mag_calibration.cpp 34.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/****************************************************************************
 *
 *   Copyright (c) 2013-2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file mag_calibration.cpp
 *
 * Magnetometer calibration routine
 */

#include "mag_calibration.h"
#include "commander_helper.h"
#include "calibration_routines.h"
#include "lm_fit.hpp"
#include "calibration_messages.h"
#include "factory_calibration_storage.h"

#include <px4_platform_common/defines.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/time.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_tone_alarm.h>
#include <matrix/math.hpp>
#include <lib/sensor_calibration/Magnetometer.hpp>
#include <lib/sensor_calibration/Utilities.hpp>
#include <lib/conversion/rotation.h>
#include <lib/ecl/geo_lookup/geo_mag_declination.h>
#include <lib/systemlib/mavlink_log.h>
#include <lib/parameters/param.h>
#include <lib/systemlib/err.h>
#include <uORB/Subscription.hpp>
#include <uORB/SubscriptionBlocking.hpp>
#include <uORB/SubscriptionMultiArray.hpp>
#include <uORB/topics/sensor_mag.h>
#include <uORB/topics/sensor_gyro.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/mag_worker_data.h>

using namespace matrix;
using namespace time_literals;

static constexpr char sensor_name[] {"mag"};
static constexpr int MAX_MAGS = 4;
static constexpr float MAG_SPHERE_RADIUS_DEFAULT = 0.2f;
static constexpr unsigned int calibration_total_points = 240;	///< The total points per magnetometer
static constexpr unsigned int calibraton_duration_s = 42; 	///< The total duration the routine is allowed to take

calibrate_return mag_calibrate_all(orb_advert_t *mavlink_log_pub, int32_t cal_mask);

/// Data passed to calibration worker routine
struct mag_worker_data_t {
	orb_advert_t	*mavlink_log_pub;
	orb_advert_t	mag_worker_data_pub;
	bool		append_to_existing_calibration;
	unsigned	last_mag_progress;
	unsigned	done_count;
	unsigned	calibration_sides;					///< The total number of sides
	bool		side_data_collected[detect_orientation_side_count];
	unsigned int	calibration_points_perside;
	uint64_t	calibration_interval_perside_us;
	unsigned int	calibration_counter_total[MAX_MAGS];

	float		*x[MAX_MAGS];
	float		*y[MAX_MAGS];
	float		*z[MAX_MAGS];

	calibration::Magnetometer calibration[MAX_MAGS] {};
};

int do_mag_calibration(orb_advert_t *mavlink_log_pub)
{
	calibration_log_info(mavlink_log_pub, CAL_QGC_STARTED_MSG, sensor_name);

	int result = PX4_OK;

	// Collect: As defined by configuration
	// start with a full mask, all six bits set
	int32_t cal_mask = (1 << 6) - 1;
	param_get(param_find("CAL_MAG_SIDES"), &cal_mask);

	// Calibrate all mags at the same time
	if (result == PX4_OK) {
		switch (mag_calibrate_all(mavlink_log_pub, cal_mask)) {
		case calibrate_return_cancelled:
			// Cancel message already displayed, we're done here
			result = PX4_ERROR;
			break;

		case calibrate_return_ok:
			/* if there is a any preflight-check system response, let the barrage of messages through */
			px4_usleep(200000);

			calibration_log_info(mavlink_log_pub, CAL_QGC_PROGRESS_MSG, 100);
			px4_usleep(20000);
			calibration_log_info(mavlink_log_pub, CAL_QGC_DONE_MSG, sensor_name);
			px4_usleep(20000);
			break;

		default:
			calibration_log_critical(mavlink_log_pub, CAL_QGC_FAILED_MSG, sensor_name);
			px4_usleep(20000);
			break;
		}
	}

	/* give this message enough time to propagate */
	px4_usleep(600000);

	return result;
}

static bool reject_sample(float sx, float sy, float sz, float x[], float y[], float z[], unsigned count,
			  unsigned max_count, float mag_sphere_radius)
{
	float min_sample_dist = fabsf(5.4f * mag_sphere_radius / sqrtf(max_count)) / 3.0f;

	for (size_t i = 0; i < count; i++) {
		float dx = sx - x[i];
		float dy = sy - y[i];
		float dz = sz - z[i];
		float dist = sqrtf(dx * dx + dy * dy + dz * dz);

		if (dist < min_sample_dist) {
			PX4_DEBUG("rejected X: %.3f Y: %.3f Z: %.3f (%.3f < %.3f) (%d/%d) ", (double)sx, (double)sy, (double)sz, (double)dist,
				  (double)min_sample_dist, count, max_count);

			return true;
		}
	}

	return false;
}

static unsigned progress_percentage(mag_worker_data_t *worker_data)
{
	return 100 * ((float)worker_data->done_count) / worker_data->calibration_sides;
}

