covariance.cpp
55 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file covariance.cpp
* Contains functions for initialising, predicting and updating the state
* covariance matrix
* equations generated using EKF/python/ekf_derivation/main.py
*
* @author Roman Bast <bastroman@gmail.com>
*
*/
#include "ekf.h"
#include "utils.hpp"
#include <ecl.h>
#include <math.h>
#include <mathlib/mathlib.h>
// Sets initial values for the covariance matrix
// Do not call before quaternion states have been initialised
void Ekf::initialiseCovariance()
{
P.zero();
_delta_angle_bias_var_accum.setZero();
_delta_vel_bias_var_accum.setZero();
const float dt = FILTER_UPDATE_PERIOD_S;
resetQuatCov();
// velocity
P(4,4) = sq(fmaxf(_params.gps_vel_noise, 0.01f));
P(5,5) = P(4,4);
P(6,6) = sq(1.5f) * P(4,4);
// position
P(7,7) = sq(fmaxf(_params.gps_pos_noise, 0.01f));
P(8,8) = P(7,7);
if (_control_status.flags.rng_hgt) {
P(9,9) = sq(fmaxf(_params.range_noise, 0.01f));
} else if (_control_status.flags.gps_hgt) {
P(9,9) = getGpsHeightVariance();
} else {
P(9,9) = sq(fmaxf(_params.baro_noise, 0.01f));
}
// gyro bias
P(10,10) = sq(_params.switch_on_gyro_bias * dt);
P(11,11) = P(10,10);
P(12,12) = P(10,10);
// accel bias
_prev_dvel_bias_var(0) = P(13,13) = sq(_params.switch_on_accel_bias * dt);
_prev_dvel_bias_var(1) = P(14,14) = P(13,13);
_prev_dvel_bias_var(2) = P(15,15) = P(13,13);
resetMagCov();
// wind
P(22,22) = sq(_params.initial_wind_uncertainty);
P(23,23) = P(22,22);
}
void Ekf::predictCovariance()
{
// assign intermediate state variables
const float &q0 = _state.quat_nominal(0);
const float &q1 = _state.quat_nominal(1);
const float &q2 = _state.quat_nominal(2);
const float &q3 = _state.quat_nominal(3);
const float &dax = _imu_sample_delayed.delta_ang(0);
const float &day = _imu_sample_delayed.delta_ang(1);
const float &daz = _imu_sample_delayed.delta_ang(2);
const float &dvx = _imu_sample_delayed.delta_vel(0);
const float &dvy = _imu_sample_delayed.delta_vel(1);
const float &dvz = _imu_sample_delayed.delta_vel(2);
const float &dax_b = _state.delta_ang_bias(0);
const float &day_b = _state.delta_ang_bias(1);
const float &daz_b = _state.delta_ang_bias(2);
const float &dvx_b = _state.delta_vel_bias(0);
const float &dvy_b = _state.delta_vel_bias(1);
const float &dvz_b = _state.delta_vel_bias(2);
// Use average update interval to reduce accumulated covariance prediction errors due to small single frame dt values
const float dt = FILTER_UPDATE_PERIOD_S;
const float dt_inv = 1.0f / dt;
// convert rate of change of rate gyro bias (rad/s**2) as specified by the parameter to an expected change in delta angle (rad) since the last update
const float d_ang_bias_sig = dt * dt * math::constrain(_params.gyro_bias_p_noise, 0.0f, 1.0f);
// convert rate of change of accelerometer bias (m/s**3) as specified by the parameter to an expected change in delta velocity (m/s) since the last update
const float d_vel_bias_sig = dt * dt * math::constrain(_params.accel_bias_p_noise, 0.0f, 1.0f);
// inhibit learning of imu accel bias if the manoeuvre levels are too high to protect against the effect of sensor nonlinearities or bad accel data is detected
// xy accel bias learning is also disabled on ground as those states are poorly observable when perpendicular to the gravity vector
const float alpha = math::constrain((dt / _params.acc_bias_learn_tc), 0.0f, 1.0f);
const float beta = 1.0f - alpha;
_ang_rate_magnitude_filt = fmaxf(dt_inv * _imu_sample_delayed.delta_ang.norm(), beta * _ang_rate_magnitude_filt);
_accel_magnitude_filt = fmaxf(dt_inv * _imu_sample_delayed.delta_vel.norm(), beta * _accel_magnitude_filt);
_accel_vec_filt = alpha * dt_inv * _imu_sample_delayed.delta_vel + beta * _accel_vec_filt;
const bool is_manoeuvre_level_high = _ang_rate_magnitude_filt > _params.acc_bias_learn_gyr_lim
|| _accel_magnitude_filt > _params.acc_bias_learn_acc_lim;
const bool do_inhibit_all_axes = (_params.fusion_mode & MASK_INHIBIT_ACC_BIAS)
|| is_manoeuvre_level_high
|| _fault_status.flags.bad_acc_vertical;
for (unsigned stateIndex = 13; stateIndex <= 15; stateIndex++) {
const unsigned index = stateIndex - 13;
// When on ground, only consider an accel bias observable if aligned with the gravity vector
const bool is_bias_observable = (fabsf(_R_to_earth(2, index)) > 0.8f) || _control_status.flags.in_air;
const bool do_inhibit_axis = do_inhibit_all_axes || !is_bias_observable || _imu_sample_delayed.delta_vel_clipping[index];
if (do_inhibit_axis) {
// store the bias state variances to be reinstated later
if (!_accel_bias_inhibit[index]) {
_prev_dvel_bias_var(index) = P(stateIndex, stateIndex);
_accel_bias_inhibit[index] = true;
}
} else {
if (_accel_bias_inhibit[index]) {
// reinstate the bias state variances
P(stateIndex, stateIndex) = _prev_dvel_bias_var(index);
_accel_bias_inhibit[index] = false;
}
}
}
// Don't continue to grow the earth field variances if they are becoming too large or we are not doing 3-axis fusion as this can make the covariance matrix badly conditioned
float mag_I_sig;
if (_control_status.flags.mag_3D && (P(16,16) + P(17,17) + P(18,18)) < 0.1f) {
mag_I_sig = dt * math::constrain(_params.mage_p_noise, 0.0f, 1.0f);
} else {
mag_I_sig = 0.0f;
}
// Don't continue to grow the body field variances if they is becoming too large or we are not doing 3-axis fusion as this can make the covariance matrix badly conditioned
float mag_B_sig;
if (_control_status.flags.mag_3D && (P(19,19) + P(20,20) + P(21,21)) < 0.1f) {
mag_B_sig = dt * math::constrain(_params.magb_p_noise, 0.0f, 1.0f);
} else {
mag_B_sig = 0.0f;
}
float wind_vel_sig;
// Calculate low pass filtered height rate
float alpha_height_rate_lpf = 0.1f * dt; // 10 seconds time constant
_height_rate_lpf = _height_rate_lpf * (1.0f - alpha_height_rate_lpf) + _state.vel(2) * alpha_height_rate_lpf;
// Don't continue to grow wind velocity state variances if they are becoming too large or we are not using wind velocity states as this can make the covariance matrix badly conditioned
if (_control_status.flags.wind && (P(22,22) + P(23,23)) < sq(_params.initial_wind_uncertainty)) {
wind_vel_sig = dt * math::constrain(_params.wind_vel_p_noise, 0.0f, 1.0f) * (1.0f + _params.wind_vel_p_noise_scaler * fabsf(_height_rate_lpf));
} else {
wind_vel_sig = 0.0f;
}
// compute noise variance for stationary processes
Vector24f process_noise;
// Construct the process noise variance diagonal for those states with a stationary process model
// These are kinematic states and their error growth is controlled separately by the IMU noise variances
// delta angle bias states
process_noise.slice<3,1>(10,0) = sq(d_ang_bias_sig);
// delta_velocity bias states
process_noise.slice<3,1>(13,0) = sq(d_vel_bias_sig);
// earth frame magnetic field states
process_noise.slice<3,1>(16,0) = sq(mag_I_sig);
// body frame magnetic field states
process_noise.slice<3,1>(19,0) = sq(mag_B_sig);
// wind velocity states
process_noise.slice<2,1>(22,0) = sq(wind_vel_sig);
// assign IMU noise variances
// inputs to the system are 3 delta angles and 3 delta velocities
float gyro_noise = math::constrain(_params.gyro_noise, 0.0f, 1.0f);
const float daxVar = sq(dt * gyro_noise);
const float dayVar = daxVar;
const float dazVar = daxVar;
float accel_noise = math::constrain(_params.accel_noise, 0.0f, 1.0f);
if (_fault_status.flags.bad_acc_vertical) {
// Increase accelerometer process noise if bad accel data is detected. Measurement errors due to
// vibration induced clipping commonly reach an equivalent 0.5g offset.
