optflow_fusion.cpp
16.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file vel_pos_fusion.cpp
* Function for fusing gps and baro measurements/
* equations generated using EKF/python/ekf_derivation/main.py
*
* @author Paul Riseborough <p_riseborough@live.com.au>
* @author Siddharth Bharat Purohit <siddharthbharatpurohit@gmail.com>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <float.h>
#include "utils.hpp"
void Ekf::fuseOptFlow()
{
float gndclearance = fmaxf(_params.rng_gnd_clearance, 0.1f);
// get latest estimated orientation
const float q0 = _state.quat_nominal(0);
const float q1 = _state.quat_nominal(1);
const float q2 = _state.quat_nominal(2);
const float q3 = _state.quat_nominal(3);
// get latest velocity in earth frame
const float vn = _state.vel(0);
const float ve = _state.vel(1);
const float vd = _state.vel(2);
// calculate the optical flow observation variance
const float R_LOS = calcOptFlowMeasVar();
// get rotation matrix from earth to body
const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal);
// calculate the sensor position relative to the IMU
const Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body;
// calculate the velocity of the sensor relative to the imu in body frame
// Note: _flow_sample_delayed.gyro_xyz is the negative of the body angular velocity, thus use minus sign
const Vector3f vel_rel_imu_body = Vector3f(-_flow_sample_delayed.gyro_xyz / _flow_sample_delayed.dt) % pos_offset_body;
// calculate the velocity of the sensor in the earth frame
const Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body;
// rotate into body frame
const Vector3f vel_body = earth_to_body * vel_rel_earth;
// height above ground of the IMU
float heightAboveGndEst = _terrain_vpos - _state.pos(2);
// calculate the sensor position relative to the IMU in earth frame
const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
// calculate the height above the ground of the optical flow camera. Since earth frame is NED
// a positive offset in earth frame leads to a smaller height above the ground.
heightAboveGndEst -= pos_offset_earth(2);
// constrain minimum height above ground
heightAboveGndEst = math::max(heightAboveGndEst, gndclearance);
// calculate range from focal point to centre of image
const float range = heightAboveGndEst / earth_to_body(2, 2); // absolute distance to the frame region in view
// calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed
// correct for gyro bias errors in the data used to do the motion compensation
// Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis.
const Vector2f opt_flow_rate = _flow_compensated_XY_rad / _flow_sample_delayed.dt + Vector2f(_flow_gyro_bias);
// compute the velocities in body and local frames from corrected optical flow measurement
// for logging only
_flow_vel_body(0) = -opt_flow_rate(1) * range;
_flow_vel_body(1) = opt_flow_rate(0) * range;
_flow_vel_ne = Vector2f(_R_to_earth * Vector3f(_flow_vel_body(0), _flow_vel_body(1), 0.f));
_flow_innov(0) = vel_body(1) / range - opt_flow_rate(0); // flow around the X axis
_flow_innov(1) = -vel_body(0) / range - opt_flow_rate(1); // flow around the Y axis
// The derivation allows for an arbitrary body to flow sensor frame rotation which is
// currently not supported by the EKF, so assume sensor frame is aligned with the
// body frame
const Dcmf Tbs = matrix::eye<float, 3>();
// Sub Expressions
const float HK0 = -Tbs(1,0)*q2 + Tbs(1,1)*q1 + Tbs(1,2)*q0;
const float HK1 = Tbs(1,0)*q3 + Tbs(1,1)*q0 - Tbs(1,2)*q1;
