mag_calibration_test.cpp
9.26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/****************************************************************************
*
* Copyright (C) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* Test code for the Magnetometer calibration routine
* Run this test only using make tests TESTFILTER=mag_calibration
*
* @author Mathieu Bresciani <mathieu@auterion.com>
*/
#include <gtest/gtest.h>
#include <matrix/matrix/math.hpp>
#include <px4_platform_common/defines.h>
#include "lm_fit.hpp"
#include "mag_calibration_test_data.h"
using matrix::Vector3f;
class MagCalTest : public ::testing::Test
{
public:
void generate2SidesMagData(float *x, float *y, float *z, unsigned int n_samples, float mag_str);
/* Generate regularly spaced data on a sphere
* Ref.: How to generate equidistributed points on the surface of a sphere, Markus Deserno, 2004
*/
void generateRegularData(float *x, float *y, float *z, unsigned int n_samples, float mag_str);
void modifyOffsetScale(float *x, float *y, float *z, unsigned int n_samples, Vector3f offsets, Vector3f scale_factors);
};
void MagCalTest::generate2SidesMagData(float *x, float *y, float *z, unsigned int n_samples, float mag_str)
{
float psi = 0.f;
float theta = 0.f;
const float d_angle = 2.f * M_PI_F / float(n_samples / 2);
for (int i = 0; i < int(n_samples / 2); i++) {
x[i] = mag_str * sinf(psi);
y[i] = mag_str * cosf(psi);
z[i] = 0.f;
psi += d_angle;
}
for (int i = int(n_samples / 2); i < int(n_samples); i++) {
x[i] = mag_str * sinf(theta);
y[i] = 0.f;
z[i] = mag_str * cosf(theta);
theta += d_angle;
}
}
void MagCalTest::generateRegularData(float *x, float *y, float *z, unsigned int n_samples, float mag_str)
{
const float a = 4.f * M_PI_F * mag_str * mag_str / n_samples;
const float d = sqrtf(a);
const int m_theta = static_cast<int>(M_PI_F / d);
const float d_theta = M_PI_F / static_cast<float>(m_theta);
const float d_phi = a / d_theta;
unsigned int n_count = 0;
for (int m = 0; m < m_theta; m++) {
const float theta = M_PI_F * (m + 0.5f) / static_cast<float>(m_theta);
const int m_phi = static_cast<int>(2.f * M_PI_F * sinf(theta / d_phi));
for (int n = 0; n < m_phi; n++) {
const float phi = 2.f * M_PI_F * n / static_cast<float>(m_phi);
x[n_count] = mag_str * sinf(theta) * cosf(phi);
y[n_count] = mag_str * sinf(theta) * sinf(phi);
z[n_count] = mag_str * cosf(theta);
n_count++;
}
}
if (n_count > n_samples) {
printf("Error placing samples, n = %d\n", n_count);
return;
}
// Padd with constant data
while (n_count < n_samples) {
x[n_count] = x[n_count - 1];
y[n_count] = y[n_count - 1];
z[n_count] = z[n_count - 1];
n_count++;
}
}
void MagCalTest::modifyOffsetScale(float *x, float *y, float *z, unsigned int n_samples, Vector3f offsets,
Vector3f scale_factors)
{
for (unsigned int k = 0; k < n_samples; k++) {
x[k] = x[k] * scale_factors(0) + offsets(0);
y[k] = y[k] * scale_factors(1) + offsets(1);
z[k] = z[k] * scale_factors(2) + offsets(2);
}
}
TEST_F(MagCalTest, sphere2Sides)
{
// GIVEN: a dataset of points located on two orthogonal circles
// perfectly centered on the origin
static constexpr unsigned int N_SAMPLES = 240;
const float mag_str_true = 0.4f;
const Vector3f offset_true;
const Vector3f scale_true = {1.f, 1.f, 1.f};
float x[N_SAMPLES];
float y[N_SAMPLES];
float z[N_SAMPLES];
generate2SidesMagData(x, y, z, N_SAMPLES, mag_str_true);
// WHEN: fitting a sphere with the data and given a wrong initial radius
sphere_params sphere;
sphere.diag = {1.f, 1.f, 1.f};
sphere.radius = 0.2;
int success = lm_mag_fit(x, y, z, N_SAMPLES, sphere, false);
// THEN: the algorithm should converge in a single step
EXPECT_EQ(success, PX4_OK);
EXPECT_NEAR(sphere.radius, mag_str_true, 0.001f) << "radius: " << sphere.radius;
EXPECT_NEAR(sphere.offset(0), offset_true(0), 0.001f) << "offset X: " << sphere.offset(0);
EXPECT_NEAR(sphere.offset(1), offset_true(1), 0.001f) << "offset Y: " << sphere.offset(1);