accel_noise = BADACC_BIAS_PNOISE;
}
float dvxVar, dvyVar, dvzVar;
dvxVar = dvyVar = dvzVar = sq(dt * accel_noise);
// Accelerometer Clipping
_fault_status.flags.bad_acc_clipping = false; // reset flag
// delta velocity X: increase process noise if sample contained any X axis clipping
if (_imu_sample_delayed.delta_vel_clipping[0]) {
dvxVar = sq(dt * BADACC_BIAS_PNOISE);
_fault_status.flags.bad_acc_clipping = true;
}
// delta velocity Y: increase process noise if sample contained any Y axis clipping
if (_imu_sample_delayed.delta_vel_clipping[1]) {
dvyVar = sq(dt * BADACC_BIAS_PNOISE);
_fault_status.flags.bad_acc_clipping = true;
}
// delta velocity Z: increase process noise if sample contained any Z axis clipping
if (_imu_sample_delayed.delta_vel_clipping[2]) {
dvzVar = sq(dt * BADACC_BIAS_PNOISE);
_fault_status.flags.bad_acc_clipping = true;
}
// predict the covariance
// equations generated using EKF/python/ekf_derivation/main.py
// intermediate calculations
const float PS0 = ecl::powf(q1, 2);
const float PS1 = 0.25F*daxVar;
const float PS2 = ecl::powf(q2, 2);
const float PS3 = 0.25F*dayVar;
const float PS4 = ecl::powf(q3, 2);
const float PS5 = 0.25F*dazVar;
const float PS6 = 0.5F*q1;
const float PS7 = 0.5F*q2;
const float PS8 = P(10,11)*PS7;
const float PS9 = 0.5F*q3;
const float PS10 = P(10,12)*PS9;
const float PS11 = 0.5F*dax - 0.5F*dax_b;
const float PS12 = 0.5F*day - 0.5F*day_b;
const float PS13 = 0.5F*daz - 0.5F*daz_b;
const float PS14 = P(0,10) - P(1,10)*PS11 + P(10,10)*PS6 - P(2,10)*PS12 - P(3,10)*PS13 + PS10 + PS8;
const float PS15 = P(10,11)*PS6;
const float PS16 = P(11,12)*PS9;
const float PS17 = P(0,11) - P(1,11)*PS11 + P(11,11)*PS7 - P(2,11)*PS12 - P(3,11)*PS13 + PS15 + PS16;
const float PS18 = P(10,12)*PS6;
const float PS19 = P(11,12)*PS7;
const float PS20 = P(0,12) - P(1,12)*PS11 + P(12,12)*PS9 - P(2,12)*PS12 - P(3,12)*PS13 + PS18 + PS19;
const float PS21 = P(1,2)*PS12;
const float PS22 = -P(1,3)*PS13;
const float PS23 = P(0,1) - P(1,1)*PS11 + P(1,10)*PS6 + P(1,11)*PS7 + P(1,12)*PS9 - PS21 + PS22;
const float PS24 = -P(1,2)*PS11;
const float PS25 = P(2,3)*PS13;
const float PS26 = P(0,2) + P(2,10)*PS6 + P(2,11)*PS7 + P(2,12)*PS9 - P(2,2)*PS12 + PS24 - PS25;
const float PS27 = P(1,3)*PS11;
const float PS28 = -P(2,3)*PS12;
const float PS29 = P(0,3) + P(3,10)*PS6 + P(3,11)*PS7 + P(3,12)*PS9 - P(3,3)*PS13 - PS27 + PS28;
const float PS30 = P(0,1)*PS11;
const float PS31 = P(0,2)*PS12;
const float PS32 = P(0,3)*PS13;
const float PS33 = P(0,0) + P(0,10)*PS6 + P(0,11)*PS7 + P(0,12)*PS9 - PS30 - PS31 - PS32;
const float PS34 = 0.5F*q0;
const float PS35 = q2*q3;
const float PS36 = q0*q1;
const float PS37 = q1*q3;
const float PS38 = q0*q2;
const float PS39 = q1*q2;
const float PS40 = q0*q3;
const float PS41 = -PS2;
const float PS42 = ecl::powf(q0, 2);
const float PS43 = -PS4 + PS42;
const float PS44 = PS0 + PS41 + PS43;
const float PS45 = P(0,13) - P(1,13)*PS11 + P(10,13)*PS6 + P(11,13)*PS7 + P(12,13)*PS9 - P(2,13)*PS12 - P(3,13)*PS13;
const float PS46 = PS37 + PS38;
const float PS47 = P(0,15) - P(1,15)*PS11 + P(10,15)*PS6 + P(11,15)*PS7 + P(12,15)*PS9 - P(2,15)*PS12 - P(3,15)*PS13;
const float PS48 = 2*PS47;
const float PS49 = dvy - dvy_b;
const float PS50 = dvx - dvx_b;
const float PS51 = dvz - dvz_b;
const float PS52 = PS49*q0 + PS50*q3 - PS51*q1;
const float PS53 = 2*PS29;
const float PS54 = -PS39 + PS40;
const float PS55 = P(0,14) - P(1,14)*PS11 + P(10,14)*PS6 + P(11,14)*PS7 + P(12,14)*PS9 - P(2,14)*PS12 - P(3,14)*PS13;
const float PS56 = 2*PS55;
const float PS57 = -PS49*q3 + PS50*q0 + PS51*q2;
const float PS58 = 2*PS33;
const float PS59 = PS49*q1 - PS50*q2 + PS51*q0;
const float PS60 = 2*PS59;
const float PS61 = PS49*q2 + PS50*q1 + PS51*q3;
const float PS62 = 2*PS61;
const float PS63 = P(0,4) - P(1,4)*PS11 - P(2,4)*PS12 - P(3,4)*PS13 + P(4,10)*PS6 + P(4,11)*PS7 + P(4,12)*PS9;
const float PS64 = -PS0;
const float PS65 = PS2 + PS43 + PS64;
const float PS66 = PS39 + PS40;
const float PS67 = 2*PS45;
const float PS68 = -PS35 + PS36;
