gps_yaw_fusion.cpp
8.06 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/****************************************************************************
*
* Copyright (c) 2018 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file gps_yaw_fusion.cpp
* Definition of functions required to use yaw obtained from GPS dual antenna measurements.
* Equations generated using EKF/python/ekf_derivation/main.py
*
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <cstdlib>
void Ekf::fuseGpsYaw()
{
// assign intermediate state variables
const float &q0 = _state.quat_nominal(0);
const float &q1 = _state.quat_nominal(1);
const float &q2 = _state.quat_nominal(2);
const float &q3 = _state.quat_nominal(3);
// calculate the observed yaw angle of antenna array, converting a from body to antenna yaw measurement
const float measured_hdg = wrap_pi(_gps_sample_delayed.yaw + _gps_yaw_offset);
// define the predicted antenna array vector and rotate into earth frame
const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f};
const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf;
// check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading
if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) {
return;
}
// calculate predicted antenna yaw angle
const float predicted_hdg = atan2f(ant_vec_ef(1),ant_vec_ef(0));
// using magnetic heading process noise
// TODO extend interface to use yaw uncertainty provided by GPS if available
const float R_YAW = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f));
// calculate intermediate variables
const float HK0 = sinf(_gps_yaw_offset);
const float HK1 = q0*q3;
const float HK2 = q1*q2;
const float HK3 = 2*HK0*(HK1 - HK2);
const float HK4 = cosf(_gps_yaw_offset);
const float HK5 = ecl::powf(q1, 2);
const float HK6 = ecl::powf(q2, 2);
const float HK7 = ecl::powf(q0, 2) - ecl::powf(q3, 2);
const float HK8 = HK4*(HK5 - HK6 + HK7);
const float HK9 = HK3 - HK8;
if (fabsf(HK9) < 1e-3f) {
return;
}
const float HK10 = 1.0F/HK9;
const float HK11 = HK4*q0;
const float HK12 = HK0*q3;
const float HK13 = HK0*(-HK5 + HK6 + HK7) + 2*HK4*(HK1 + HK2);
const float HK14 = HK10*HK13;
const float HK15 = HK0*q0 + HK4*q3;
const float HK16 = HK10*(HK14*(HK11 - HK12) + HK15);
const float HK17 = ecl::powf(HK13, 2)/ecl::powf(HK9, 2) + 1;
if (fabsf(HK17) < 1e-3f) {
return;
}
const float HK18 = 2/HK17;
// const float HK19 = 1.0F/(-HK3 + HK8);
const float HK19_inverse = -HK3 + HK8;
if (fabsf(HK19_inverse) < 1e-6f) {
return;
}
const float HK19 = 1.0F/HK19_inverse;
const float HK20 = HK4*q1;
const float HK21 = HK0*q2;
const float HK22 = HK13*HK19;
const float HK23 = HK0*q1 - HK4*q2;
const float HK24 = HK19*(HK22*(HK20 + HK21) + HK23);
const float HK25 = HK19*(-HK20 - HK21 + HK22*HK23);
const float HK26 = HK10*(-HK11 + HK12 + HK14*HK15);
const float HK27 = -HK16*P(0,0) - HK24*P(0,1) - HK25*P(0,2) + HK26*P(0,3);
const float HK28 = -HK16*P(0,1) - HK24*P(1,1) - HK25*P(1,2) + HK26*P(1,3);
const float HK29 = 4/ecl::powf(HK17, 2);
const float HK30 = -HK16*P(0,2) - HK24*P(1,2) - HK25*P(2,2) + HK26*P(2,3);
const float HK31 = -HK16*P(0,3) - HK24*P(1,3) - HK25*P(2,3) + HK26*P(3,3);
// const float HK32 = HK18/(-HK16*HK27*HK29 - HK24*HK28*HK29 - HK25*HK29*HK30 + HK26*HK29*HK31 + R_YAW);
// check if the innovation variance calculation is badly conditioned
_heading_innov_var = (-HK16*HK27*HK29 - HK24*HK28*HK29 - HK25*HK29*HK30 + HK26*HK29*HK31 + R_YAW);
if (_heading_innov_var < R_YAW) {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status.flags.bad_hdg = true;
// we reinitialise the covariance matrix and abort this fusion step
initialiseCovariance();
ECL_ERR("GPS yaw numerical error - covariance reset");
return;
}
_fault_status.flags.bad_hdg = false;
const float HK32 = HK18/_heading_innov_var;
// calculate the innovation and define the innovation gate
const float innov_gate = math::max(_params.heading_innov_gate, 1.0f);
_heading_innov = predicted_hdg - measured_hdg;
// wrap the innovation to the interval between +-pi
_heading_innov = wrap_pi(_heading_innov);
// innovation test ratio
_yaw_test_ratio = sq(_heading_innov) / (sq(innov_gate) * _heading_innov_var);
// we are no longer using 3-axis fusion so set the reported test levels to zero
_mag_test_ratio.setZero();
if (_yaw_test_ratio > 1.0f) {
_innov_check_fail_status.flags.reject_yaw = true;
// if we are in air we don't want to fuse the measurement
// we allow to use it when on the ground because the large innovation could be caused
// by interference or a large initial gyro bias
if (_control_status.flags.in_air) {
return;
} else {
// constrain the innovation to the maximum set by the gate
const float gate_limit = sqrtf((sq(innov_gate) * _heading_innov_var));
_heading_innov = math::constrain(_heading_innov, -gate_limit, gate_limit);
}
} else {
_innov_check_fail_status.flags.reject_yaw = false;
}
// calculate observation jacobian
// Observation jacobian and Kalman gain vectors
SparseVector24f<0,1,2,3> Hfusion;
Hfusion.at<0>() = -HK16*HK18;
Hfusion.at<1>() = -HK18*HK24;
Hfusion.at<2>() = -HK18*HK25;
Hfusion.at<3>() = HK18*HK26;
// calculate the Kalman gains
// only calculate gains for states we are using
Vector24f Kfusion;
Kfusion(0) = HK27*HK32;
Kfusion(1) = HK28*HK32;
Kfusion(2) = HK30*HK32;
Kfusion(3) = HK31*HK32;
for (unsigned row = 4; row <= 23; row++) {
Kfusion(row) = HK32*(-HK16*P(0,row) - HK24*P(1,row) - HK25*P(2,row) + HK26*P(3,row));
}
const bool is_fused = measurementUpdate(Kfusion, Hfusion, _heading_innov);
_fault_status.flags.bad_hdg = !is_fused;
if (is_fused) {
_time_last_gps_yaw_fuse = _time_last_imu;
}
}
bool Ekf::resetYawToGps()
{
// define the predicted antenna array vector and rotate into earth frame
const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f};
const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf;
// check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading
if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) {
return false;
}
// GPS yaw measurement is alreday compensated for antenna offset in the driver
const float measured_yaw = _gps_sample_delayed.yaw;
const float yaw_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f));
resetQuatStateYaw(measured_yaw, yaw_variance, true);
_time_last_gps_yaw_fuse = _time_last_imu;
return true;
}