// Returns calibrate_return_error if any parameter is not finite
// Logs if parameters are out of range
static calibrate_return check_calibration_result(float offset_x, float offset_y, float offset_z,
		float sphere_radius,
		float diag_x, float diag_y, float diag_z,
		float offdiag_x, float offdiag_y, float offdiag_z,
		orb_advert_t *mavlink_log_pub, uint8_t cur_mag)
{
	float must_be_finite[] = {offset_x, offset_y, offset_z,
				  sphere_radius,
				  diag_x, diag_y, diag_z,
				  offdiag_x, offdiag_y, offdiag_z
				 };

	float should_be_not_huge[] = {offset_x, offset_y, offset_z};
	float should_be_positive[] = {sphere_radius, diag_x, diag_y, diag_z};

	// Make sure every parameter is finite
	const int num_finite = sizeof(must_be_finite) / sizeof(*must_be_finite);

	for (unsigned i = 0; i < num_finite; ++i) {
		if (!PX4_ISFINITE(must_be_finite[i])) {
			calibration_log_emergency(mavlink_log_pub, "Retry calibration (sphere NaN, %u)", cur_mag);
			return calibrate_return_error;
		}
	}

	// earth field between 0.25 and 0.65 Gauss
	if (sphere_radius < 0.2f || sphere_radius >= 0.7f) {
		calibration_log_emergency(mavlink_log_pub, "Retry calibration (mag %u sphere radius invalid %.3f)", cur_mag,
					  (double)sphere_radius);
		return calibrate_return_error;
	}

	// Notify if a parameter which should be positive is non-positive
	const int num_positive = sizeof(should_be_positive) / sizeof(*should_be_positive);

	for (unsigned i = 0; i < num_positive; ++i) {
		if (should_be_positive[i] <= 0.0f) {
			calibration_log_emergency(mavlink_log_pub, "Retry calibration (mag %u with non-positive scale)", cur_mag);
			return calibrate_return_error;
		}
	}

	// Notify if offsets are too large
	const int num_not_huge = sizeof(should_be_not_huge) / sizeof(*should_be_not_huge);

	for (unsigned i = 0; i < num_not_huge; ++i) {
		// maximum measurement range is ~1.9 Ga, the earth field is ~0.6 Ga,
		//  so an offset larger than ~1.3 Ga means the mag will saturate in some directions.
		static constexpr float MAG_MAX_OFFSET_LEN = 1.3f;

		if (fabsf(should_be_not_huge[i]) > MAG_MAX_OFFSET_LEN) {
			calibration_log_critical(mavlink_log_pub, "Warning: mag %u with large offsets", cur_mag);
			break;
		}
	}

	return calibrate_return_ok;
}

static float get_sphere_radius()
{
	// if GPS is available use real field intensity from world magnetic model
	uORB::SubscriptionMultiArray<vehicle_gps_position_s, 3> gps_subs{ORB_ID::vehicle_gps_position};

	for (auto &gps_sub : gps_subs) {
		vehicle_gps_position_s gps;

		if (gps_sub.copy(&gps)) {
			if (hrt_elapsed_time(&gps.timestamp) < 100_s && (gps.fix_type >= 2) && (gps.eph < 1000)) {
				const double lat = gps.lat / 1.e7;
				const double lon = gps.lon / 1.e7;

				// magnetic field data returned by the geo library using the current GPS position
				return get_mag_strength_gauss(lat, lon);
			}
		}
	}

	return MAG_SPHERE_RADIUS_DEFAULT;
}

static calibrate_return mag_calibration_worker(detect_orientation_return orientation, void *data)
{
	const hrt_abstime calibration_started = hrt_absolute_time();
	calibrate_return result = calibrate_return_ok;

	mag_worker_data_t *worker_data = (mag_worker_data_t *)(data);

	float mag_sphere_radius = get_sphere_radius();

	// notify user to start rotating
	set_tune(tune_control_s::TUNE_ID_SINGLE_BEEP);

	calibration_log_info(worker_data->mavlink_log_pub, "[cal] Rotate vehicle");