const float PS69 = P(0,5) - P(1,5)*PS11 - P(2,5)*PS12 - P(3,5)*PS13 + P(5,10)*PS6 + P(5,11)*PS7 + P(5,12)*PS9;
const float PS70 = PS4 + PS41 + PS42 + PS64;
const float PS71 = PS35 + PS36;
const float PS72 = 2*PS57;
const float PS73 = -PS37 + PS38;
const float PS74 = 2*PS52;
const float PS75 = P(0,6) - P(1,6)*PS11 - P(2,6)*PS12 - P(3,6)*PS13 + P(6,10)*PS6 + P(6,11)*PS7 + P(6,12)*PS9;
const float PS76 = -P(10,11)*PS34;
const float PS77 = P(0,11)*PS11 + P(1,11) + P(11,11)*PS9 + P(2,11)*PS13 - P(3,11)*PS12 - PS19 + PS76;
const float PS78 = P(0,2)*PS13;
const float PS79 = P(0,3)*PS12;
const float PS80 = P(0,0)*PS11 + P(0,1) - P(0,10)*PS34 + P(0,11)*PS9 - P(0,12)*PS7 + PS78 - PS79;
const float PS81 = P(0,2)*PS11;
const float PS82 = P(1,2) - P(2,10)*PS34 + P(2,11)*PS9 - P(2,12)*PS7 + P(2,2)*PS13 + PS28 + PS81;
const float PS83 = P(10,11)*PS9;
const float PS84 = P(10,12)*PS7;
const float PS85 = P(0,10)*PS11 + P(1,10) - P(10,10)*PS34 + P(2,10)*PS13 - P(3,10)*PS12 + PS83 - PS84;
const float PS86 = -P(10,12)*PS34;
const float PS87 = P(0,12)*PS11 + P(1,12) - P(12,12)*PS7 + P(2,12)*PS13 - P(3,12)*PS12 + PS16 + PS86;
const float PS88 = P(0,3)*PS11;
const float PS89 = P(1,3) - P(3,10)*PS34 + P(3,11)*PS9 - P(3,12)*PS7 - P(3,3)*PS12 + PS25 + PS88;
const float PS90 = P(1,2)*PS13;
const float PS91 = P(1,3)*PS12;
const float PS92 = P(1,1) - P(1,10)*PS34 + P(1,11)*PS9 - P(1,12)*PS7 + PS30 + PS90 - PS91;
const float PS93 = P(0,13)*PS11 + P(1,13) - P(10,13)*PS34 + P(11,13)*PS9 - P(12,13)*PS7 + P(2,13)*PS13 - P(3,13)*PS12;
const float PS94 = P(0,15)*PS11 + P(1,15) - P(10,15)*PS34 + P(11,15)*PS9 - P(12,15)*PS7 + P(2,15)*PS13 - P(3,15)*PS12;
const float PS95 = 2*PS94;
const float PS96 = P(0,14)*PS11 + P(1,14) - P(10,14)*PS34 + P(11,14)*PS9 - P(12,14)*PS7 + P(2,14)*PS13 - P(3,14)*PS12;
const float PS97 = 2*PS96;
const float PS98 = P(0,4)*PS11 + P(1,4) + P(2,4)*PS13 - P(3,4)*PS12 - P(4,10)*PS34 + P(4,11)*PS9 - P(4,12)*PS7;
const float PS99 = 2*PS93;
const float PS100 = P(0,5)*PS11 + P(1,5) + P(2,5)*PS13 - P(3,5)*PS12 - P(5,10)*PS34 + P(5,11)*PS9 - P(5,12)*PS7;
const float PS101 = P(0,6)*PS11 + P(1,6) + P(2,6)*PS13 - P(3,6)*PS12 - P(6,10)*PS34 + P(6,11)*PS9 - P(6,12)*PS7;
const float PS102 = -P(11,12)*PS34;
const float PS103 = P(0,12)*PS12 - P(1,12)*PS13 + P(12,12)*PS6 + P(2,12) + P(3,12)*PS11 - PS10 + PS102;
const float PS104 = P(2,3) - P(3,10)*PS9 - P(3,11)*PS34 + P(3,12)*PS6 + P(3,3)*PS11 + PS22 + PS79;
const float PS105 = P(0,1)*PS13;
const float PS106 = P(0,0)*PS12 - P(0,10)*PS9 - P(0,11)*PS34 + P(0,12)*PS6 + P(0,2) - PS105 + PS88;
const float PS107 = P(11,12)*PS6;
const float PS108 = P(0,11)*PS12 - P(1,11)*PS13 - P(11,11)*PS34 + P(2,11) + P(3,11)*PS11 + PS107 - PS83;
const float PS109 = P(0,10)*PS12 - P(1,10)*PS13 - P(10,10)*PS9 + P(2,10) + P(3,10)*PS11 + PS18 + PS76;
const float PS110 = P(0,1)*PS12;
const float PS111 = -P(1,1)*PS13 - P(1,10)*PS9 - P(1,11)*PS34 + P(1,12)*PS6 + P(1,2) + PS110 + PS27;
const float PS112 = P(2,3)*PS11;
const float PS113 = -P(2,10)*PS9 - P(2,11)*PS34 + P(2,12)*PS6 + P(2,2) + PS112 + PS31 - PS90;
const float PS114 = P(0,13)*PS12 - P(1,13)*PS13 - P(10,13)*PS9 - P(11,13)*PS34 + P(12,13)*PS6 + P(2,13) + P(3,13)*PS11;
const float PS115 = P(0,15)*PS12 - P(1,15)*PS13 - P(10,15)*PS9 - P(11,15)*PS34 + P(12,15)*PS6 + P(2,15) + P(3,15)*PS11;
const float PS116 = 2*PS115;
const float PS117 = P(0,14)*PS12 - P(1,14)*PS13 - P(10,14)*PS9 - P(11,14)*PS34 + P(12,14)*PS6 + P(2,14) + P(3,14)*PS11;
const float PS118 = 2*PS117;
const float PS119 = P(0,4)*PS12 - P(1,4)*PS13 + P(2,4) + P(3,4)*PS11 - P(4,10)*PS9 - P(4,11)*PS34 + P(4,12)*PS6;
const float PS120 = 2*PS114;
const float PS121 = P(0,5)*PS12 - P(1,5)*PS13 + P(2,5) + P(3,5)*PS11 - P(5,10)*PS9 - P(5,11)*PS34 + P(5,12)*PS6;
const float PS122 = P(0,6)*PS12 - P(1,6)*PS13 + P(2,6) + P(3,6)*PS11 - P(6,10)*PS9 - P(6,11)*PS34 + P(6,12)*PS6;
const float PS123 = P(0,10)*PS13 + P(1,10)*PS12 + P(10,10)*PS7 - P(2,10)*PS11 + P(3,10) - PS15 + PS86;
const float PS124 = P(1,1)*PS12 + P(1,10)*PS7 - P(1,11)*PS6 - P(1,12)*PS34 + P(1,3) + PS105 + PS24;