EXPECT_NEAR(sphere.offset(2), offset_true(2), 0.001f) << "offset Z: " << sphere.offset(2);
EXPECT_NEAR(sphere.diag(0), scale_true(0), 0.001f) << "scale X: " << sphere.diag(0);
EXPECT_NEAR(sphere.diag(1), scale_true(1), 0.001f) << "scale Y: " << sphere.diag(1);
EXPECT_NEAR(sphere.diag(2), scale_true(2), 0.001f) << "scale Z: " << sphere.diag(2);
}
TEST_F(MagCalTest, sphereRegularlySpaced)
{
// GIVEN: a dataset of regularly spaced points
// on a perfect sphere but not centered on the origin
static constexpr unsigned int N_SAMPLES = 240;
const float mag_str_true = 0.4f;
const Vector3f offset_true = {-1.07f, 0.35f, -0.78f};
const Vector3f scale_true = {1.f, 1.f, 1.f};
float x[N_SAMPLES];
float y[N_SAMPLES];
float z[N_SAMPLES];
generateRegularData(x, y, z, N_SAMPLES, mag_str_true);
modifyOffsetScale(x, y, z, N_SAMPLES, offset_true, scale_true);
// WHEN: fitting a sphere to the data
sphere_params sphere;
sphere.diag = {1.f, 1.f, 1.f};
sphere.radius = 0.2;
int success = lm_mag_fit(x, y, z, N_SAMPLES, sphere, false);
// THEN: the algorithm should converge in a few iterations and
// find the correct parameters
EXPECT_EQ(success, PX4_OK);
EXPECT_NEAR(sphere.radius, mag_str_true, 0.001f) << "radius: " << sphere.radius;
EXPECT_NEAR(sphere.offset(0), offset_true(0), 0.001f) << "offset X: " << sphere.offset(0);
EXPECT_NEAR(sphere.offset(1), offset_true(1), 0.001f) << "offset Y: " << sphere.offset(1);
EXPECT_NEAR(sphere.offset(2), offset_true(2), 0.001f) << "offset Z: " << sphere.offset(2);
EXPECT_NEAR(sphere.diag(0), scale_true(0), 0.001f) << "scale X: " << scale_true(0);
EXPECT_NEAR(sphere.diag(1), scale_true(1), 0.001f) << "scale Y: " << scale_true(1);
EXPECT_NEAR(sphere.diag(2), scale_true(2), 0.001f) << "scale Z: " << scale_true(2);
}
TEST_F(MagCalTest, replayTestData)
{
// GIVEN: a real test dataset with large offsets
// and where the two first iterations of the LM algorithm
// produces a negative radius and a constant fitness value
constexpr unsigned int N_SAMPLES = 231;
const float mag_str_true = 0.4f;
const Vector3f offset_true = {-0.18f, 0.05f, -0.58f};
// WHEN: fitting a sphere to the data
sphere_params sphere;
sphere.diag = {1.f, 1.f, 1.f};
sphere.radius = 0.2;
int sphere_success = lm_mag_fit(mag_data1_x, mag_data1_y, mag_data1_z, N_SAMPLES, sphere, false);
// THEN: the algorithm should converge and find the correct parameters
EXPECT_EQ(sphere_success, PX4_OK);
EXPECT_NEAR(sphere.radius, mag_str_true, 0.1f) << "radius: " << sphere.radius;
EXPECT_NEAR(sphere.offset(0), offset_true(0), 0.01f) << "offset X: " << sphere.offset(0);
EXPECT_NEAR(sphere.offset(1), offset_true(1), 0.01f) << "offset Y: " << sphere.offset(1);
EXPECT_NEAR(sphere.offset(2), offset_true(2), 0.01f) << "offset Z: " << sphere.offset(2);
printf("Ellipsoid fit\n");
sphere_params ellipsoid;
ellipsoid.diag = {1.f, 1.f, 1.f};
ellipsoid.radius = 0.2;
int ellipsoid_step_1_success = lm_mag_fit(mag_data1_x, mag_data1_y, mag_data1_z, N_SAMPLES, ellipsoid, false);
int ellipsoid_success = lm_mag_fit(mag_data1_x, mag_data1_y, mag_data1_z, N_SAMPLES, ellipsoid, true);
const Vector3f scale_true = {1.f, 1.06f, 0.94f};
EXPECT_EQ(ellipsoid_step_1_success, PX4_OK);
EXPECT_EQ(ellipsoid_success, PX4_OK);
EXPECT_NEAR(ellipsoid.radius, mag_str_true, 0.1f) << "radius: " << sphere.radius;
EXPECT_NEAR(ellipsoid.offset(0), offset_true(0), 0.01f) << "offset X: " << ellipsoid.offset(0);
EXPECT_NEAR(ellipsoid.offset(1), offset_true(1), 0.01f) << "offset Y: " << ellipsoid.offset(1);
EXPECT_NEAR(ellipsoid.offset(2), offset_true(2), 0.01f) << "offset Z: " << ellipsoid.offset(2);
EXPECT_NEAR(ellipsoid.diag(0), scale_true(0), 0.01f) << "scale X: " << ellipsoid.diag(0);
EXPECT_NEAR(ellipsoid.diag(1), scale_true(1), 0.01f) << "scale Y: " << ellipsoid.diag(1);
EXPECT_NEAR(ellipsoid.diag(2), scale_true(2), 0.01f) << "scale Z: " << ellipsoid.diag(2);
}