	/*
	 * Detect if the system is rotating.
	 *
	 * We're detecting this as a general rotation on any axis, not necessary on the one we
	 * asked the user for. This is because we really just need two roughly orthogonal axes
	 * for a good result, so we're not constraining the user more than we have to.
	 */

	const hrt_abstime detection_deadline = hrt_absolute_time() + worker_data->calibration_interval_perside_us * 5;
	hrt_abstime last_gyro = 0;
	float gyro_x_integral = 0.0f;
	float gyro_y_integral = 0.0f;
	float gyro_z_integral = 0.0f;

	static constexpr float gyro_int_thresh_rad = 0.5f;

	uORB::SubscriptionBlocking<sensor_gyro_s> gyro_sub{ORB_ID(sensor_gyro)};

	while (fabsf(gyro_x_integral) < gyro_int_thresh_rad &&
	       fabsf(gyro_y_integral) < gyro_int_thresh_rad &&
	       fabsf(gyro_z_integral) < gyro_int_thresh_rad) {

		/* abort on request */
		if (calibrate_cancel_check(worker_data->mavlink_log_pub, calibration_started)) {
			result = calibrate_return_cancelled;
			return result;
		}

		/* abort with timeout */
		if (hrt_absolute_time() > detection_deadline) {
			result = calibrate_return_error;
			PX4_ERR("gyro int: %8.4f, %8.4f, %8.4f", (double)gyro_x_integral, (double)gyro_y_integral, (double)gyro_z_integral);
			calibration_log_critical(worker_data->mavlink_log_pub, "Failed: This calibration requires rotation.");
			break;
		}

		/* Wait clocking for new data on all gyro */
		sensor_gyro_s gyro;

		if (gyro_sub.updateBlocking(gyro, 1000_ms)) {

			/* ensure we have a valid first timestamp */
			if (last_gyro > 0) {

				/* integrate */
				float delta_t = (gyro.timestamp - last_gyro) / 1e6f;
				gyro_x_integral += gyro.x * delta_t;
				gyro_y_integral += gyro.y * delta_t;
				gyro_z_integral += gyro.z * delta_t;
			}

			last_gyro = gyro.timestamp;
		}
	}

	uORB::SubscriptionBlocking<sensor_mag_s> mag_sub[MAX_MAGS] {
		{ORB_ID(sensor_mag), 0, 0},
		{ORB_ID(sensor_mag), 0, 1},
		{ORB_ID(sensor_mag), 0, 2},
		{ORB_ID(sensor_mag), 0, 3},
	};

	uint64_t calibration_deadline = hrt_absolute_time() + worker_data->calibration_interval_perside_us;
	unsigned poll_errcount = 0;
	unsigned calibration_counter_side = 0;

	while (hrt_absolute_time() < calibration_deadline &&
	       calibration_counter_side < worker_data->calibration_points_perside) {

		if (calibrate_cancel_check(worker_data->mavlink_log_pub, calibration_started)) {
			result = calibrate_return_cancelled;
			break;
		}

		if (mag_sub[0].updatedBlocking(1000_ms)) {
			bool rejected = false;
			Vector3f new_samples[MAX_MAGS] {};

			for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
				if (worker_data->calibration[cur_mag].device_id() != 0) {
					bool updated = false;
					sensor_mag_s mag;

					while (mag_sub[cur_mag].update(&mag)) {
						if (worker_data->append_to_existing_calibration) {
							// keep and update the existing calibration when we are not doing a full 6-axis calibration
							const Matrix3f &scale = worker_data->calibration[cur_mag].scale();
							const Vector3f &offset = worker_data->calibration[cur_mag].offset();

							const Vector3f m{scale *(Vector3f{mag.x, mag.y, mag.z} - offset)};

							mag.x = m(0);
							mag.y = m(1);
							mag.z = m(2);
						}

						// Check if this measurement is good to go in
						bool reject = reject_sample(mag.x, mag.y, mag.z,
									    worker_data->x[cur_mag], worker_data->y[cur_mag], worker_data->z[cur_mag],
									    worker_data->calibration_counter_total[cur_mag],
									    worker_data->calibration_sides * worker_data->calibration_points_perside,
									    mag_sphere_radius);

						if (!reject) {
							new_samples[cur_mag] = Vector3f{mag.x, mag.y, mag.z};
							updated = true;
							break;
						}
					}

					// require an update for all valid mags
					if (!updated) {
						rejected = true;
					}
				}
			}

			// Keep calibration of all mags in lockstep
			if (!rejected) {
				for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
					if (worker_data->calibration[cur_mag].device_id() != 0) {
						worker_data->x[cur_mag][worker_data->calibration_counter_total[cur_mag]] = new_samples[cur_mag](0);
						worker_data->y[cur_mag][worker_data->calibration_counter_total[cur_mag]] = new_samples[cur_mag](1);
						worker_data->z[cur_mag][worker_data->calibration_counter_total[cur_mag]] = new_samples[cur_mag](2);
						worker_data->calibration_counter_total[cur_mag]++;
					}
				}

