FixedwingAttitudeControl.cpp 26.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
/****************************************************************************
 *
 *   Copyright (c) 2013-2019 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "FixedwingAttitudeControl.hpp"

#include <vtol_att_control/vtol_type.h>

using namespace time_literals;
using math::constrain;
using math::gradual;
using math::radians;

FixedwingAttitudeControl::FixedwingAttitudeControl(bool vtol) :
	ModuleParams(nullptr),
	WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
	_actuators_0_pub(vtol ? ORB_ID(actuator_controls_virtual_fw) : ORB_ID(actuator_controls_0)),
	_attitude_sp_pub(vtol ? ORB_ID(fw_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
	_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle"))
{
	// check if VTOL first
	if (vtol) {
		int32_t vt_type = -1;

		if (param_get(param_find("VT_TYPE"), &vt_type) == PX4_OK) {
			_is_tailsitter = (static_cast<vtol_type>(vt_type) == vtol_type::TAILSITTER);
		}
	}

	/* fetch initial parameter values */
	parameters_update();

	// set initial maximum body rate setpoints
	_roll_ctrl.set_max_rate(radians(_param_fw_acro_x_max.get()));
	_pitch_ctrl.set_max_rate_pos(radians(_param_fw_acro_y_max.get()));
	_pitch_ctrl.set_max_rate_neg(radians(_param_fw_acro_y_max.get()));
	_yaw_ctrl.set_max_rate(radians(_param_fw_acro_z_max.get()));
}

FixedwingAttitudeControl::~FixedwingAttitudeControl()
{
	perf_free(_loop_perf);
}

bool
FixedwingAttitudeControl::init()
{
	if (!_att_sub.registerCallback()) {
		PX4_ERR("vehicle attitude callback registration failed!");
		return false;
	}

	return true;
}

int
FixedwingAttitudeControl::parameters_update()
{
	/* pitch control parameters */
	_pitch_ctrl.set_time_constant(_param_fw_p_tc.get());
	_pitch_ctrl.set_k_p(_param_fw_pr_p.get());
	_pitch_ctrl.set_k_i(_param_fw_pr_i.get());
	_pitch_ctrl.set_k_ff(_param_fw_pr_ff.get());
	_pitch_ctrl.set_integrator_max(_param_fw_pr_imax.get());

	/* roll control parameters */
	_roll_ctrl.set_time_constant(_param_fw_r_tc.get());
	_roll_ctrl.set_k_p(_param_fw_rr_p.get());
	_roll_ctrl.set_k_i(_param_fw_rr_i.get());
	_roll_ctrl.set_k_ff(_param_fw_rr_ff.get());
	_roll_ctrl.set_integrator_max(_param_fw_rr_imax.get());

	/* yaw control parameters */
	_yaw_ctrl.set_k_p(_param_fw_yr_p.get());
	_yaw_ctrl.set_k_i(_param_fw_yr_i.get());
	_yaw_ctrl.set_k_ff(_param_fw_yr_ff.get());
	_yaw_ctrl.set_integrator_max(_param_fw_yr_imax.get());

	/* wheel control parameters */
	_wheel_ctrl.set_k_p(_param_fw_wr_p.get());
	_wheel_ctrl.set_k_i(_param_fw_wr_i.get());
	_wheel_ctrl.set_k_ff(_param_fw_wr_ff.get());
	_wheel_ctrl.set_integrator_max(_param_fw_wr_imax.get());
	_wheel_ctrl.set_max_rate(radians(_param_fw_w_rmax.get()));

	return PX4_OK;
}

void
FixedwingAttitudeControl::vehicle_control_mode_poll()
{
	_vcontrol_mode_sub.update(&_vcontrol_mode);

	if (_vehicle_status.is_vtol) {
		const bool is_hovering = _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
					 && !_vehicle_status.in_transition_mode;
		const bool is_tailsitter_transition = _vehicle_status.in_transition_mode && _is_tailsitter;

		if (is_hovering || is_tailsitter_transition) {
			_vcontrol_mode.flag_control_attitude_enabled = false;
			_vcontrol_mode.flag_control_manual_enabled = false;
		}
	}
}

void
FixedwingAttitudeControl::vehicle_manual_poll()
{
	const bool is_tailsitter_transition = _is_tailsitter && _vehicle_status.in_transition_mode;
	const bool is_fixed_wing = _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING;

	if (_vcontrol_mode.flag_control_manual_enabled && (!is_tailsitter_transition || is_fixed_wing)) {