const float PS125 = P(0,0)*PS13 + P(0,10)*PS7 - P(0,11)*PS6 - P(0,12)*PS34 + P(0,3) + PS110 - PS81;
const float PS126 = P(0,12)*PS13 + P(1,12)*PS12 - P(12,12)*PS34 - P(2,12)*PS11 + P(3,12) - PS107 + PS84;
const float PS127 = P(0,11)*PS13 + P(1,11)*PS12 - P(11,11)*PS6 - P(2,11)*PS11 + P(3,11) + PS102 + PS8;
const float PS128 = P(2,10)*PS7 - P(2,11)*PS6 - P(2,12)*PS34 - P(2,2)*PS11 + P(2,3) + PS21 + PS78;
const float PS129 = P(3,10)*PS7 - P(3,11)*PS6 - P(3,12)*PS34 + P(3,3) - PS112 + PS32 + PS91;
const float PS130 = P(0,13)*PS13 + P(1,13)*PS12 + P(10,13)*PS7 - P(11,13)*PS6 - P(12,13)*PS34 - P(2,13)*PS11 + P(3,13);
const float PS131 = P(0,15)*PS13 + P(1,15)*PS12 + P(10,15)*PS7 - P(11,15)*PS6 - P(12,15)*PS34 - P(2,15)*PS11 + P(3,15);
const float PS132 = 2*PS131;
const float PS133 = P(0,14)*PS13 + P(1,14)*PS12 + P(10,14)*PS7 - P(11,14)*PS6 - P(12,14)*PS34 - P(2,14)*PS11 + P(3,14);
const float PS134 = 2*PS133;
const float PS135 = P(0,4)*PS13 + P(1,4)*PS12 - P(2,4)*PS11 + P(3,4) + P(4,10)*PS7 - P(4,11)*PS6 - P(4,12)*PS34;
const float PS136 = 2*PS130;
const float PS137 = P(0,5)*PS13 + P(1,5)*PS12 - P(2,5)*PS11 + P(3,5) + P(5,10)*PS7 - P(5,11)*PS6 - P(5,12)*PS34;
const float PS138 = P(0,6)*PS13 + P(1,6)*PS12 - P(2,6)*PS11 + P(3,6) + P(6,10)*PS7 - P(6,11)*PS6 - P(6,12)*PS34;
const float PS139 = 2*PS46;
const float PS140 = 2*PS54;
const float PS141 = P(0,13)*PS72 + P(1,13)*PS62 - P(13,13)*PS44 + P(13,14)*PS140 - P(13,15)*PS139 + P(2,13)*PS60 - P(3,13)*PS74 + P(4,13);
const float PS142 = P(0,15)*PS72 + P(1,15)*PS62 - P(13,15)*PS44 + P(14,15)*PS140 - P(15,15)*PS139 + P(2,15)*PS60 - P(3,15)*PS74 + P(4,15);
const float PS143 = P(1,3)*PS62;
const float PS144 = P(0,3)*PS72;
const float PS145 = P(2,3)*PS60 - P(3,13)*PS44 + P(3,14)*PS140 - P(3,15)*PS139 - P(3,3)*PS74 + P(3,4) + PS143 + PS144;
const float PS146 = P(0,14)*PS72 + P(1,14)*PS62 - P(13,14)*PS44 + P(14,14)*PS140 - P(14,15)*PS139 + P(2,14)*PS60 - P(3,14)*PS74 + P(4,14);
const float PS147 = P(0,2)*PS60;
const float PS148 = P(0,3)*PS74;
const float PS149 = P(0,0)*PS72 + P(0,1)*PS62 - P(0,13)*PS44 + P(0,14)*PS140 - P(0,15)*PS139 + P(0,4) + PS147 - PS148;
const float PS150 = P(1,2)*PS62;
const float PS151 = P(0,2)*PS72;
const float PS152 = -P(2,13)*PS44 + P(2,14)*PS140 - P(2,15)*PS139 + P(2,2)*PS60 - P(2,3)*PS74 + P(2,4) + PS150 + PS151;
const float PS153 = P(1,2)*PS60;
const float PS154 = P(1,3)*PS74;
const float PS155 = P(0,1)*PS72 + P(1,1)*PS62 - P(1,13)*PS44 + P(1,14)*PS140 - P(1,15)*PS139 + P(1,4) + PS153 - PS154;
const float PS156 = 4*dvyVar;
const float PS157 = 4*dvzVar;
const float PS158 = P(0,4)*PS72 + P(1,4)*PS62 + P(2,4)*PS60 - P(3,4)*PS74 - P(4,13)*PS44 + P(4,14)*PS140 - P(4,15)*PS139 + P(4,4);
const float PS159 = 2*PS141;
const float PS160 = 2*PS68;
const float PS161 = PS65*dvyVar;
const float PS162 = 2*PS66;
const float PS163 = PS44*dvxVar;
const float PS164 = P(0,5)*PS72 + P(1,5)*PS62 + P(2,5)*PS60 - P(3,5)*PS74 + P(4,5) - P(5,13)*PS44 + P(5,14)*PS140 - P(5,15)*PS139;
const float PS165 = 2*PS71;
const float PS166 = 2*PS73;
const float PS167 = PS70*dvzVar;
const float PS168 = P(0,6)*PS72 + P(1,6)*PS62 + P(2,6)*PS60 - P(3,6)*PS74 + P(4,6) - P(6,13)*PS44 + P(6,14)*PS140 - P(6,15)*PS139;
const float PS169 = P(0,14)*PS74 - P(1,14)*PS60 - P(13,14)*PS162 - P(14,14)*PS65 + P(14,15)*PS160 + P(2,14)*PS62 + P(3,14)*PS72 + P(5,14);
const float PS170 = P(0,13)*PS74 - P(1,13)*PS60 - P(13,13)*PS162 - P(13,14)*PS65 + P(13,15)*PS160 + P(2,13)*PS62 + P(3,13)*PS72 + P(5,13);
const float PS171 = P(0,1)*PS74;
const float PS172 = -P(1,1)*PS60 - P(1,13)*PS162 - P(1,14)*PS65 + P(1,15)*PS160 + P(1,3)*PS72 + P(1,5) + PS150 + PS171;
const float PS173 = P(0,15)*PS74 - P(1,15)*PS60 - P(13,15)*PS162 - P(14,15)*PS65 + P(15,15)*PS160 + P(2,15)*PS62 + P(3,15)*PS72 + P(5,15);
const float PS174 = P(2,3)*PS62;
const float PS175 = -P(1,3)*PS60 - P(3,13)*PS162 - P(3,14)*PS65 + P(3,15)*PS160 + P(3,3)*PS72 + P(3,5) + PS148 + PS174;
const float PS176 = P(0,1)*PS60;
const float PS177 = P(0,0)*PS74 - P(0,13)*PS162 - P(0,14)*PS65 + P(0,15)*PS160 + P(0,2)*PS62 + P(0,5) + PS144 - PS176;