				hrt_abstime now = hrt_absolute_time();
				mag_worker_data_s status;
				status.timestamp = now;
				status.timestamp_sample = now;
				status.done_count = worker_data->done_count;
				status.calibration_points_perside = worker_data->calibration_points_perside;
				status.calibration_interval_perside_us = worker_data->calibration_interval_perside_us;

				for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
					status.calibration_counter_total[cur_mag] = worker_data->calibration_counter_total[cur_mag];
					status.side_data_collected[cur_mag] = worker_data->side_data_collected[cur_mag];

					if (worker_data->calibration[cur_mag].device_id() != 0) {
						const unsigned int sample = worker_data->calibration_counter_total[cur_mag] - 1;
						status.x[cur_mag] = worker_data->x[cur_mag][sample];
						status.y[cur_mag] = worker_data->y[cur_mag][sample];
						status.z[cur_mag] = worker_data->z[cur_mag][sample];

					} else {
						status.x[cur_mag] = 0.f;
						status.y[cur_mag] = 0.f;
						status.z[cur_mag] = 0.f;
					}
				}

				if (worker_data->mag_worker_data_pub == nullptr) {
					worker_data->mag_worker_data_pub = orb_advertise(ORB_ID(mag_worker_data), &status);

				} else {
					orb_publish(ORB_ID(mag_worker_data), worker_data->mag_worker_data_pub, &status);
				}

				calibration_counter_side++;

				unsigned new_progress = progress_percentage(worker_data) +
							(unsigned)((100 / worker_data->calibration_sides) * ((float)calibration_counter_side / (float)
									worker_data->calibration_points_perside));

				if (new_progress - worker_data->last_mag_progress > 0) {
					// Progress indicator for side
					calibration_log_info(worker_data->mavlink_log_pub,
							     "[cal] %s side calibration: progress <%u>",
							     detect_orientation_str(orientation), new_progress);
					px4_usleep(10000);

					worker_data->last_mag_progress = new_progress;
				}
			}

			PX4_DEBUG("side counter %d / %d", calibration_counter_side, worker_data->calibration_points_perside);

		} else {
			poll_errcount++;
		}

		if (poll_errcount > worker_data->calibration_points_perside * 3) {
			result = calibrate_return_error;
			calibration_log_info(worker_data->mavlink_log_pub, CAL_ERROR_SENSOR_MSG);
			break;
		}
	}

	if (result == calibrate_return_ok) {
		calibration_log_info(worker_data->mavlink_log_pub, "[cal] %s side done, rotate to a different side",
				     detect_orientation_str(orientation));

		worker_data->done_count++;
		px4_usleep(20000);
		calibration_log_info(worker_data->mavlink_log_pub, CAL_QGC_PROGRESS_MSG, progress_percentage(worker_data));
	}

	return result;
}

calibrate_return mag_calibrate_all(orb_advert_t *mavlink_log_pub, int32_t cal_mask)
{
	calibrate_return result = calibrate_return_ok;

	mag_worker_data_t worker_data{};

	worker_data.mag_worker_data_pub = nullptr;

	// keep and update the existing calibration when we are not doing a full 6-axis calibration
	worker_data.append_to_existing_calibration = cal_mask < ((1 << 6) - 1);
	worker_data.mavlink_log_pub = mavlink_log_pub;
	worker_data.last_mag_progress = 0;
	worker_data.calibration_sides = 0;
	worker_data.done_count = 0;
	worker_data.calibration_points_perside = calibration_total_points / detect_orientation_side_count;
	worker_data.calibration_interval_perside_us = (calibraton_duration_s / detect_orientation_side_count) * 1000 * 1000;

	for (unsigned i = 0; i < (sizeof(worker_data.side_data_collected) / sizeof(worker_data.side_data_collected[0])); i++) {

		if ((cal_mask & (1 << i)) > 0) {
			// mark as missing
			worker_data.side_data_collected[i] = false;
			worker_data.calibration_sides++;

		} else {
			// mark as completed from the beginning
			worker_data.side_data_collected[i] = true;

			calibration_log_info(mavlink_log_pub,
					     "[cal] %s side done, rotate to a different side",
					     detect_orientation_str(static_cast<enum detect_orientation_return>(i)));
			px4_usleep(100000);
		}
	}

	for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
		// Initialize to no memory allocated
		worker_data.x[cur_mag] = nullptr;
		worker_data.y[cur_mag] = nullptr;
		worker_data.z[cur_mag] = nullptr;
		worker_data.calibration_counter_total[cur_mag] = 0;
	}

	const unsigned int calibration_points_maxcount = worker_data.calibration_sides * worker_data.calibration_points_perside;

	for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {

		uORB::SubscriptionData<sensor_mag_s> mag_sub{ORB_ID(sensor_mag), cur_mag};

		if (mag_sub.advertised() && (mag_sub.get().device_id != 0) && (mag_sub.get().timestamp > 0)) {
			worker_data.calibration[cur_mag].set_device_id(mag_sub.get().device_id, mag_sub.get().is_external);
		}