		// Always copy the new manual setpoint, even if it wasn't updated, to fill the _actuators with valid values
		if (_manual_control_setpoint_sub.copy(&_manual_control_setpoint)) {

			if (!_vcontrol_mode.flag_control_climb_rate_enabled) {

				if (_vcontrol_mode.flag_control_attitude_enabled) {
					// STABILIZED mode generate the attitude setpoint from manual user inputs

					_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());

					_att_sp.pitch_body = -_manual_control_setpoint.x * radians(_param_fw_man_p_max.get())
							     + radians(_param_fw_psp_off.get());
					_att_sp.pitch_body = constrain(_att_sp.pitch_body,
								       -radians(_param_fw_man_p_max.get()), radians(_param_fw_man_p_max.get()));

					_att_sp.yaw_body = 0.0f;
					_att_sp.thrust_body[0] = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);

					Quatf q(Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body));
					q.copyTo(_att_sp.q_d);

					_att_sp.timestamp = hrt_absolute_time();

					_attitude_sp_pub.publish(_att_sp);

				} else if (_vcontrol_mode.flag_control_rates_enabled &&
					   !_vcontrol_mode.flag_control_attitude_enabled) {

					// RATE mode we need to generate the rate setpoint from manual user inputs
					_rates_sp.timestamp = hrt_absolute_time();
					_rates_sp.roll = _manual_control_setpoint.y * radians(_param_fw_acro_x_max.get());
					_rates_sp.pitch = -_manual_control_setpoint.x * radians(_param_fw_acro_y_max.get());
					_rates_sp.yaw = _manual_control_setpoint.r * radians(_param_fw_acro_z_max.get());
					_rates_sp.thrust_body[0] = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);

					_rate_sp_pub.publish(_rates_sp);

				} else {
					/* manual/direct control */
					_actuators.control[actuator_controls_s::INDEX_ROLL] =
						_manual_control_setpoint.y * _param_fw_man_r_sc.get() + _param_trim_roll.get();
					_actuators.control[actuator_controls_s::INDEX_PITCH] =
						-_manual_control_setpoint.x * _param_fw_man_p_sc.get() + _param_trim_pitch.get();
					_actuators.control[actuator_controls_s::INDEX_YAW] =
						_manual_control_setpoint.r * _param_fw_man_y_sc.get() + _param_trim_yaw.get();
					_actuators.control[actuator_controls_s::INDEX_THROTTLE] = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);
				}
			}
		}
	}
}

void
FixedwingAttitudeControl::vehicle_attitude_setpoint_poll()
{
	if (_att_sp_sub.update(&_att_sp)) {
		_rates_sp.thrust_body[0] = _att_sp.thrust_body[0];
		_rates_sp.thrust_body[1] = _att_sp.thrust_body[1];
		_rates_sp.thrust_body[2] = _att_sp.thrust_body[2];
	}
}

void
FixedwingAttitudeControl::vehicle_rates_setpoint_poll()
{
	if (_rates_sp_sub.update(&_rates_sp)) {
		if (_is_tailsitter) {
			float tmp = _rates_sp.roll;
			_rates_sp.roll = -_rates_sp.yaw;
			_rates_sp.yaw = tmp;
		}
	}
}

void
FixedwingAttitudeControl::vehicle_land_detected_poll()
{
	if (_vehicle_land_detected_sub.updated()) {
		vehicle_land_detected_s vehicle_land_detected {};

		if (_vehicle_land_detected_sub.copy(&vehicle_land_detected)) {
			_landed = vehicle_land_detected.landed;
		}
	}
}

float FixedwingAttitudeControl::get_airspeed_and_update_scaling()
{
	_airspeed_validated_sub.update();
	const bool airspeed_valid = PX4_ISFINITE(_airspeed_validated_sub.get().calibrated_airspeed_m_s)
				    && (hrt_elapsed_time(&_airspeed_validated_sub.get().timestamp) < 1_s);

	// if no airspeed measurement is available out best guess is to use the trim airspeed
	float airspeed = _param_fw_airspd_trim.get();

	if ((_param_fw_arsp_mode.get() == 0) && airspeed_valid) {
		/* prevent numerical drama by requiring 0.5 m/s minimal speed */
		airspeed = math::max(0.5f, _airspeed_validated_sub.get().calibrated_airspeed_m_s);