const float PS178 = P(2,3)*PS72;
const float PS179 = P(0,2)*PS74 - P(2,13)*PS162 - P(2,14)*PS65 + P(2,15)*PS160 + P(2,2)*PS62 + P(2,5) - PS153 + PS178;
const float PS180 = 4*dvxVar;
const float PS181 = P(0,5)*PS74 - P(1,5)*PS60 + P(2,5)*PS62 + P(3,5)*PS72 - P(5,13)*PS162 - P(5,14)*PS65 + P(5,15)*PS160 + P(5,5);
const float PS182 = P(0,6)*PS74 - P(1,6)*PS60 + P(2,6)*PS62 + P(3,6)*PS72 + P(5,6) - P(6,13)*PS162 - P(6,14)*PS65 + P(6,15)*PS160;
const float PS183 = P(0,15)*PS60 + P(1,15)*PS74 + P(13,15)*PS166 - P(14,15)*PS165 - P(15,15)*PS70 - P(2,15)*PS72 + P(3,15)*PS62 + P(6,15);
const float PS184 = P(0,14)*PS60 + P(1,14)*PS74 + P(13,14)*PS166 - P(14,14)*PS165 - P(14,15)*PS70 - P(2,14)*PS72 + P(3,14)*PS62 + P(6,14);
const float PS185 = P(0,13)*PS60 + P(1,13)*PS74 + P(13,13)*PS166 - P(13,14)*PS165 - P(13,15)*PS70 - P(2,13)*PS72 + P(3,13)*PS62 + P(6,13);
const float PS186 = P(0,6)*PS60 + P(1,6)*PS74 - P(2,6)*PS72 + P(3,6)*PS62 + P(6,13)*PS166 - P(6,14)*PS165 - P(6,15)*PS70 + P(6,6);
// covariance update
SquareMatrix24f nextP;
// calculate variances and upper diagonal covariances for quaternion, velocity, position and gyro bias states
nextP(0,0) = PS0*PS1 - PS11*PS23 - PS12*PS26 - PS13*PS29 + PS14*PS6 + PS17*PS7 + PS2*PS3 + PS20*PS9 + PS33 + PS4*PS5;
nextP(0,1) = -PS1*PS36 + PS11*PS33 - PS12*PS29 + PS13*PS26 - PS14*PS34 + PS17*PS9 - PS20*PS7 + PS23 + PS3*PS35 - PS35*PS5;
nextP(1,1) = PS1*PS42 + PS11*PS80 - PS12*PS89 + PS13*PS82 + PS2*PS5 + PS3*PS4 - PS34*PS85 - PS7*PS87 + PS77*PS9 + PS92;
nextP(0,2) = -PS1*PS37 + PS11*PS29 + PS12*PS33 - PS13*PS23 - PS14*PS9 - PS17*PS34 + PS20*PS6 + PS26 - PS3*PS38 + PS37*PS5;
nextP(1,2) = PS1*PS40 + PS11*PS89 + PS12*PS80 - PS13*PS92 - PS3*PS40 - PS34*PS77 - PS39*PS5 + PS6*PS87 + PS82 - PS85*PS9;
nextP(2,2) = PS0*PS5 + PS1*PS4 + PS103*PS6 + PS104*PS11 + PS106*PS12 - PS108*PS34 - PS109*PS9 - PS111*PS13 + PS113 + PS3*PS42;
nextP(0,3) = PS1*PS39 - PS11*PS26 + PS12*PS23 + PS13*PS33 + PS14*PS7 - PS17*PS6 - PS20*PS34 + PS29 - PS3*PS39 - PS40*PS5;
nextP(1,3) = -PS1*PS38 - PS11*PS82 + PS12*PS92 + PS13*PS80 - PS3*PS37 - PS34*PS87 + PS38*PS5 - PS6*PS77 + PS7*PS85 + PS89;
nextP(2,3) = -PS1*PS35 - PS103*PS34 + PS104 + PS106*PS13 - PS108*PS6 + PS109*PS7 - PS11*PS113 + PS111*PS12 + PS3*PS36 - PS36*PS5;
nextP(3,3) = PS0*PS3 + PS1*PS2 - PS11*PS128 + PS12*PS124 + PS123*PS7 + PS125*PS13 - PS126*PS34 - PS127*PS6 + PS129 + PS42*PS5;
nextP(0,4) = PS23*PS62 + PS26*PS60 - PS44*PS45 - PS46*PS48 - PS52*PS53 + PS54*PS56 + PS57*PS58 + PS63;
nextP(1,4) = -PS44*PS93 - PS46*PS95 + PS54*PS97 + PS60*PS82 + PS62*PS92 + PS72*PS80 - PS74*PS89 + PS98;
nextP(2,4) = -PS104*PS74 + PS106*PS72 + PS111*PS62 + PS113*PS60 - PS114*PS44 - PS116*PS46 + PS118*PS54 + PS119;
nextP(3,4) = PS124*PS62 + PS125*PS72 + PS128*PS60 - PS129*PS74 - PS130*PS44 - PS132*PS46 + PS134*PS54 + PS135;
nextP(4,4) = -PS139*PS142 + PS140*PS146 - PS141*PS44 - PS145*PS74 + PS149*PS72 + PS152*PS60 + PS155*PS62 + PS156*ecl::powf(PS54, 2) + PS157*ecl::powf(PS46, 2) + PS158 + ecl::powf(PS44, 2)*dvxVar;
nextP(0,5) = -PS23*PS60 + PS26*PS62 + PS48*PS68 + PS52*PS58 + PS53*PS57 - PS55*PS65 - PS66*PS67 + PS69;
nextP(1,5) = PS100 - PS60*PS92 + PS62*PS82 - PS65*PS96 - PS66*PS99 + PS68*PS95 + PS72*PS89 + PS74*PS80;
nextP(2,5) = PS104*PS72 + PS106*PS74 - PS111*PS60 + PS113*PS62 + PS116*PS68 - PS117*PS65 - PS120*PS66 + PS121;
nextP(3,5) = -PS124*PS60 + PS125*PS74 + PS128*PS62 + PS129*PS72 + PS132*PS68 - PS133*PS65 - PS136*PS66 + PS137;
nextP(4,5) = -PS140*PS161 + PS142*PS160 + PS145*PS72 - PS146*PS65 + PS149*PS74 + PS152*PS62 - PS155*PS60 - PS157*PS46*PS68 - PS159*PS66 + PS162*PS163 + PS164;
nextP(5,5) = PS157*ecl::powf(PS68, 2) + PS160*PS173 - PS162*PS170 - PS169*PS65 - PS172*PS60 + PS175*PS72 + PS177*PS74 + PS179*PS62 + PS180*ecl::powf(PS66, 2) + PS181 + ecl::powf(PS65, 2)*dvyVar;
nextP(0,6) = PS23*PS74 - PS26*PS72 - PS47*PS70 + PS53*PS61 - PS56*PS71 + PS58*PS59 + PS67*PS73 + PS75;
nextP(1,6) = PS101 + PS60*PS80 + PS62*PS89 - PS70*PS94 - PS71*PS97 - PS72*PS82 + PS73*PS99 + PS74*PS92;