		// reset calibration index to match uORB numbering
		worker_data.calibration[cur_mag].set_calibration_index(cur_mag);

		if (worker_data.calibration[cur_mag].device_id() != 0) {
			worker_data.x[cur_mag] = static_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
			worker_data.y[cur_mag] = static_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
			worker_data.z[cur_mag] = static_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));

			if (worker_data.x[cur_mag] == nullptr || worker_data.y[cur_mag] == nullptr || worker_data.z[cur_mag] == nullptr) {
				calibration_log_critical(mavlink_log_pub, "ERROR: out of memory");
				result = calibrate_return_error;
				break;
			}

		} else {
			break;
		}
	}

	if (result == calibrate_return_ok) {
		result = calibrate_from_orientation(mavlink_log_pub,                    // uORB handle to write output
						    worker_data.side_data_collected,    // Sides to calibrate
						    mag_calibration_worker,             // Calibration worker
						    &worker_data,			// Opaque data for calibration worked
						    true);				// true: lenient still detection
	}

	// calibration values for each mag
	Vector3f sphere[MAX_MAGS];
	Vector3f diag[MAX_MAGS];
	Vector3f offdiag[MAX_MAGS];
	float sphere_radius[MAX_MAGS];

	const float mag_sphere_radius = get_sphere_radius();

	for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
		sphere_radius[cur_mag] = mag_sphere_radius;
		sphere[cur_mag].zero();
		diag[cur_mag] = Vector3f{1.f, 1.f, 1.f};
		offdiag[cur_mag].zero();
	}

	if (result == calibrate_return_ok) {
		// Sphere fit the data to get calibration values
		for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
			if (worker_data.calibration[cur_mag].device_id() != 0) {
				// Mag in this slot is available and we should have values for it to calibrate

				// Estimate only the offsets if two-sided calibration is selected, as the problem is not constrained
				// enough to reliably estimate both scales and offsets with 2 sides only (even if the existing calibration
				// is already close)
				bool sphere_fit_only = worker_data.calibration_sides <= 2;

				sphere_params sphere_data;
				sphere_data.radius = sphere_radius[cur_mag];
				sphere_data.offset = matrix::Vector3f(sphere[cur_mag](0), sphere[cur_mag](1), sphere[cur_mag](2));
				sphere_data.diag = matrix::Vector3f(diag[cur_mag](0), diag[cur_mag](1), diag[cur_mag](2));
				sphere_data.offdiag = matrix::Vector3f(offdiag[cur_mag](0), offdiag[cur_mag](1), offdiag[cur_mag](2));

				bool sphere_fit_success = false;
				bool ellipsoid_fit_success = false;
				int ret = lm_mag_fit(worker_data.x[cur_mag], worker_data.y[cur_mag], worker_data.z[cur_mag],
						     worker_data.calibration_counter_total[cur_mag], sphere_data, false);

				if (ret == PX4_OK) {
					sphere_fit_success = true;
					PX4_INFO("Mag: %d sphere radius: %.4f", cur_mag, (double)sphere_data.radius);

					if (!sphere_fit_only) {
						int ellipsoid_ret = lm_mag_fit(worker_data.x[cur_mag], worker_data.y[cur_mag], worker_data.z[cur_mag],
									       worker_data.calibration_counter_total[cur_mag], sphere_data, true);

						if (ellipsoid_ret == PX4_OK) {
							ellipsoid_fit_success  = true;
						}
					}
				}

				sphere_radius[cur_mag] = sphere_data.radius;

				for (int i = 0; i < 3; i++) {
					sphere[cur_mag](i) = sphere_data.offset(i);
					diag[cur_mag](i) = sphere_data.diag(i);
					offdiag[cur_mag](i) = sphere_data.offdiag(i);
				}

				if (!sphere_fit_success && !ellipsoid_fit_success) {
					calibration_log_emergency(mavlink_log_pub, "Retry calibration (unable to fit mag %u)", cur_mag);
					result = calibrate_return_error;
					break;
				}

				result = check_calibration_result(sphere[cur_mag](0), sphere[cur_mag](1), sphere[cur_mag](2),
								  sphere_radius[cur_mag],
								  diag[cur_mag](0), diag[cur_mag](1), diag[cur_mag](2),
								  offdiag[cur_mag](0), offdiag[cur_mag](1), offdiag[cur_mag](2),
								  mavlink_log_pub, cur_mag);

