ekf.cpp
19.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.cpp
* Core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
bool Ekf::init(uint64_t timestamp)
{
bool ret = initialise_interface(timestamp);
reset();
return ret;
}
void Ekf::reset()
{
_state.vel.setZero();
_state.pos.setZero();
_state.delta_ang_bias.setZero();
_state.delta_vel_bias.setZero();
_state.mag_I.setZero();
_state.mag_B.setZero();
_state.wind_vel.setZero();
_state.quat_nominal.setIdentity();
// TODO: who resets the output buffer content?
_output_new.vel.setZero();
_output_new.pos.setZero();
_output_new.quat_nominal.setIdentity();
_delta_angle_corr.setZero();
_imu_updated = false;
_NED_origin_initialised = false;
_gps_speed_valid = false;
_filter_initialised = false;
_terrain_initialised = false;
_range_sensor.setPitchOffset(_params.rng_sens_pitch);
_range_sensor.setCosMaxTilt(_params.range_cos_max_tilt);
_range_sensor.setQualityHysteresis(_params.range_valid_quality_s);
_control_status.value = 0;
_control_status_prev.value = 0;
_dt_ekf_avg = FILTER_UPDATE_PERIOD_S;
_ang_rate_delayed_raw.zero();
_fault_status.value = 0;
_innov_check_fail_status.value = 0;
_accel_magnitude_filt = 0.0f;
_ang_rate_magnitude_filt = 0.0f;
_prev_dvel_bias_var.zero();
_gps_alt_ref = 0.0f;
resetGpsDriftCheckFilters();
}
bool Ekf::update()
{
bool updated = false;
if (!_filter_initialised) {
_filter_initialised = initialiseFilter();
if (!_filter_initialised) {
return false;
}
}
// Only run the filter if IMU data in the buffer has been updated
if (_imu_updated) {
// perform state and covariance prediction for the main filter
predictState();
predictCovariance();
// control fusion of observation data
controlFusionModes();
// run a separate filter for terrain estimation
runTerrainEstimator();
updated = true;
// run EKF-GSF yaw estimator
runYawEKFGSF();
}
// the output observer always runs
// Use full rate IMU data at the current time horizon
calculateOutputStates(_newest_high_rate_imu_sample);
return updated;
}
bool Ekf::initialiseFilter()
{
// Filter accel for tilt initialization
const imuSample &imu_init = _imu_buffer.get_newest();
// protect against zero data
if (imu_init.delta_vel_dt < 1e-4f || imu_init.delta_ang_dt < 1e-4f) {
return false;
}
if (_is_first_imu_sample) {
_accel_lpf.reset(imu_init.delta_vel / imu_init.delta_vel_dt);
_gyro_lpf.reset(imu_init.delta_ang / imu_init.delta_ang_dt);
_is_first_imu_sample = false;
} else {
_accel_lpf.update(imu_init.delta_vel / imu_init.delta_vel_dt);
_gyro_lpf.update(imu_init.delta_ang / imu_init.delta_ang_dt);
}
// Sum the magnetometer measurements
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) {
if (_mag_sample_delayed.time_us != 0) {
if (_mag_counter == 0) {
_mag_lpf.reset(_mag_sample_delayed.mag);
} else {
_mag_lpf.update(_mag_sample_delayed.mag);
}
_mag_counter++;
}
}
// accumulate enough height measurements to be confident in the quality of the data
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) {
if (_baro_sample_delayed.time_us != 0) {
if (_baro_counter == 0) {
_baro_hgt_offset = _baro_sample_delayed.hgt;
} else {
_baro_hgt_offset = 0.9f * _baro_hgt_offset + 0.1f * _baro_sample_delayed.hgt;
}
_baro_counter++;
}
}
if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) {
if (_mag_counter < _obs_buffer_length) {
// not enough mag samples accumulated
return false;
}
}
if (_baro_counter < _obs_buffer_length) {
// not enough baro samples accumulated
return false;
}
// we use baro height initially and switch to GPS/range/EV finder later when it passes checks.