nextP(2,6) = PS104*PS62 + PS106*PS60 + PS111*PS74 - PS113*PS72 - PS115*PS70 - PS118*PS71 + PS120*PS73 + PS122;
nextP(3,6) = PS124*PS74 + PS125*PS60 - PS128*PS72 + PS129*PS62 - PS131*PS70 - PS134*PS71 + PS136*PS73 + PS138;
nextP(4,6) = PS139*PS167 - PS142*PS70 + PS145*PS62 - PS146*PS165 + PS149*PS60 - PS152*PS72 + PS155*PS74 - PS156*PS54*PS71 + PS159*PS73 - PS163*PS166 + PS168;
nextP(5,6) = -PS160*PS167 + PS161*PS165 - PS165*PS169 + PS166*PS170 + PS172*PS74 - PS173*PS70 + PS175*PS62 + PS177*PS60 - PS179*PS72 - PS180*PS66*PS73 + PS182;
nextP(6,6) = PS156*ecl::powf(PS71, 2) - PS165*PS184 + PS166*PS185 + PS180*ecl::powf(PS73, 2) - PS183*PS70 + PS186 + PS60*(P(0,0)*PS60 + P(0,13)*PS166 - P(0,14)*PS165 - P(0,15)*PS70 + P(0,3)*PS62 + P(0,6) - PS151 + PS171) + PS62*(P(0,3)*PS60 + P(3,13)*PS166 - P(3,14)*PS165 - P(3,15)*PS70 + P(3,3)*PS62 + P(3,6) + PS154 - PS178) + ecl::powf(PS70, 2)*dvzVar - PS72*(P(1,2)*PS74 + P(2,13)*PS166 - P(2,14)*PS165 - P(2,15)*PS70 - P(2,2)*PS72 + P(2,6) + PS147 + PS174) + PS74*(P(1,1)*PS74 + P(1,13)*PS166 - P(1,14)*PS165 - P(1,15)*PS70 - P(1,2)*PS72 + P(1,6) + PS143 + PS176);
nextP(0,7) = P(0,7) - P(1,7)*PS11 - P(2,7)*PS12 - P(3,7)*PS13 + P(7,10)*PS6 + P(7,11)*PS7 + P(7,12)*PS9 + PS63*dt;
nextP(1,7) = P(0,7)*PS11 + P(1,7) + P(2,7)*PS13 - P(3,7)*PS12 - P(7,10)*PS34 + P(7,11)*PS9 - P(7,12)*PS7 + PS98*dt;
nextP(2,7) = P(0,7)*PS12 - P(1,7)*PS13 + P(2,7) + P(3,7)*PS11 - P(7,10)*PS9 - P(7,11)*PS34 + P(7,12)*PS6 + PS119*dt;
nextP(3,7) = P(0,7)*PS13 + P(1,7)*PS12 - P(2,7)*PS11 + P(3,7) + P(7,10)*PS7 - P(7,11)*PS6 - P(7,12)*PS34 + PS135*dt;
nextP(4,7) = P(0,7)*PS72 + P(1,7)*PS62 + P(2,7)*PS60 - P(3,7)*PS74 + P(4,7) - P(7,13)*PS44 + P(7,14)*PS140 - P(7,15)*PS139 + PS158*dt;
nextP(5,7) = P(0,7)*PS74 - P(1,7)*PS60 + P(2,7)*PS62 + P(3,7)*PS72 + P(5,7) - P(7,13)*PS162 - P(7,14)*PS65 + P(7,15)*PS160 + dt*(P(0,4)*PS74 - P(1,4)*PS60 + P(2,4)*PS62 + P(3,4)*PS72 - P(4,13)*PS162 - P(4,14)*PS65 + P(4,15)*PS160 + P(4,5));
nextP(6,7) = P(0,7)*PS60 + P(1,7)*PS74 - P(2,7)*PS72 + P(3,7)*PS62 + P(6,7) + P(7,13)*PS166 - P(7,14)*PS165 - P(7,15)*PS70 + dt*(P(0,4)*PS60 + P(1,4)*PS74 - P(2,4)*PS72 + P(3,4)*PS62 + P(4,13)*PS166 - P(4,14)*PS165 - P(4,15)*PS70 + P(4,6));
nextP(7,7) = P(4,7)*dt + P(7,7) + dt*(P(4,4)*dt + P(4,7));
nextP(0,8) = P(0,8) - P(1,8)*PS11 - P(2,8)*PS12 - P(3,8)*PS13 + P(8,10)*PS6 + P(8,11)*PS7 + P(8,12)*PS9 + PS69*dt;
nextP(1,8) = P(0,8)*PS11 + P(1,8) + P(2,8)*PS13 - P(3,8)*PS12 - P(8,10)*PS34 + P(8,11)*PS9 - P(8,12)*PS7 + PS100*dt;
nextP(2,8) = P(0,8)*PS12 - P(1,8)*PS13 + P(2,8) + P(3,8)*PS11 - P(8,10)*PS9 - P(8,11)*PS34 + P(8,12)*PS6 + PS121*dt;
nextP(3,8) = P(0,8)*PS13 + P(1,8)*PS12 - P(2,8)*PS11 + P(3,8) + P(8,10)*PS7 - P(8,11)*PS6 - P(8,12)*PS34 + PS137*dt;
nextP(4,8) = P(0,8)*PS72 + P(1,8)*PS62 + P(2,8)*PS60 - P(3,8)*PS74 + P(4,8) - P(8,13)*PS44 + P(8,14)*PS140 - P(8,15)*PS139 + PS164*dt;
nextP(5,8) = P(0,8)*PS74 - P(1,8)*PS60 + P(2,8)*PS62 + P(3,8)*PS72 + P(5,8) - P(8,13)*PS162 - P(8,14)*PS65 + P(8,15)*PS160 + PS181*dt;
nextP(6,8) = P(0,8)*PS60 + P(1,8)*PS74 - P(2,8)*PS72 + P(3,8)*PS62 + P(6,8) + P(8,13)*PS166 - P(8,14)*PS165 - P(8,15)*PS70 + dt*(P(0,5)*PS60 + P(1,5)*PS74 - P(2,5)*PS72 + P(3,5)*PS62 + P(5,13)*PS166 - P(5,14)*PS165 - P(5,15)*PS70 + P(5,6));
nextP(7,8) = P(4,8)*dt + P(7,8) + dt*(P(4,5)*dt + P(5,7));
nextP(8,8) = P(5,8)*dt + P(8,8) + dt*(P(5,5)*dt + P(5,8));
nextP(0,9) = P(0,9) - P(1,9)*PS11 - P(2,9)*PS12 - P(3,9)*PS13 + P(9,10)*PS6 + P(9,11)*PS7 + P(9,12)*PS9 + PS75*dt;
nextP(1,9) = P(0,9)*PS11 + P(1,9) + P(2,9)*PS13 - P(3,9)*PS12 - P(9,10)*PS34 + P(9,11)*PS9 - P(9,12)*PS7 + PS101*dt;
nextP(2,9) = P(0,9)*PS12 - P(1,9)*PS13 + P(2,9) + P(3,9)*PS11 - P(9,10)*PS9 - P(9,11)*PS34 + P(9,12)*PS6 + PS122*dt;
nextP(3,9) = P(0,9)*PS13 + P(1,9)*PS12 - P(2,9)*PS11 + P(3,9) + P(9,10)*PS7 - P(9,11)*PS6 - P(9,12)*PS34 + PS138*dt;
nextP(4,9) = P(0,9)*PS72 + P(1,9)*PS62 + P(2,9)*PS60 - P(3,9)*PS74 + P(4,9) - P(9,13)*PS44 + P(9,14)*PS140 - P(9,15)*PS139 + PS168*dt;