				if (result == calibrate_return_error) {
					break;
				}
			}
		}
	}


#if 0

	// DO NOT REMOVE! Critical validation data!
	if (result == calibrate_return_ok) {
		// Print uncalibrated data points
		for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
			if (worker_data.calibration_counter_total[cur_mag] == 0) {
				continue;
			}

			printf("MAG %u with %u samples:\n", cur_mag, worker_data.calibration_counter_total[cur_mag]);
			printf("RAW -> CALIBRATED\n");

			float scale_data[9] {
				diag[cur_mag](0),    offdiag[cur_mag](0), offdiag[cur_mag](1),
				offdiag[cur_mag](0),    diag[cur_mag](1), offdiag[cur_mag](2),
				offdiag[cur_mag](1), offdiag[cur_mag](2),    diag[cur_mag](2)
			};

			const Matrix3f scale{scale_data};
			const Vector3f &offset = sphere[cur_mag];

			for (size_t i = 0; i < worker_data.calibration_counter_total[cur_mag]; i++) {
				float x = worker_data.x[cur_mag][i];
				float y = worker_data.y[cur_mag][i];
				float z = worker_data.z[cur_mag][i];

				// apply calibration
				const Vector3f cal{scale *(Vector3f{x, y, z} - offset)};

				printf("[%.3f, %.3f, %.3f] -> [%.3f, %.3f, %.3f]\n",
				       (double)x, (double)y, (double)z,
				       (double)cal(0), (double)cal(1), (double)cal(2));
			}

			printf("SPHERE RADIUS: %8.4f\n", (double)sphere_radius[cur_mag]);
		}
	}

#endif // DO NOT REMOVE! Critical validation data!


	// Attempt to automatically determine external mag rotations
	if (result == calibrate_return_ok) {
		int32_t param_cal_mag_rot_auto = 0;
		param_get(param_find("CAL_MAG_ROT_AUTO"), &param_cal_mag_rot_auto);

		if ((worker_data.calibration_sides >= 3) && (param_cal_mag_rot_auto == 1)) {

			// find first internal mag to use as reference
			int internal_index = -1;

			for (unsigned cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
				if (!worker_data.calibration[cur_mag].external() && (worker_data.calibration[cur_mag].device_id() != 0)) {
					internal_index = cur_mag;
					break;
				}
			}

			// only proceed if there's a valid internal
			if (internal_index >= 0) {

				const Dcmf board_rotation = calibration::GetBoardRotationMatrix();

				// apply new calibrations to all raw sensor data before comparison
				for (unsigned cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
					if (worker_data.calibration[cur_mag].device_id() != 0) {

						float scale_data[9] {
							diag[cur_mag](0),    offdiag[cur_mag](0), offdiag[cur_mag](1),
							offdiag[cur_mag](0),    diag[cur_mag](1), offdiag[cur_mag](2),
							offdiag[cur_mag](1), offdiag[cur_mag](2),    diag[cur_mag](2)
						};
						const Matrix3f scale{scale_data};

						const Vector3f &offset{sphere[cur_mag]};

						for (unsigned i = 0; i < worker_data.calibration_counter_total[cur_mag]; i++) {

							const Vector3f sample{worker_data.x[cur_mag][i], worker_data.y[cur_mag][i], worker_data.z[cur_mag][i]};

							// apply calibration
							Vector3f m{scale *(sample - offset)};

							if (!worker_data.calibration[cur_mag].external()) {
								// rotate internal mag data to board
								m = board_rotation * m;
							}

							// store back in worker_data
							worker_data.x[cur_mag][i] = m(0);
							worker_data.y[cur_mag][i] = m(1);
							worker_data.z[cur_mag][i] = m(2);
						}
					}
				}

				// external mags try all rotations and compute mean square error (MSE) compared with first internal mag
				for (int cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
					if ((worker_data.calibration[cur_mag].device_id() != 0) && (cur_mag != internal_index)) {

						const int last_sample_index = math::min(worker_data.calibration_counter_total[internal_index],
											worker_data.calibration_counter_total[cur_mag]);

						float MSE[ROTATION_MAX] {}; // mean square error for each rotation

						float min_mse = FLT_MAX;
						Rotation best_rotation = ROTATION_NONE;

						for (int r = ROTATION_NONE; r < ROTATION_MAX; r++) {

							switch (r) {
							case ROTATION_ROLL_90_PITCH_68_YAW_293: // skip

							// FALLTHROUGH
							case ROTATION_PITCH_180_YAW_90:  // skip 26, same as 14 ROTATION_ROLL_180_YAW_270