setControlBaroHeight();
if (!initialiseTilt()) {
return false;
}
// calculate the initial magnetic field and yaw alignment
_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState(), false, false);
// initialise the state covariance matrix now we have starting values for all the states
initialiseCovariance();
// update the yaw angle variance using the variance of the measurement
if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) {
// using magnetic heading tuning parameter
increaseQuatYawErrVariance(sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)));
}
// try to initialise the terrain estimator
_terrain_initialised = initHagl();
// reset the essential fusion timeout counters
_time_last_hgt_fuse = _time_last_imu;
_time_last_hor_pos_fuse = _time_last_imu;
_time_last_delpos_fuse = _time_last_imu;
_time_last_hor_vel_fuse = _time_last_imu;
_time_last_hagl_fuse = _time_last_imu;
_time_last_flow_terrain_fuse = _time_last_imu;
_time_last_of_fuse = _time_last_imu;
// reset the output predictor state history to match the EKF initial values
alignOutputFilter();
return true;
}
bool Ekf::initialiseTilt()
{
const float accel_norm = _accel_lpf.getState().norm();
const float gyro_norm = _gyro_lpf.getState().norm();
if (accel_norm < 0.8f * CONSTANTS_ONE_G ||
accel_norm > 1.2f * CONSTANTS_ONE_G ||
gyro_norm > math::radians(15.0f)) {
return false;
}
// get initial roll and pitch estimate from delta velocity vector, assuming vehicle is static
const Vector3f gravity_in_body = _accel_lpf.getState().normalized();
const float pitch = asinf(gravity_in_body(0));
const float roll = atan2f(-gravity_in_body(1), -gravity_in_body(2));
_state.quat_nominal = Quatf{Eulerf{roll, pitch, 0.0f}};
_R_to_earth = Dcmf(_state.quat_nominal);
return true;
}
void Ekf::predictState()
{
// apply imu bias corrections
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _state.delta_ang_bias;
// subtract component of angular rate due to earth rotation
corrected_delta_ang -= _R_to_earth.transpose() * _earth_rate_NED * _imu_sample_delayed.delta_ang_dt;
const Quatf dq(AxisAnglef{corrected_delta_ang});
// rotate the previous quaternion by the delta quaternion using a quaternion multiplication
_state.quat_nominal = (_state.quat_nominal * dq).normalized();
_R_to_earth = Dcmf(_state.quat_nominal);
// Calculate an earth frame delta velocity
const Vector3f corrected_delta_vel = _imu_sample_delayed.delta_vel - _state.delta_vel_bias;
const Vector3f corrected_delta_vel_ef = _R_to_earth * corrected_delta_vel;
// calculate a filtered horizontal acceleration with a 1 sec time constant
// this are used for manoeuvre detection elsewhere
const float alpha = 1.0f - _imu_sample_delayed.delta_vel_dt;
_accel_lpf_NE = _accel_lpf_NE * alpha + corrected_delta_vel_ef.xy();
// save the previous value of velocity so we can use trapzoidal integration
const Vector3f vel_last = _state.vel;
// calculate the increment in velocity using the current orientation
_state.vel += corrected_delta_vel_ef;
// compensate for acceleration due to gravity
_state.vel(2) += CONSTANTS_ONE_G * _imu_sample_delayed.delta_vel_dt;
// predict position states via trapezoidal integration of velocity
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f;
constrainStates();
// calculate an average filter update time
float input = 0.5f * (_imu_sample_delayed.delta_vel_dt + _imu_sample_delayed.delta_ang_dt);
// filter and limit input between -50% and +100% of nominal value
input = math::constrain(input, 0.5f * FILTER_UPDATE_PERIOD_S, 2.0f * FILTER_UPDATE_PERIOD_S);
_dt_ekf_avg = 0.99f * _dt_ekf_avg + 0.01f * input;
// some calculations elsewhere in code require a raw angular rate vector so calculate here to avoid duplication
// protect angainst possible small timesteps resulting from timing slip on previous frame that can drive spikes into the rate
// due to insufficient averaging
if (_imu_sample_delayed.delta_ang_dt > 0.25f * FILTER_UPDATE_PERIOD_S) {
_ang_rate_delayed_raw = _imu_sample_delayed.delta_ang / _imu_sample_delayed.delta_ang_dt;
}
}
/*
* Implement a strapdown INS algorithm using the latest IMU data at the current time horizon.
* Buffer the INS states and calculate the difference with the EKF states at the delayed fusion time horizon.
* Calculate delta angle, delta velocity and velocity corrections from the differences and apply them at the
* current time horizon so that the INS states track the EKF states at the delayed fusion time horizon.
* The inspiration for using a complementary filter to correct for time delays in the EKF
* is based on the work by A Khosravian:
* “Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements”
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
*/
void Ekf::calculateOutputStates(const imuSample &imu)
{
// Use full rate IMU data at the current time horizon
// correct delta angles for bias offsets
const float dt_scale_correction = _dt_imu_avg / _dt_ekf_avg;
// Apply corrections to the delta angle required to track the quaternion states at the EKF fusion time horizon
const Vector3f delta_angle(imu.delta_ang - _state.delta_ang_bias * dt_scale_correction + _delta_angle_corr);
// calculate a yaw change about the earth frame vertical
const float spin_del_ang_D = delta_angle.dot(Vector3f(_R_to_earth_now.row(2)));
_yaw_delta_ef += spin_del_ang_D;
// Calculate filtered yaw rate to be used by the magnetometer fusion type selection logic
// Note fixed coefficients are used to save operations. The exact time constant is not important.