nextP(5,9) = P(0,9)*PS74 - P(1,9)*PS60 + P(2,9)*PS62 + P(3,9)*PS72 + P(5,9) - P(9,13)*PS162 - P(9,14)*PS65 + P(9,15)*PS160 + PS182*dt;
nextP(6,9) = P(0,9)*PS60 + P(1,9)*PS74 - P(2,9)*PS72 + P(3,9)*PS62 + P(6,9) + P(9,13)*PS166 - P(9,14)*PS165 - P(9,15)*PS70 + PS186*dt;
nextP(7,9) = P(4,9)*dt + P(7,9) + dt*(P(4,6)*dt + P(6,7));
nextP(8,9) = P(5,9)*dt + P(8,9) + dt*(P(5,6)*dt + P(6,8));
nextP(9,9) = P(6,9)*dt + P(9,9) + dt*(P(6,6)*dt + P(6,9));
nextP(0,10) = PS14;
nextP(1,10) = PS85;
nextP(2,10) = PS109;
nextP(3,10) = PS123;
nextP(4,10) = P(0,10)*PS72 + P(1,10)*PS62 - P(10,13)*PS44 + P(10,14)*PS140 - P(10,15)*PS139 + P(2,10)*PS60 - P(3,10)*PS74 + P(4,10);
nextP(5,10) = P(0,10)*PS74 - P(1,10)*PS60 - P(10,13)*PS162 - P(10,14)*PS65 + P(10,15)*PS160 + P(2,10)*PS62 + P(3,10)*PS72 + P(5,10);
nextP(6,10) = P(0,10)*PS60 + P(1,10)*PS74 + P(10,13)*PS166 - P(10,14)*PS165 - P(10,15)*PS70 - P(2,10)*PS72 + P(3,10)*PS62 + P(6,10);
nextP(7,10) = P(4,10)*dt + P(7,10);
nextP(8,10) = P(5,10)*dt + P(8,10);
nextP(9,10) = P(6,10)*dt + P(9,10);
nextP(10,10) = P(10,10);
nextP(0,11) = PS17;
nextP(1,11) = PS77;
nextP(2,11) = PS108;
nextP(3,11) = PS127;
nextP(4,11) = P(0,11)*PS72 + P(1,11)*PS62 - P(11,13)*PS44 + P(11,14)*PS140 - P(11,15)*PS139 + P(2,11)*PS60 - P(3,11)*PS74 + P(4,11);
nextP(5,11) = P(0,11)*PS74 - P(1,11)*PS60 - P(11,13)*PS162 - P(11,14)*PS65 + P(11,15)*PS160 + P(2,11)*PS62 + P(3,11)*PS72 + P(5,11);
nextP(6,11) = P(0,11)*PS60 + P(1,11)*PS74 + P(11,13)*PS166 - P(11,14)*PS165 - P(11,15)*PS70 - P(2,11)*PS72 + P(3,11)*PS62 + P(6,11);
nextP(7,11) = P(4,11)*dt + P(7,11);
nextP(8,11) = P(5,11)*dt + P(8,11);
nextP(9,11) = P(6,11)*dt + P(9,11);
nextP(10,11) = P(10,11);
nextP(11,11) = P(11,11);
nextP(0,12) = PS20;
nextP(1,12) = PS87;
nextP(2,12) = PS103;
nextP(3,12) = PS126;
nextP(4,12) = P(0,12)*PS72 + P(1,12)*PS62 - P(12,13)*PS44 + P(12,14)*PS140 - P(12,15)*PS139 + P(2,12)*PS60 - P(3,12)*PS74 + P(4,12);
nextP(5,12) = P(0,12)*PS74 - P(1,12)*PS60 - P(12,13)*PS162 - P(12,14)*PS65 + P(12,15)*PS160 + P(2,12)*PS62 + P(3,12)*PS72 + P(5,12);
nextP(6,12) = P(0,12)*PS60 + P(1,12)*PS74 + P(12,13)*PS166 - P(12,14)*PS165 - P(12,15)*PS70 - P(2,12)*PS72 + P(3,12)*PS62 + P(6,12);
nextP(7,12) = P(4,12)*dt + P(7,12);
nextP(8,12) = P(5,12)*dt + P(8,12);
nextP(9,12) = P(6,12)*dt + P(9,12);
nextP(10,12) = P(10,12);
nextP(11,12) = P(11,12);
nextP(12,12) = P(12,12);
// process noise contribution for delta angle states can be very small compared to
// the variances, therefore use algorithm to minimise numerical error
for (unsigned i = 10; i <=12; i++) {
const int index = i-10;
nextP(i,i) = kahanSummation(nextP(i,i), process_noise(i), _delta_angle_bias_var_accum(index));
}
if (!_accel_bias_inhibit[0]) {
// calculate variances and upper diagonal covariances for IMU X axis delta velocity bias state
nextP(0,13) = PS45;
nextP(1,13) = PS93;
nextP(2,13) = PS114;
nextP(3,13) = PS130;
nextP(4,13) = PS141;
nextP(5,13) = PS170;
nextP(6,13) = PS185;
nextP(7,13) = P(4,13)*dt + P(7,13);
nextP(8,13) = P(5,13)*dt + P(8,13);
nextP(9,13) = P(6,13)*dt + P(9,13);
nextP(10,13) = P(10,13);
nextP(11,13) = P(11,13);
nextP(12,13) = P(12,13);
nextP(13,13) = P(13,13);
// add process noise that is not from the IMU
// process noise contribution for delta velocity states can be very small compared to
// the variances, therefore use algorithm to minimise numerical error
nextP(13,13) = kahanSummation(nextP(13,13), process_noise(13), _delta_vel_bias_var_accum(0));
} else {
nextP.uncorrelateCovarianceSetVariance<1>(13, _prev_dvel_bias_var(0));
_delta_vel_bias_var_accum(0) = 0.f;
}
if (!_accel_bias_inhibit[1]) {
// calculate variances and upper diagonal covariances for IMU Y axis delta velocity bias state
nextP(0,14) = PS55;
nextP(1,14) = PS96;
nextP(2,14) = PS117;
nextP(3,14) = PS133;
nextP(4,14) = PS146;
nextP(5,14) = PS169;
nextP(6,14) = PS184;
nextP(7,14) = P(4,14)*dt + P(7,14);
nextP(8,14) = P(5,14)*dt + P(8,14);
nextP(9,14) = P(6,14)*dt + P(9,14);
nextP(10,14) = P(10,14);
nextP(11,14) = P(11,14);
nextP(12,14) = P(12,14);
nextP(13,14) = P(13,14);
nextP(14,14) = P(14,14);
