle_land_detected_sub.update(&vehicle_land_detected)) {
_landed = vehicle_land_detected.landed;
}
}
_vehicle_status_sub.update(&_vehicle_status);
Vector2d curr_pos(_current_latitude, _current_longitude);
Vector2f ground_speed(_local_pos.vx, _local_pos.vy);
/*
* Attempt to control position, on success (= sensors present and not in manual mode),
* publish setpoint.
*/
if (control_position(_local_pos.timestamp, curr_pos, ground_speed, _pos_sp_triplet.previous, _pos_sp_triplet.current,
_pos_sp_triplet.next)) {
if (_control_mode.flag_control_manual_enabled) {
_att_sp.roll_body = constrain(_att_sp.roll_body, -radians(_param_fw_man_r_max.get()),
radians(_param_fw_man_r_max.get()));
_att_sp.pitch_body = constrain(_att_sp.pitch_body, -radians(_param_fw_man_p_max.get()),
radians(_param_fw_man_p_max.get()));
}
if (_control_mode.flag_control_position_enabled ||
_control_mode.flag_control_velocity_enabled ||
_control_mode.flag_control_acceleration_enabled ||
_control_mode.flag_control_altitude_enabled) {
const Quatf q(Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body));
q.copyTo(_att_sp.q_d);
_att_sp.timestamp = hrt_absolute_time();
_attitude_sp_pub.publish(_att_sp);
// only publish status in full FW mode
if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING
|| _vehicle_status.in_transition_mode) {
status_publish();
}
}
}
perf_end(_loop_perf);
}
}
void
FixedwingPositionControl::reset_takeoff_state(bool force)
{
// only reset takeoff if !armed or just landed
if (!_control_mode.flag_armed || (_was_in_air && _landed) || force) {
_runway_takeoff.reset();
_launchDetector.reset();
_launch_detection_state = LAUNCHDETECTION_RES_NONE;
_launch_detection_notify = 0;
} else {
_launch_detection_state = LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS;
}
}
void
FixedwingPositionControl::reset_landing_state()
{
_time_started_landing = 0;
// reset terrain estimation relevant values
_time_last_t_alt = 0;
_land_noreturn_horizontal = false;
_land_noreturn_vertical = false;
_land_stayonground = false;
_land_motor_lim = false;
_land_onslope = false;
// reset abort land, unless loitering after an abort
if (_land_abort && (_pos_sp_triplet.current.type != position_setpoint_s::SETPOINT_TYPE_LOITER)) {
abort_landing(false);
}
}
void
FixedwingPositionControl::tecs_update_pitch_throttle(const hrt_abstime &now, float alt_sp, float airspeed_sp,
float pitch_min_rad, float pitch_max_rad,
float throttle_min, float throttle_max, float throttle_cruise,
bool climbout_mode, float climbout_pitch_min_rad,
uint8_t mode)
{
const float dt = math::constrain((now - _last_tecs_update) * 1e-6f, 0.01f, 0.05f);
_last_tecs_update = now;
// do not run TECS if we are not in air
bool run_tecs = !_landed;
// do not run TECS if vehicle is a VTOL and we are in rotary wing mode or in transition
// (it should also not run during VTOL blending because airspeed is too low still)
if (_vehicle_status.is_vtol) {
if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING || _vehicle_status.in_transition_mode) {
run_tecs = false;
}
if (_vehicle_status.in_transition_mode) {
// we're in transition
_was_in_transition = true;
// set this to transition airspeed to init tecs correctly
if (_param_fw_arsp_mode.get() == 1 && PX4_ISFINITE(_param_airspeed_trans)) {
// some vtols fly without airspeed sensor
_asp_after_transition = _param_airspeed_trans;
} else {
_asp_after_transition = _airspeed;
}
_asp_after_transition = constrain(_asp_after_transition, _param_fw_airspd_min.get(), _param_fw_airspd_max.get());
} else if (_was_in_transition) {
// after transition we ramp up desired airspeed from the speed we had coming out of the transition
_asp_after_transition += dt * 2.0f; // increase 2m/s
if (_asp_after_transition < airspeed_sp && _airspeed < airspeed_sp) {
airspeed_sp = max(_asp_after_transition, _airspeed);
} else {
_was_in_transition = false;
_asp_after_transition = 0.0f;
}
}
}
_is_tecs_running = run_tecs;
if (!run_tecs) {
// next time we run TECS we should reinitialize states
_reinitialize_tecs = true;
return;
}
if (_reinitialize_tecs) {
_tecs.reset_state();
_reinitialize_tecs = false;
}
if (_vehicle_status.engine_failure) {
/* Force the slow downwards spiral */
pitch_min_rad = radians(-1.0f);
pitch_max_rad = radians(5.0f);
}
/* No underspeed protection in landing mode */
_tecs.set_detect_underspeed_enabled(!(mode == tecs_status_s::TECS_MODE_LAND
|| mode == tecs_status_s::TECS_MODE_LAND_THROTTLELIM));
/* tell TECS to update its state, but let it know when it cannot actually control the plane */
bool in_air_alt_control = (!_landed &&
(_control_mode.flag_control_auto_enabled ||
_control_mode.flag_control_velocity_enabled ||
_control_mode.flag_control_altitude_enabled));
/* update TECS vehicle state estimates */
_tecs.update_vehicle_state_estimates(_airspeed, _body_acceleration(0), (_local_pos.timestamp > 0), in_air_alt_control,
_current_altitude, _local_pos.vz);
/* scale throttle cruise by baro pressure */
if (_param_fw_thr_alt_scl.get() > FLT_EPSILON) {
vehicle_air_data_s air_data;
if (_vehicle_air_data_sub.copy(&air_data)) {
if (PX4_ISFINITE(air_data.baro_pressure_pa) && PX4_ISFINITE(_param_fw_thr_alt_scl.get())) {
// scale throttle as a function of sqrt(p0/p) (~ EAS -> TAS at low speeds and altitudes ignoring temperature)
const float eas2tas = sqrtf(CONSTANTS_STD_PRESSURE_PA / air_data.baro_pressure_pa);
const float scale = constrain((eas2tas - 1.0f) * _param_fw_thr_alt_scl.get() + 1.f, 1.f, 2.f);
throttle_max = constrain(throttle_max * scale, throttle_min, 1.0f);
throttle_cruise = constrain(throttle_cruise * scale, throttle_min + 0.01f, throttle_max - 0.01f);
}
}
}
_tecs.update_pitch_throttle(_pitch - radians(_param_fw_psp_off.get()),
_current_altitude, alt_sp,
airspeed_sp, _airspeed, _eas2tas,
climbout_mode,
climbout_pitch_min_rad - radians(_param_fw_psp_off.get()),
throttle_min, throttle_max, throttle_cruise,
pitch_min_rad - radians(_param_fw_psp_off.get()),
pitch_max_rad - radians(_param_fw_psp_off.get()));
tecs_status_publish();
}
int FixedwingPositionControl::task_spawn(int argc, char *argv[])
{
bool vtol = false;
if (argc > 1) {
if (strcmp(argv[1], "vtol") == 0) {
vtol = true;
}
}
FixedwingPositionControl *instance = new FixedwingPositionControl(vtol);
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int FixedwingPositionControl::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int FixedwingPositionControl::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
fw_pos_control_l1 is the fixed wing position controller.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("fw_pos_control_l1", "controller");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int fw_pos_control_l1_main(int argc, char *argv[])
{
return FixedwingPositionControl::main(argc, argv);
}