	} else {
		// VTOL: if we have no airspeed available and we are in hover mode then assume the lowest airspeed possible
		// this assumption is good as long as the vehicle is not hovering in a headwind which is much larger
		// than the minimum airspeed
		if (_vehicle_status.is_vtol && _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
		    && !_vehicle_status.in_transition_mode) {
			airspeed = _param_fw_airspd_min.get();
		}
	}

	/*
	 * For scaling our actuators using anything less than the min (close to stall)
	 * speed doesn't make any sense - its the strongest reasonable deflection we
	 * want to do in flight and its the baseline a human pilot would choose.
	 *
	 * Forcing the scaling to this value allows reasonable handheld tests.
	 */
	const float airspeed_constrained = constrain(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_max.get());

	_airspeed_scaling = (_param_fw_arsp_scale_en.get()) ? (_param_fw_airspd_trim.get() / airspeed_constrained) : 1.0f;

	return airspeed;
}

void FixedwingAttitudeControl::Run()
{
	if (should_exit()) {
		_att_sub.unregisterCallback();
		exit_and_cleanup();
		return;
	}

	perf_begin(_loop_perf);

	// only run controller if attitude changed
	vehicle_attitude_s att;

	if (_att_sub.update(&att)) {

		// only update parameters if they changed
		bool params_updated = _parameter_update_sub.updated();

		// check for parameter updates
		if (params_updated) {
			// clear update
			parameter_update_s pupdate;
			_parameter_update_sub.copy(&pupdate);

			// update parameters from storage
			updateParams();
			parameters_update();
		}

		const float dt = math::constrain((att.timestamp - _last_run) * 1e-6f, 0.002f, 0.04f);
		_last_run = att.timestamp;

		/* get current rotation matrix and euler angles from control state quaternions */
		matrix::Dcmf R = matrix::Quatf(att.q);

		vehicle_angular_velocity_s angular_velocity{};
		_vehicle_rates_sub.copy(&angular_velocity);
		float rollspeed = angular_velocity.xyz[0];
		float pitchspeed = angular_velocity.xyz[1];
		float yawspeed = angular_velocity.xyz[2];

		if (_is_tailsitter) {
			/* vehicle is a tailsitter, we need to modify the estimated attitude for fw mode
			 *
			 * Since the VTOL airframe is initialized as a multicopter we need to
			 * modify the estimated attitude for the fixed wing operation.
			 * Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around
			 * the pitch axis compared to the neutral position of the vehicle in multicopter mode
			 * we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix.
			 * Additionally, in order to get the correct sign of the pitch, we need to multiply
			 * the new x axis of the rotation matrix with -1
			 *
			 * original:			modified:
			 *
			 * Rxx  Ryx  Rzx		-Rzx  Ryx  Rxx
			 * Rxy	Ryy  Rzy		-Rzy  Ryy  Rxy
			 * Rxz	Ryz  Rzz		-Rzz  Ryz  Rxz
			 * */
			matrix::Dcmf R_adapted = R;		//modified rotation matrix

			/* move z to x */
			R_adapted(0, 0) = R(0, 2);
			R_adapted(1, 0) = R(1, 2);
			R_adapted(2, 0) = R(2, 2);

			/* move x to z */
			R_adapted(0, 2) = R(0, 0);
			R_adapted(1, 2) = R(1, 0);
			R_adapted(2, 2) = R(2, 0);

			/* change direction of pitch (convert to right handed system) */
			R_adapted(0, 0) = -R_adapted(0, 0);
			R_adapted(1, 0) = -R_adapted(1, 0);
			R_adapted(2, 0) = -R_adapted(2, 0);

			/* fill in new attitude data */
			R = R_adapted;

			/* lastly, roll- and yawspeed have to be swaped */
			float helper = rollspeed;
			rollspeed = -yawspeed;
			yawspeed = helper;
		}

		const matrix::Eulerf euler_angles(R);

		vehicle_attitude_setpoint_poll();

		// vehicle status update must be before the vehicle_control_mode_poll(), otherwise rate sp are not published during whole transition
		_vehicle_status_sub.update(&_vehicle_status);

		vehicle_control_mode_poll();
		vehicle_manual_poll();
		vehicle_land_detected_poll();