const float HK2 = Tbs(1,0)*q0 - Tbs(1,1)*q3 + Tbs(1,2)*q2;
const float HK3 = HK0*vd + HK1*ve + HK2*vn;
const float HK4 = 1.0F/range;
const float HK5 = 2*HK4;
const float HK6 = Tbs(1,0)*q1 + Tbs(1,1)*q2 + Tbs(1,2)*q3;
const float HK7 = -HK0*ve + HK1*vd + HK6*vn;
const float HK8 = HK0*vn - HK2*vd + HK6*ve;
const float HK9 = -HK1*vn + HK2*ve + HK6*vd;
const float HK10 = q0*q2;
const float HK11 = q1*q3;
const float HK12 = HK10 + HK11;
const float HK13 = 2*Tbs(1,2);
const float HK14 = q0*q3;
const float HK15 = q1*q2;
const float HK16 = HK14 - HK15;
const float HK17 = 2*Tbs(1,1);
const float HK18 = ecl::powf(q1, 2);
const float HK19 = ecl::powf(q2, 2);
const float HK20 = -HK19;
const float HK21 = ecl::powf(q0, 2);
const float HK22 = ecl::powf(q3, 2);
const float HK23 = HK21 - HK22;
const float HK24 = HK18 + HK20 + HK23;
const float HK25 = HK12*HK13 - HK16*HK17 + HK24*Tbs(1,0);
const float HK26 = HK14 + HK15;
const float HK27 = 2*Tbs(1,0);
const float HK28 = q0*q1;
const float HK29 = q2*q3;
const float HK30 = HK28 - HK29;
const float HK31 = -HK18;
const float HK32 = HK19 + HK23 + HK31;
const float HK33 = -HK13*HK30 + HK26*HK27 + HK32*Tbs(1,1);
const float HK34 = HK28 + HK29;
const float HK35 = HK10 - HK11;
const float HK36 = HK20 + HK21 + HK22 + HK31;
const float HK37 = HK17*HK34 - HK27*HK35 + HK36*Tbs(1,2);
const float HK38 = 2*HK3;
const float HK39 = 2*HK7;
const float HK40 = 2*HK8;
const float HK41 = 2*HK9;
const float HK42 = HK25*P(0,4) + HK33*P(0,5) + HK37*P(0,6) + HK38*P(0,0) + HK39*P(0,1) + HK40*P(0,2) + HK41*P(0,3);
const float HK43 = ecl::powf(range, -2);
const float HK44 = HK25*P(4,6) + HK33*P(5,6) + HK37*P(6,6) + HK38*P(0,6) + HK39*P(1,6) + HK40*P(2,6) + HK41*P(3,6);
const float HK45 = HK25*P(4,5) + HK33*P(5,5) + HK37*P(5,6) + HK38*P(0,5) + HK39*P(1,5) + HK40*P(2,5) + HK41*P(3,5);
const float HK46 = HK25*P(4,4) + HK33*P(4,5) + HK37*P(4,6) + HK38*P(0,4) + HK39*P(1,4) + HK40*P(2,4) + HK41*P(3,4);
const float HK47 = HK25*P(2,4) + HK33*P(2,5) + HK37*P(2,6) + HK38*P(0,2) + HK39*P(1,2) + HK40*P(2,2) + HK41*P(2,3);
const float HK48 = HK25*P(3,4) + HK33*P(3,5) + HK37*P(3,6) + HK38*P(0,3) + HK39*P(1,3) + HK40*P(2,3) + HK41*P(3,3);
const float HK49 = HK25*P(1,4) + HK33*P(1,5) + HK37*P(1,6) + HK38*P(0,1) + HK39*P(1,1) + HK40*P(1,2) + HK41*P(1,3);
// const float HK50 = HK4/(HK25*HK43*HK46 + HK33*HK43*HK45 + HK37*HK43*HK44 + HK38*HK42*HK43 + HK39*HK43*HK49 + HK40*HK43*HK47 + HK41*HK43*HK48 + R_LOS);
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
_flow_innov_var(0) = (HK25*HK43*HK46 + HK33*HK43*HK45 + HK37*HK43*HK44 + HK38*HK42*HK43 + HK39*HK43*HK49 + HK40*HK43*HK47 + HK41*HK43*HK48 + R_LOS);
if (_flow_innov_var(0) < R_LOS) {
// we need to reinitialise the covariance matrix and abort this fusion step
initialiseCovariance();
return;
}
const float HK50 = HK4/_flow_innov_var(0);
const float HK51 = Tbs(0,1)*q1;
const float HK52 = Tbs(0,2)*q0;
const float HK53 = Tbs(0,0)*q2;
const float HK54 = HK51 + HK52 - HK53;
const float HK55 = Tbs(0,0)*q3;
const float HK56 = Tbs(0,1)*q0;
const float HK57 = Tbs(0,2)*q1;
const float HK58 = HK55 + HK56 - HK57;
const float HK59 = Tbs(0,0)*q0;
const float HK60 = Tbs(0,2)*q2;
const float HK61 = Tbs(0,1)*q3;
const float HK62 = HK59 + HK60 - HK61;
const float HK63 = HK54*vd + HK58*ve + HK62*vn;
const float HK64 = Tbs(0,0)*q1 + Tbs(0,1)*q2 + Tbs(0,2)*q3;
const float HK65 = HK58*vd + HK64*vn;
const float HK66 = -HK54*ve + HK65;
const float HK67 = HK54*vn + HK64*ve;
const float HK68 = -HK62*vd + HK67;
const float HK69 = HK62*ve + HK64*vd;
const float HK70 = -HK58*vn + HK69;