_yaw_rate_lpf_ef = 0.95f * _yaw_rate_lpf_ef + 0.05f * spin_del_ang_D / imu.delta_ang_dt;
const Quatf dq(AxisAnglef{delta_angle});
// rotate the previous INS quaternion by the delta quaternions
_output_new.time_us = imu.time_us;
_output_new.quat_nominal = _output_new.quat_nominal * dq;
// the quaternions must always be normalised after modification
_output_new.quat_nominal.normalize();
// calculate the rotation matrix from body to earth frame
_R_to_earth_now = Dcmf(_output_new.quat_nominal);
// correct delta velocity for bias offsets
const Vector3f delta_vel_body{imu.delta_vel - _state.delta_vel_bias * dt_scale_correction};
// rotate the delta velocity to earth frame
Vector3f delta_vel_earth{_R_to_earth_now * delta_vel_body};
// correct for measured acceleration due to gravity
delta_vel_earth(2) += CONSTANTS_ONE_G * imu.delta_vel_dt;
// calculate the earth frame velocity derivatives
if (imu.delta_vel_dt > 1e-4f) {
_vel_deriv = delta_vel_earth * (1.0f / imu.delta_vel_dt);
}
// save the previous velocity so we can use trapezoidal integration
const Vector3f vel_last(_output_new.vel);
// increment the INS velocity states by the measurement plus corrections
// do the same for vertical state used by alternative correction algorithm
_output_new.vel += delta_vel_earth;
_output_vert_new.vert_vel += delta_vel_earth(2);
// use trapezoidal integration to calculate the INS position states
// do the same for vertical state used by alternative correction algorithm
const Vector3f delta_pos_NED = (_output_new.vel + vel_last) * (imu.delta_vel_dt * 0.5f);
_output_new.pos += delta_pos_NED;
_output_vert_new.vert_vel_integ += delta_pos_NED(2);
// accumulate the time for each update
_output_vert_new.dt += imu.delta_vel_dt;
// correct velocity for IMU offset
if (imu.delta_ang_dt > 1e-4f) {
// calculate the average angular rate across the last IMU update
const Vector3f ang_rate = imu.delta_ang * (1.0f / imu.delta_ang_dt);
// calculate the velocity of the IMU relative to the body origin
const Vector3f vel_imu_rel_body = ang_rate % _params.imu_pos_body;
// rotate the relative velocity into earth frame
_vel_imu_rel_body_ned = _R_to_earth_now * vel_imu_rel_body;
}
// store the INS states in a ring buffer with the same length and time coordinates as the IMU data buffer
if (_imu_updated) {
_output_buffer.push(_output_new);
_output_vert_buffer.push(_output_vert_new);
// get the oldest INS state data from the ring buffer
// this data will be at the EKF fusion time horizon
// TODO: there is no guarantee that data is at delayed fusion horizon
// Shouldnt we use pop_first_older_than?
const outputSample &output_delayed = _output_buffer.get_oldest();
const outputVert &output_vert_delayed = _output_vert_buffer.get_oldest();
// calculate the quaternion delta between the INS and EKF quaternions at the EKF fusion time horizon
const Quatf q_error((_state.quat_nominal.inversed() * output_delayed.quat_nominal).normalized());
// convert the quaternion delta to a delta angle
const float scalar = (q_error(0) >= 0.0f) ? -2.f : 2.f;
const Vector3f delta_ang_error{scalar * q_error(1), scalar * q_error(2), scalar * q_error(3)};
// calculate a gain that provides tight tracking of the estimator attitude states and
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7
const float time_delay = fmaxf((imu.time_us - _imu_sample_delayed.time_us) * 1e-6f, _dt_imu_avg);
const float att_gain = 0.5f * _dt_imu_avg / time_delay;
// calculate a corrrection to the delta angle
// that will cause the INS to track the EKF quaternions
_delta_angle_corr = delta_ang_error * att_gain;
_output_tracking_error(0) = delta_ang_error.norm();
/*
* Loop through the output filter state history and apply the corrections to the velocity and position states.
* This method is too expensive to use for the attitude states due to the quaternion operations required
* but because it eliminates the time delay in the 'correction loop' it allows higher tracking gains
* to be used and reduces tracking error relative to EKF states.