		// the position controller will not emit attitude setpoints in some modes
		// we need to make sure that this flag is reset
		_att_sp.fw_control_yaw = _att_sp.fw_control_yaw && _vcontrol_mode.flag_control_auto_enabled;

		bool wheel_control = false;

		// TODO: manual wheel_control on ground?
		if (_param_fw_w_en.get() && _att_sp.fw_control_yaw) {
			wheel_control = true;
		}

		// lock integrator if no rate control enabled, or in RW mode (but not transitioning VTOL or tailsitter), or for long intervals (> 20 ms)
		bool lock_integrator = !_vcontrol_mode.flag_control_rates_enabled
				       || (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING &&
					   !_vehicle_status.in_transition_mode && !_is_tailsitter)
				       || (dt > 0.02f);

		/* if we are in rotary wing mode, do nothing */
		if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING && !_vehicle_status.is_vtol) {
			perf_end(_loop_perf);
			return;
		}

		control_flaps(dt);

		/* decide if in stabilized or full manual control */
		if (_vcontrol_mode.flag_control_rates_enabled) {

			const float airspeed = get_airspeed_and_update_scaling();

			/* reset integrals where needed */
			if (_att_sp.roll_reset_integral) {
				_roll_ctrl.reset_integrator();
			}

			if (_att_sp.pitch_reset_integral) {
				_pitch_ctrl.reset_integrator();
			}

			if (_att_sp.yaw_reset_integral) {
				_yaw_ctrl.reset_integrator();
				_wheel_ctrl.reset_integrator();
			}

			/* Reset integrators if the aircraft is on ground
			 * or a multicopter (but not transitioning VTOL or tailsitter)
			 */
			if (_landed
			    || (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
				&& !_vehicle_status.in_transition_mode && !_is_tailsitter)) {

				_roll_ctrl.reset_integrator();
				_pitch_ctrl.reset_integrator();
				_yaw_ctrl.reset_integrator();
				_wheel_ctrl.reset_integrator();
			}

			/* Prepare data for attitude controllers */
			ECL_ControlData control_input{};
			control_input.roll = euler_angles.phi();
			control_input.pitch = euler_angles.theta();
			control_input.yaw = euler_angles.psi();
			control_input.body_x_rate = rollspeed;
			control_input.body_y_rate = pitchspeed;
			control_input.body_z_rate = yawspeed;
			control_input.roll_setpoint = _att_sp.roll_body;
			control_input.pitch_setpoint = _att_sp.pitch_body;
			control_input.yaw_setpoint = _att_sp.yaw_body;
			control_input.airspeed_min = _param_fw_airspd_min.get();
			control_input.airspeed_max = _param_fw_airspd_max.get();
			control_input.airspeed = airspeed;
			control_input.scaler = _airspeed_scaling;
			control_input.lock_integrator = lock_integrator;

			if (wheel_control) {
				_local_pos_sub.update(&_local_pos);

				/* Use min airspeed to calculate ground speed scaling region.
				* Don't scale below gspd_scaling_trim
				*/
				float groundspeed = sqrtf(_local_pos.vx * _local_pos.vx + _local_pos.vy * _local_pos.vy);
				float gspd_scaling_trim = (_param_fw_airspd_min.get() * 0.6f);

				control_input.groundspeed = groundspeed;

				if (groundspeed > gspd_scaling_trim) {
					control_input.groundspeed_scaler = gspd_scaling_trim / groundspeed;

				} else {
					control_input.groundspeed_scaler = 1.0f;
				}
			}

			/* reset body angular rate limits on mode change */
			if ((_vcontrol_mode.flag_control_attitude_enabled != _flag_control_attitude_enabled_last) || params_updated) {
				if (_vcontrol_mode.flag_control_attitude_enabled
				    || _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
					_roll_ctrl.set_max_rate(radians(_param_fw_r_rmax.get()));
					_pitch_ctrl.set_max_rate_pos(radians(_param_fw_p_rmax_pos.get()));
					_pitch_ctrl.set_max_rate_neg(radians(_param_fw_p_rmax_neg.get()));
					_yaw_ctrl.set_max_rate(radians(_param_fw_y_rmax.get()));