							// FALLTHROUGH
							case ROTATION_PITCH_180_YAW_270: // skip 27, same as 10 ROTATION_ROLL_180_YAW_90
								MSE[r] = FLT_MAX;
								break;

							default:
								float diff_sum = 0.f;

								for (int i = 0; i < last_sample_index; i++) {
									float x = worker_data.x[cur_mag][i];
									float y = worker_data.y[cur_mag][i];
									float z = worker_data.z[cur_mag][i];
									rotate_3f((enum Rotation)r, x, y, z);

									Vector3f diff = Vector3f{x, y, z} - Vector3f{worker_data.x[internal_index][i], worker_data.y[internal_index][i], worker_data.z[internal_index][i]};

									diff_sum += diff.norm_squared();
								}

								// compute mean squared error
								MSE[r] = diff_sum / last_sample_index;

								if (MSE[r] < min_mse) {
									min_mse = MSE[r];
									best_rotation = (Rotation)r;
								}

								break;
							}
						}


						// Check that the best rotation is at least twice as good as the next best
						bool smallest_check_passed = true;

						for (int r = ROTATION_NONE; r < ROTATION_MAX; r++) {
							if (r != best_rotation) {
								if (MSE[r] < (min_mse * 2.f)) {
									smallest_check_passed = false;
								}
							}
						}


						// Check that the average error across all samples (relative to internal mag) is less than the minimum earth field (~0.25 Gauss)
						const float mag_error_gs = sqrt(min_mse / last_sample_index);
						bool total_error_check_passed = (mag_error_gs < 0.25f);

#if defined(DEBUG_BUILD)
						bool print_all_mse = true;
#else
						bool print_all_mse = false;
#endif // DEBUG_BUILD

						if (worker_data.calibration[cur_mag].external()) {

							switch (worker_data.calibration[cur_mag].rotation_enum()) {
							case ROTATION_ROLL_90_PITCH_68_YAW_293:
								PX4_INFO("[cal] External Mag: %d (%d), keeping manually configured rotation %d", cur_mag,
									 worker_data.calibration[cur_mag].device_id(), worker_data.calibration[cur_mag].rotation_enum());
								continue;

							default:
								break;
							}

							if (smallest_check_passed && total_error_check_passed) {
								if (best_rotation != worker_data.calibration[cur_mag].rotation_enum()) {
									calibration_log_info(mavlink_log_pub, "[cal] External Mag: %d (%d), determined rotation: %d", cur_mag,
											     worker_data.calibration[cur_mag].device_id(), best_rotation);

									worker_data.calibration[cur_mag].set_rotation(best_rotation);

								} else {
									PX4_INFO("[cal] External Mag: %d (%d), no rotation change: %d", cur_mag,
										 worker_data.calibration[cur_mag].device_id(), best_rotation);
								}

							} else {
								PX4_ERR("External Mag: %d (%d), determining rotation failed", cur_mag, worker_data.calibration[cur_mag].device_id());
								print_all_mse = true;
							}

						} else {
							// non-primary internal mags, warn if there seems to be a rotation relative to the first primary (internal_index)
							if (best_rotation != ROTATION_NONE) {
								calibration_log_critical(mavlink_log_pub, "[cal] Internal Mag: %d (%d) rotation %d relative to primary %d (%d)",
											 cur_mag, worker_data.calibration[cur_mag].device_id(), best_rotation,
											 internal_index, worker_data.calibration[internal_index].device_id());

								print_all_mse = true;
							}
						}

						if (print_all_mse) {
							for (int r = ROTATION_NONE; r < ROTATION_MAX; r++) {
								PX4_ERR("%s Mag: %d (%d), rotation: %d, MSE: %.3f",
									worker_data.calibration[cur_mag].external() ? "External" : "Internal",
									cur_mag, worker_data.calibration[cur_mag].device_id(), r, (double)MSE[r]);
							}
						}
					}
				}
			}
		}
	}


	// Data points are no longer needed
	for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
		free(worker_data.x[cur_mag]);
		free(worker_data.y[cur_mag]);
		free(worker_data.z[cur_mag]);
	}

	FactoryCalibrationStorage factory_storage;

	if (result == calibrate_return_ok && factory_storage.open() != PX4_OK) {
		calibration_log_critical(mavlink_log_pub, "ERROR: cannot open calibration storage");
		result = calibrate_return_error;
	}

	if (result == calibrate_return_ok) {
		bool param_save = false;
		bool failed = true;

		for (unsigned cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {

			auto &current_cal = worker_data.calibration[cur_mag];

			if (current_cal.device_id() != 0) {
				if (worker_data.append_to_existing_calibration) {
					// Update calibration
					// The formula for applying the calibration is:
					//   mag_value = (mag_readout - (offset_existing + offset_new/scale_existing)) * scale_existing
					Vector3f offset = current_cal.offset() + sphere[cur_mag].edivide(current_cal.scale().diag());
					current_cal.set_offset(offset);