*/
// Complementary filter gains
const float vel_gain = _dt_ekf_avg / math::constrain(_params.vel_Tau, _dt_ekf_avg, 10.0f);
const float pos_gain = _dt_ekf_avg / math::constrain(_params.pos_Tau, _dt_ekf_avg, 10.0f);
// calculate down velocity and position tracking errors
const float vert_vel_err = (_state.vel(2) - output_vert_delayed.vert_vel);
const float vert_vel_integ_err = (_state.pos(2) - output_vert_delayed.vert_vel_integ);
// calculate a velocity correction that will be applied to the output state history
// using a PD feedback tuned to a 5% overshoot
const float vert_vel_correction = vert_vel_integ_err * pos_gain + vert_vel_err * vel_gain * 1.1f;
applyCorrectionToVerticalOutputBuffer(vert_vel_correction);
// calculate velocity and position tracking errors
const Vector3f vel_err(_state.vel - output_delayed.vel);
const Vector3f pos_err(_state.pos - output_delayed.pos);
_output_tracking_error(1) = vel_err.norm();
_output_tracking_error(2) = pos_err.norm();
// calculate a velocity correction that will be applied to the output state history
_vel_err_integ += vel_err;
const Vector3f vel_correction = vel_err * vel_gain + _vel_err_integ * sq(vel_gain) * 0.1f;
// calculate a position correction that will be applied to the output state history
_pos_err_integ += pos_err;
const Vector3f pos_correction = pos_err * pos_gain + _pos_err_integ * sq(pos_gain) * 0.1f;
applyCorrectionToOutputBuffer(vel_correction, pos_correction);
}
}
/*
* Calculate a correction to be applied to vert_vel that casues vert_vel_integ to track the EKF
* down position state at the fusion time horizon using an alternative algorithm to what
* is used for the vel and pos state tracking. The algorithm applies a correction to the vert_vel
* state history and propagates vert_vel_integ forward in time using the corrected vert_vel history.
* This provides an alternative vertical velocity output that is closer to the first derivative
* of the position but does degrade tracking relative to the EKF state.
*/
void Ekf::applyCorrectionToVerticalOutputBuffer(float vert_vel_correction)
{
// loop through the vertical output filter state history starting at the oldest and apply the corrections to the
// vert_vel states and propagate vert_vel_integ forward using the corrected vert_vel
uint8_t index = _output_vert_buffer.get_oldest_index();
const uint8_t size = _output_vert_buffer.get_length();
for (uint8_t counter = 0; counter < (size - 1); counter++) {
const uint8_t index_next = (index + 1) % size;
outputVert ¤t_state = _output_vert_buffer[index];
outputVert &next_state = _output_vert_buffer[index_next];
// correct the velocity
if (counter == 0) {
current_state.vert_vel += vert_vel_correction;
}
next_state.vert_vel += vert_vel_correction;
// position is propagated forward using the corrected velocity and a trapezoidal integrator
next_state.vert_vel_integ = current_state.vert_vel_integ + (current_state.vert_vel + next_state.vert_vel) * 0.5f * next_state.dt;
// advance the index
index = (index + 1) % size;
}
// update output state to corrected values
_output_vert_new = _output_vert_buffer.get_newest();
// reset time delta to zero for the next accumulation of full rate IMU data
_output_vert_new.dt = 0.0f;
}
/*
* Calculate corrections to be applied to vel and pos output state history.
* The vel and pos state history are corrected individually so they track the EKF states at
* the fusion time horizon. This option provides the most accurate tracking of EKF states.
*/
void Ekf::applyCorrectionToOutputBuffer(const Vector3f &vel_correction, const Vector3f &pos_correction)
{
// loop through the output filter state history and apply the corrections to the velocity and position states
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
// a constant velocity correction is applied
_output_buffer[index].vel += vel_correction;
// a constant position correction is applied
_output_buffer[index].pos += pos_correction;
}
// update output state to corrected values
_output_new = _output_buffer.get_newest();
}
/*
* Predict the previous quaternion output state forward using the latest IMU delta angle data.
*/
Quatf Ekf::calculate_quaternion() const
{
// Correct delta angle data for bias errors using bias state estimates from the EKF and also apply
// corrections required to track the EKF quaternion states
const Vector3f delta_angle{_newest_high_rate_imu_sample.delta_ang - _state.delta_ang_bias * (_dt_imu_avg / _dt_ekf_avg) + _delta_angle_corr};
// increment the quaternions using the corrected delta angle vector
// the quaternions must always be normalised after modification
return Quatf{_output_new.quat_nominal * AxisAnglef{delta_angle}}.unit();
}