				} else {
					_roll_ctrl.set_max_rate(radians(_param_fw_acro_x_max.get()));
					_pitch_ctrl.set_max_rate_pos(radians(_param_fw_acro_y_max.get()));
					_pitch_ctrl.set_max_rate_neg(radians(_param_fw_acro_y_max.get()));
					_yaw_ctrl.set_max_rate(radians(_param_fw_acro_z_max.get()));
				}
			}

			_flag_control_attitude_enabled_last = _vcontrol_mode.flag_control_attitude_enabled;

			/* bi-linear interpolation over airspeed for actuator trim scheduling */
			float trim_roll = _param_trim_roll.get();
			float trim_pitch = _param_trim_pitch.get();
			float trim_yaw = _param_trim_yaw.get();

			if (airspeed < _param_fw_airspd_trim.get()) {
				trim_roll += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_r_vmin.get(),
						     0.0f);
				trim_pitch += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_p_vmin.get(),
						      0.0f);
				trim_yaw += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_y_vmin.get(),
						    0.0f);

			} else {
				trim_roll += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
						     _param_fw_dtrim_r_vmax.get());
				trim_pitch += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
						      _param_fw_dtrim_p_vmax.get());
				trim_yaw += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
						    _param_fw_dtrim_y_vmax.get());
			}

			/* add trim increment if flaps are deployed  */
			trim_roll += _flaps_applied * _param_fw_dtrim_r_flps.get();
			trim_pitch += _flaps_applied * _param_fw_dtrim_p_flps.get();

			/* Run attitude controllers */
			if (_vcontrol_mode.flag_control_attitude_enabled) {
				if (PX4_ISFINITE(_att_sp.roll_body) && PX4_ISFINITE(_att_sp.pitch_body)) {
					_roll_ctrl.control_attitude(dt, control_input);
					_pitch_ctrl.control_attitude(dt, control_input);

					if (wheel_control) {
						_wheel_ctrl.control_attitude(dt, control_input);
						_yaw_ctrl.reset_integrator();

					} else {
						// runs last, because is depending on output of roll and pitch attitude
						_yaw_ctrl.control_attitude(dt, control_input);
						_wheel_ctrl.reset_integrator();
					}

					/* Update input data for rate controllers */
					control_input.roll_rate_setpoint = _roll_ctrl.get_desired_rate();
					control_input.pitch_rate_setpoint = _pitch_ctrl.get_desired_rate();
					control_input.yaw_rate_setpoint = _yaw_ctrl.get_desired_rate();

					/* Run attitude RATE controllers which need the desired attitudes from above, add trim */
					float roll_u = _roll_ctrl.control_euler_rate(dt, control_input);
					_actuators.control[actuator_controls_s::INDEX_ROLL] = (PX4_ISFINITE(roll_u)) ? roll_u + trim_roll : trim_roll;

					if (!PX4_ISFINITE(roll_u)) {
						_roll_ctrl.reset_integrator();
					}

					float pitch_u = _pitch_ctrl.control_euler_rate(dt, control_input);
					_actuators.control[actuator_controls_s::INDEX_PITCH] = (PX4_ISFINITE(pitch_u)) ? pitch_u + trim_pitch : trim_pitch;

					if (!PX4_ISFINITE(pitch_u)) {
						_pitch_ctrl.reset_integrator();
					}

					float yaw_u = 0.0f;

					if (wheel_control) {
						yaw_u = _wheel_ctrl.control_bodyrate(dt, control_input);

					} else {
						yaw_u = _yaw_ctrl.control_euler_rate(dt, control_input);
					}

					_actuators.control[actuator_controls_s::INDEX_YAW] = (PX4_ISFINITE(yaw_u)) ? yaw_u + trim_yaw : trim_yaw;

					/* add in manual rudder control in manual modes */
					if (_vcontrol_mode.flag_control_manual_enabled) {
						_actuators.control[actuator_controls_s::INDEX_YAW] += _manual_control_setpoint.r;
					}

					if (!PX4_ISFINITE(yaw_u)) {
						_yaw_ctrl.reset_integrator();
						_wheel_ctrl.reset_integrator();
					}

					/* throttle passed through if it is finite and if no engine failure was detected */
					_actuators.control[actuator_controls_s::INDEX_THROTTLE] = (PX4_ISFINITE(_att_sp.thrust_body[0])
							&& !_vehicle_status.engine_failure) ? _att_sp.thrust_body[0] : 0.0f;