const float HK71 = 2*Tbs(0,1);
const float HK72 = 2*Tbs(0,2);
const float HK73 = HK12*HK72 + HK24*Tbs(0,0);
const float HK74 = -HK16*HK71 + HK73;
const float HK75 = 2*Tbs(0,0);
const float HK76 = HK26*HK75 + HK32*Tbs(0,1);
const float HK77 = -HK30*HK72 + HK76;
const float HK78 = HK34*HK71 + HK36*Tbs(0,2);
const float HK79 = -HK35*HK75 + HK78;
const float HK80 = 2*HK63;
const float HK81 = 2*HK65 + 2*ve*(-HK51 - HK52 + HK53);
const float HK82 = 2*HK67 + 2*vd*(-HK59 - HK60 + HK61);
const float HK83 = 2*HK69 + 2*vn*(-HK55 - HK56 + HK57);
const float HK84 = HK71*(-HK14 + HK15) + HK73;
const float HK85 = HK72*(-HK28 + HK29) + HK76;
const float HK86 = HK75*(-HK10 + HK11) + HK78;
const float HK87 = HK80*P(0,0) + HK81*P(0,1) + HK82*P(0,2) + HK83*P(0,3) + HK84*P(0,4) + HK85*P(0,5) + HK86*P(0,6);
const float HK88 = HK80*P(0,6) + HK81*P(1,6) + HK82*P(2,6) + HK83*P(3,6) + HK84*P(4,6) + HK85*P(5,6) + HK86*P(6,6);
const float HK89 = HK80*P(0,5) + HK81*P(1,5) + HK82*P(2,5) + HK83*P(3,5) + HK84*P(4,5) + HK85*P(5,5) + HK86*P(5,6);
const float HK90 = HK80*P(0,4) + HK81*P(1,4) + HK82*P(2,4) + HK83*P(3,4) + HK84*P(4,4) + HK85*P(4,5) + HK86*P(4,6);
const float HK91 = HK80*P(0,2) + HK81*P(1,2) + HK82*P(2,2) + HK83*P(2,3) + HK84*P(2,4) + HK85*P(2,5) + HK86*P(2,6);
const float HK92 = 2*HK43;
const float HK93 = HK80*P(0,3) + HK81*P(1,3) + HK82*P(2,3) + HK83*P(3,3) + HK84*P(3,4) + HK85*P(3,5) + HK86*P(3,6);
const float HK94 = HK80*P(0,1) + HK81*P(1,1) + HK82*P(1,2) + HK83*P(1,3) + HK84*P(1,4) + HK85*P(1,5) + HK86*P(1,6);
// const float HK95 = HK4/(HK43*HK74*HK90 + HK43*HK77*HK89 + HK43*HK79*HK88 + HK43*HK80*HK87 + HK66*HK92*HK94 + HK68*HK91*HK92 + HK70*HK92*HK93 + R_LOS);
// calculate innovation variance for Y axis observation and protect against a badly conditioned calculation
_flow_innov_var(1) = (HK43*HK74*HK90 + HK43*HK77*HK89 + HK43*HK79*HK88 + HK43*HK80*HK87 + HK66*HK92*HK94 + HK68*HK91*HK92 + HK70*HK92*HK93 + R_LOS);
if (_flow_innov_var(1) < R_LOS) {
// we need to reinitialise the covariance matrix and abort this fusion step
initialiseCovariance();
return;
}
const float HK95 = HK4/_flow_innov_var(1);
// run the innovation consistency check and record result
bool flow_fail = false;
float test_ratio[2];
test_ratio[0] = sq(_flow_innov(0)) / (sq(math::max(_params.flow_innov_gate, 1.0f)) * _flow_innov_var(0));
test_ratio[1] = sq(_flow_innov(1)) / (sq(math::max(_params.flow_innov_gate, 1.0f)) * _flow_innov_var(1));
_optflow_test_ratio = math::max(test_ratio[0],test_ratio[1]);
for (uint8_t obs_index = 0; obs_index <= 1; obs_index++) {
if (test_ratio[obs_index] > 1.0f) {
flow_fail = true;
_innov_check_fail_status.value |= (1 << (obs_index + 10));
} else {
_innov_check_fail_status.value &= ~(1 << (obs_index + 10));
}
}
// if either axis fails we abort the fusion
if (flow_fail) {
return;
}
// fuse observation axes sequentially
SparseVector24f<0,1,2,3,4,5,6> Hfusion; // Optical flow observation Jacobians
Vector24f Kfusion; // Optical flow Kalman gains
for (uint8_t obs_index = 0; obs_index <= 1; obs_index++) {
// calculate observation Jocobians and Kalman gains
if (obs_index == 0) {
// Observation Jacobians - axis 0
Hfusion.at<0>() = HK3*HK5;
Hfusion.at<1>() = HK5*HK7;
Hfusion.at<2>() = HK5*HK8;
Hfusion.at<3>() = HK5*HK9;
Hfusion.at<4>() = HK25*HK4;
Hfusion.at<5>() = HK33*HK4;
Hfusion.at<6>() = HK37*HK4;
// Kalman gains - axis 0
Kfusion(0) = HK42*HK50;
Kfusion(1) = HK49*HK50;
Kfusion(2) = HK47*HK50;
Kfusion(3) = HK48*HK50;
Kfusion(4) = HK46*HK50;
Kfusion(5) = HK45*HK50;