				} else {
					current_cal.set_offset(sphere[cur_mag]);
					current_cal.set_scale(diag[cur_mag]);
					current_cal.set_offdiagonal(offdiag[cur_mag]);
				}

				current_cal.PrintStatus();

			} else {
				current_cal.Reset();
			}

			current_cal.set_calibration_index(cur_mag);

			if (current_cal.ParametersSave()) {
				param_save = true;
				failed = false;

			} else {
				failed = true;
				calibration_log_critical(mavlink_log_pub, "calibration save failed");
				break;
			}
		}

		if (!failed && factory_storage.store() != PX4_OK) {
			failed = true;
		}

		if (param_save) {
			param_notify_changes();
		}

		if (failed) {
			result = calibrate_return_error;
		}
	}

	return result;
}

int do_mag_calibration_quick(orb_advert_t *mavlink_log_pub, float heading_radians, float latitude, float longitude)
{
	// magnetometer quick calibration
	//  if GPS available use world magnetic model to zero mag offsets
	bool mag_earth_available = false;

	if (PX4_ISFINITE(latitude) && PX4_ISFINITE(longitude)) {
		mag_earth_available = true;

	} else {
		uORB::Subscription vehicle_gps_position_sub{ORB_ID(vehicle_gps_position)};
		vehicle_gps_position_s gps;

		if (vehicle_gps_position_sub.copy(&gps)) {
			if ((gps.timestamp != 0) && (gps.eph < 1000)) {
				latitude = gps.lat / 1.e7f;
				longitude = gps.lon / 1.e7f;
				mag_earth_available = true;
			}
		}
	}

	if (!mag_earth_available) {
		calibration_log_critical(mavlink_log_pub, "GPS required for mag quick cal");
		return PX4_ERROR;

	} else {

		// magnetic field data returned by the geo library using the current GPS position
		const float mag_declination_gps = get_mag_declination_radians(latitude, longitude);
		const float mag_inclination_gps = get_mag_inclination_radians(latitude, longitude);
		const float mag_strength_gps = get_mag_strength_gauss(latitude, longitude);

		const Vector3f mag_earth_pred = Dcmf(Eulerf(0, -mag_inclination_gps, mag_declination_gps)) * Vector3f(mag_strength_gps,
						0, 0);

		uORB::Subscription vehicle_attitude_sub{ORB_ID(vehicle_attitude)};
		vehicle_attitude_s attitude{};
		vehicle_attitude_sub.copy(&attitude);

		if (hrt_elapsed_time(&attitude.timestamp) > 1_s) {
			calibration_log_critical(mavlink_log_pub, "attitude required for mag quick cal");
			return PX4_ERROR;
		}

		FactoryCalibrationStorage factory_storage;

		if (factory_storage.open() != PX4_OK) {
			calibration_log_critical(mavlink_log_pub, "ERROR: cannot open calibration storage");
			return PX4_ERROR;
		}

		calibration_log_critical(mavlink_log_pub, "Assuming vehicle is facing heading %.1f degrees",
					 (double)math::radians(heading_radians));

		matrix::Eulerf euler{matrix::Quatf{attitude.q}};
		euler(2) = heading_radians;

		const Vector3f expected_field = Dcmf(euler).transpose() * mag_earth_pred;

		bool param_save = false;
		bool failed = true;

		for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
			uORB::Subscription mag_sub{ORB_ID(sensor_mag), cur_mag};
			sensor_mag_s mag{};
			mag_sub.copy(&mag);

			if (mag_sub.advertised() && (mag.timestamp != 0)) {

				calibration::Magnetometer cal{mag.device_id, mag.is_external};

				// force calibration index to uORB index
				cal.set_calibration_index(cur_mag);

				// use any existing scale and store the offset to the expected earth field
				const Vector3f offset = Vector3f{mag.x, mag.y, mag.z} - (cal.scale().I() * cal.rotation().transpose() * expected_field);
				cal.set_offset(offset);

				// save new calibration
				if (cal.ParametersSave()) {
					cal.PrintStatus();
					param_save = true;
					failed = false;

				} else {
					failed = true;
					calibration_log_critical(mavlink_log_pub, "calibration save failed");
					break;
				}
			}
		}

		if (param_save) {
			param_notify_changes();
		}

		if (!failed && factory_storage.store() != PX4_OK) {
			failed = true;
		}

		if (!failed) {
			calibration_log_info(mavlink_log_pub, "Mag quick calibration finished");
			return PX4_OK;
		}
	}

	calibration_log_critical(mavlink_log_pub, CAL_QGC_FAILED_MSG, sensor_name);
	return PX4_ERROR;
}