					/* scale effort by battery status */
					if (_param_fw_bat_scale_en.get() &&
					    _actuators.control[actuator_controls_s::INDEX_THROTTLE] > 0.1f) {

						if (_battery_status_sub.updated()) {
							battery_status_s battery_status{};

							if (_battery_status_sub.copy(&battery_status)) {
								if (battery_status.scale > 0.0f) {
									_battery_scale = battery_status.scale;
								}
							}
						}

						_actuators.control[actuator_controls_s::INDEX_THROTTLE] *= _battery_scale;
					}
				}

				/*
				 * Lazily publish the rate setpoint (for analysis, the actuators are published below)
				 * only once available
				 */
				_rates_sp.roll = _roll_ctrl.get_desired_bodyrate();
				_rates_sp.pitch = _pitch_ctrl.get_desired_bodyrate();
				_rates_sp.yaw = _yaw_ctrl.get_desired_bodyrate();

				_rates_sp.timestamp = hrt_absolute_time();

				_rate_sp_pub.publish(_rates_sp);

			} else {
				vehicle_rates_setpoint_poll();

				_roll_ctrl.set_bodyrate_setpoint(_rates_sp.roll);
				_yaw_ctrl.set_bodyrate_setpoint(_rates_sp.yaw);
				_pitch_ctrl.set_bodyrate_setpoint(_rates_sp.pitch);

				float roll_u = _roll_ctrl.control_bodyrate(dt, control_input);
				_actuators.control[actuator_controls_s::INDEX_ROLL] = (PX4_ISFINITE(roll_u)) ? roll_u + trim_roll : trim_roll;

				float pitch_u = _pitch_ctrl.control_bodyrate(dt, control_input);
				_actuators.control[actuator_controls_s::INDEX_PITCH] = (PX4_ISFINITE(pitch_u)) ? pitch_u + trim_pitch : trim_pitch;

				float yaw_u = _yaw_ctrl.control_bodyrate(dt, control_input);
				_actuators.control[actuator_controls_s::INDEX_YAW] = (PX4_ISFINITE(yaw_u)) ? yaw_u + trim_yaw : trim_yaw;

				_actuators.control[actuator_controls_s::INDEX_THROTTLE] = PX4_ISFINITE(_rates_sp.thrust_body[0]) ?
						_rates_sp.thrust_body[0] : 0.0f;
			}

			rate_ctrl_status_s rate_ctrl_status{};
			rate_ctrl_status.timestamp = hrt_absolute_time();
			rate_ctrl_status.rollspeed_integ = _roll_ctrl.get_integrator();
			rate_ctrl_status.pitchspeed_integ = _pitch_ctrl.get_integrator();

			if (wheel_control) {
				rate_ctrl_status.additional_integ1 = _wheel_ctrl.get_integrator();

			} else {
				rate_ctrl_status.yawspeed_integ = _yaw_ctrl.get_integrator();
			}

			_rate_ctrl_status_pub.publish(rate_ctrl_status);
		}

		// Add feed-forward from roll control output to yaw control output
		// This can be used to counteract the adverse yaw effect when rolling the plane
		_actuators.control[actuator_controls_s::INDEX_YAW] += _param_fw_rll_to_yaw_ff.get()
				* constrain(_actuators.control[actuator_controls_s::INDEX_ROLL], -1.0f, 1.0f);

		_actuators.control[actuator_controls_s::INDEX_FLAPS] = _flaps_applied;
		_actuators.control[5] = _manual_control_setpoint.aux1;
		_actuators.control[actuator_controls_s::INDEX_AIRBRAKES] = _flaperons_applied;
		// FIXME: this should use _vcontrol_mode.landing_gear_pos in the future
		_actuators.control[7] = _manual_control_setpoint.aux3;

		/* lazily publish the setpoint only once available */
		_actuators.timestamp = hrt_absolute_time();
		_actuators.timestamp_sample = att.timestamp;

		/* Only publish if any of the proper modes are enabled */
		if (_vcontrol_mode.flag_control_rates_enabled ||
		    _vcontrol_mode.flag_control_attitude_enabled ||
		    _vcontrol_mode.flag_control_manual_enabled) {
			_actuators_0_pub.publish(_actuators);
		}
	}

	perf_end(_loop_perf);
}

void FixedwingAttitudeControl::control_flaps(const float dt)
{
	/* default flaps to center */
	float flap_control = 0.0f;