Kfusion(6) = HK44*HK50;
for (unsigned row = 7; row <= 23; row++) {
Kfusion(row) = HK50*(HK25*P(4,row) + HK33*P(5,row) + HK37*P(6,row) + HK38*P(0,row) + HK39*P(1,row) + HK40*P(2,row) + HK41*P(3,row));
}
} else {
// Observation Jacobians - axis 1
Hfusion.at<0>() = -HK5*HK63;
Hfusion.at<1>() = -HK5*HK66;
Hfusion.at<2>() = -HK5*HK68;
Hfusion.at<3>() = -HK5*HK70;
Hfusion.at<4>() = -HK4*HK74;
Hfusion.at<5>() = -HK4*HK77;
Hfusion.at<6>() = -HK4*HK79;
// Kalman gains - axis 1
Kfusion(0) = -HK87*HK95;
Kfusion(1) = -HK94*HK95;
Kfusion(2) = -HK91*HK95;
Kfusion(3) = -HK93*HK95;
Kfusion(4) = -HK90*HK95;
Kfusion(5) = -HK89*HK95;
Kfusion(6) = -HK88*HK95;
for (unsigned row = 7; row <= 23; row++) {
Kfusion(row) = -HK95*(HK80*P(0,row) + HK81*P(1,row) + HK82*P(2,row) + HK83*P(3,row) + HK84*P(4,row) + HK85*P(5,row) + HK86*P(6,row));
}
}
const bool is_fused = measurementUpdate(Kfusion, Hfusion, _flow_innov(obs_index));
if (obs_index == 0) {
_fault_status.flags.bad_optflow_X = !is_fused;
} else if (obs_index == 1) {
_fault_status.flags.bad_optflow_Y = !is_fused;
}
if (is_fused) {
_time_last_of_fuse = _time_last_imu;
}
}
}
// calculate optical flow body angular rate compensation
// returns false if bias corrected body rate data is unavailable
bool Ekf::calcOptFlowBodyRateComp()
{
// reset the accumulators if the time interval is too large
if (_delta_time_of > 1.0f) {
_imu_del_ang_of.setZero();
_delta_time_of = 0.0f;
return false;
}
const bool use_flow_sensor_gyro = ISFINITE(_flow_sample_delayed.gyro_xyz(0)) && ISFINITE(_flow_sample_delayed.gyro_xyz(1)) && ISFINITE(_flow_sample_delayed.gyro_xyz(2));
if (use_flow_sensor_gyro) {
// if accumulation time differences are not excessive and accumulation time is adequate
// compare the optical flow and and navigation rate data and calculate a bias error
if ((_delta_time_of > FLT_EPSILON)
&& (_flow_sample_delayed.dt > FLT_EPSILON)
&& (fabsf(_delta_time_of - _flow_sample_delayed.dt) < 0.1f)) {
const Vector3f reference_body_rate(_imu_del_ang_of * (1.0f / _delta_time_of));
const Vector3f measured_body_rate(_flow_sample_delayed.gyro_xyz * (1.0f / _flow_sample_delayed.dt));
// calculate the bias estimate using a combined LPF and spike filter
_flow_gyro_bias = _flow_gyro_bias * 0.99f + matrix::constrain(measured_body_rate - reference_body_rate, -0.1f, 0.1f) * 0.01f;
}
} else {
// Use the EKF gyro data if optical flow sensor gyro data is not available
// for clarification of the sign see definition of flowSample and imuSample in common.h
_flow_sample_delayed.gyro_xyz = -_imu_del_ang_of;
_flow_gyro_bias.zero();
}
// reset the accumulators
_imu_del_ang_of.setZero();
_delta_time_of = 0.0f;
return true;
}
// calculate the measurement variance for the optical flow sensor (rad/sec)^2
float Ekf::calcOptFlowMeasVar()
{
// calculate the observation noise variance - scaling noise linearly across flow quality range
const float R_LOS_best = fmaxf(_params.flow_noise, 0.05f);
const float R_LOS_worst = fmaxf(_params.flow_noise_qual_min, 0.05f);
// calculate a weighting that varies between 1 when flow quality is best and 0 when flow quality is worst
float weighting = (255.0f - (float)_params.flow_qual_min);
if (weighting >= 1.0f) {
weighting = math::constrain(((float)_flow_sample_delayed.quality - (float)_params.flow_qual_min) / weighting, 0.0f,
1.0f);
} else {
weighting = 0.0f;
}
// take the weighted average of the observation noise for the best and wort flow quality
const float R_LOS = sq(R_LOS_best * weighting + R_LOS_worst * (1.0f - weighting));
return R_LOS;
}