	/* map flaps by default to manual if valid */
	if (PX4_ISFINITE(_manual_control_setpoint.flaps) && _vcontrol_mode.flag_control_manual_enabled
	    && fabsf(_param_fw_flaps_scl.get()) > 0.01f) {
		flap_control = 0.5f * (_manual_control_setpoint.flaps + 1.0f) * _param_fw_flaps_scl.get();

	} else if (_vcontrol_mode.flag_control_auto_enabled
		   && fabsf(_param_fw_flaps_scl.get()) > 0.01f) {

		switch (_att_sp.apply_flaps) {
		case vehicle_attitude_setpoint_s::FLAPS_OFF:
			flap_control = 0.0f; // no flaps
			break;

		case vehicle_attitude_setpoint_s::FLAPS_LAND:
			flap_control = 1.0f * _param_fw_flaps_scl.get() * _param_fw_flaps_lnd_scl.get();
			break;

		case vehicle_attitude_setpoint_s::FLAPS_TAKEOFF:
			flap_control = 1.0f * _param_fw_flaps_scl.get() * _param_fw_flaps_to_scl.get();
			break;
		}
	}

	// move the actual control value continuous with time, full flap travel in 1sec
	if (fabsf(_flaps_applied - flap_control) > 0.01f) {
		_flaps_applied += (_flaps_applied - flap_control) < 0 ? dt : -dt;

	} else {
		_flaps_applied = flap_control;
	}

	/* default flaperon to center */
	float flaperon_control = 0.0f;

	/* map flaperons by default to manual if valid */
	if (PX4_ISFINITE(_manual_control_setpoint.aux2) && _vcontrol_mode.flag_control_manual_enabled
	    && fabsf(_param_fw_flaperon_scl.get()) > 0.01f) {

		flaperon_control = 0.5f * (_manual_control_setpoint.aux2 + 1.0f) * _param_fw_flaperon_scl.get();

	} else if (_vcontrol_mode.flag_control_auto_enabled
		   && fabsf(_param_fw_flaperon_scl.get()) > 0.01f) {

		if (_att_sp.apply_flaps == vehicle_attitude_setpoint_s::FLAPS_LAND) {
			flaperon_control = _param_fw_flaperon_scl.get();

		} else {
			flaperon_control = 0.0f;
		}
	}

	// move the actual control value continuous with time, full flap travel in 1sec
	if (fabsf(_flaperons_applied - flaperon_control) > 0.01f) {
		_flaperons_applied += (_flaperons_applied - flaperon_control) < 0 ? dt : -dt;

	} else {
		_flaperons_applied = flaperon_control;
	}
}

int FixedwingAttitudeControl::task_spawn(int argc, char *argv[])
{
	bool vtol = false;

	if (argc > 1) {
		if (strcmp(argv[1], "vtol") == 0) {
			vtol = true;
		}
	}

	FixedwingAttitudeControl *instance = new FixedwingAttitudeControl(vtol);

	if (instance) {
		_object.store(instance);
		_task_id = task_id_is_work_queue;

		if (instance->init()) {
			return PX4_OK;
		}

	} else {
		PX4_ERR("alloc failed");
	}

	delete instance;
	_object.store(nullptr);
	_task_id = -1;

	return PX4_ERROR;
}

int FixedwingAttitudeControl::custom_command(int argc, char *argv[])
{
	return print_usage("unknown command");
}

int FixedwingAttitudeControl::print_usage(const char *reason)
{
	if (reason) {
		PX4_WARN("%s\n", reason);
	}

	PRINT_MODULE_DESCRIPTION(
		R"DESCR_STR(
### Description
fw_att_control is the fixed wing attitude controller.

)DESCR_STR");

	PRINT_MODULE_USAGE_NAME("fw_att_control", "controller");
	PRINT_MODULE_USAGE_COMMAND("start");
	PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
	PRINT_MODULE_USAGE_DEFAULT_COMMANDS();

	return 0;
}

extern "C" __EXPORT int fw_att_control_main(int argc, char *argv[])
{
	return FixedwingAttitudeControl::main(argc, argv);
}