// add process noise that is not from the IMU
// process noise contribution for delta velocity states can be very small compared to
// the variances, therefore use algorithm to minimise numerical error
nextP(14,14) = kahanSummation(nextP(14,14), process_noise(14), _delta_vel_bias_var_accum(1));
} else {
nextP.uncorrelateCovarianceSetVariance<1>(14, _prev_dvel_bias_var(1));
_delta_vel_bias_var_accum(1) = 0.f;
}
if (!_accel_bias_inhibit[2]) {
// calculate variances and upper diagonal covariances for IMU Z axis delta velocity bias state
nextP(0,15) = PS47;
nextP(1,15) = PS94;
nextP(2,15) = PS115;
nextP(3,15) = PS131;
nextP(4,15) = PS142;
nextP(5,15) = PS173;
nextP(6,15) = PS183;
nextP(7,15) = P(4,15)*dt + P(7,15);
nextP(8,15) = P(5,15)*dt + P(8,15);
nextP(9,15) = P(6,15)*dt + P(9,15);
nextP(10,15) = P(10,15);
nextP(11,15) = P(11,15);
nextP(12,15) = P(12,15);
nextP(13,15) = P(13,15);
nextP(14,15) = P(14,15);
nextP(15,15) = P(15,15);
// add process noise that is not from the IMU
// process noise contribution for delta velocity states can be very small compared to
// the variances, therefore use algorithm to minimise numerical error
nextP(15,15) = kahanSummation(nextP(15,15), process_noise(15), _delta_vel_bias_var_accum(2));
} else {
nextP.uncorrelateCovarianceSetVariance<1>(15, _prev_dvel_bias_var(2));
_delta_vel_bias_var_accum(2) = 0.f;
}
// Don't do covariance prediction on magnetic field states unless we are using 3-axis fusion
if (_control_status.flags.mag_3D) {
// calculate variances and upper diagonal covariances for earth and body magnetic field states
nextP(0,16) = P(0,16) - P(1,16)*PS11 + P(10,16)*PS6 + P(11,16)*PS7 + P(12,16)*PS9 - P(2,16)*PS12 - P(3,16)*PS13;
nextP(1,16) = P(0,16)*PS11 + P(1,16) - P(10,16)*PS34 + P(11,16)*PS9 - P(12,16)*PS7 + P(2,16)*PS13 - P(3,16)*PS12;
nextP(2,16) = P(0,16)*PS12 - P(1,16)*PS13 - P(10,16)*PS9 - P(11,16)*PS34 + P(12,16)*PS6 + P(2,16) + P(3,16)*PS11;
nextP(3,16) = P(0,16)*PS13 + P(1,16)*PS12 + P(10,16)*PS7 - P(11,16)*PS6 - P(12,16)*PS34 - P(2,16)*PS11 + P(3,16);
nextP(4,16) = P(0,16)*PS72 + P(1,16)*PS62 - P(13,16)*PS44 + P(14,16)*PS140 - P(15,16)*PS139 + P(2,16)*PS60 - P(3,16)*PS74 + P(4,16);
nextP(5,16) = P(0,16)*PS74 - P(1,16)*PS60 - P(13,16)*PS162 - P(14,16)*PS65 + P(15,16)*PS160 + P(2,16)*PS62 + P(3,16)*PS72 + P(5,16);
nextP(6,16) = P(0,16)*PS60 + P(1,16)*PS74 + P(13,16)*PS166 - P(14,16)*PS165 - P(15,16)*PS70 - P(2,16)*PS72 + P(3,16)*PS62 + P(6,16);
nextP(7,16) = P(4,16)*dt + P(7,16);
nextP(8,16) = P(5,16)*dt + P(8,16);
nextP(9,16) = P(6,16)*dt + P(9,16);
nextP(10,16) = P(10,16);
nextP(11,16) = P(11,16);
nextP(12,16) = P(12,16);
nextP(13,16) = P(13,16);
nextP(14,16) = P(14,16);
nextP(15,16) = P(15,16);
nextP(16,16) = P(16,16);
nextP(0,17) = P(0,17) - P(1,17)*PS11 + P(10,17)*PS6 + P(11,17)*PS7 + P(12,17)*PS9 - P(2,17)*PS12 - P(3,17)*PS13;
nextP(1,17) = P(0,17)*PS11 + P(1,17) - P(10,17)*PS34 + P(11,17)*PS9 - P(12,17)*PS7 + P(2,17)*PS13 - P(3,17)*PS12;
nextP(2,17) = P(0,17)*PS12 - P(1,17)*PS13 - P(10,17)*PS9 - P(11,17)*PS34 + P(12,17)*PS6 + P(2,17) + P(3,17)*PS11;
nextP(3,17) = P(0,17)*PS13 + P(1,17)*PS12 + P(10,17)*PS7 - P(11,17)*PS6 - P(12,17)*PS34 - P(2,17)*PS11 + P(3,17);
nextP(4,17) = P(0,17)*PS72 + P(1,17)*PS62 - P(13,17)*PS44 + P(14,17)*PS140 - P(15,17)*PS139 + P(2,17)*PS60 - P(3,17)*PS74 + P(4,17);
nextP(5,17) = P(0,17)*PS74 - P(1,17)*PS60 - P(13,17)*PS162 - P(14,17)*PS65 + P(15,17)*PS160 + P(2,17)*PS62 + P(3,17)*PS72 + P(5,17);
nextP(6,17) = P(0,17)*PS60 + P(1,17)*PS74 + P(13,17)*PS166 - P(14,17)*PS165 - P(15,17)*PS70 - P(2,17)*PS72 + P(3,17)*PS62 + P(6,17);
nextP(7,17) = P(4,17)*dt + P(7,17);
nextP(8,17) = P(5,17)*dt + P(8,17);
nextP(9,17) = P(6,17)*dt + P(9,17);
nextP(10,17) = P(10,17);
nextP(11,17) = P(11,17);
nextP(12,17) = P(12,17);
nextP(13,17) = P(13,17);
nextP(14,17) = P(14,17);
nextP(15,17) = P(15,17);
nextP(16,17) = P(16,17);
nextP(17,17) = P(17,17);
nextP(0,18) = P(0,18) - P(1,18)*PS11 + P(10,18)*PS6 + P(11,18)*PS7 + P(12,18)*PS9 - P(2,18)*PS12 - P(3,18)*PS13;
nextP(1,18) = P(0,18)*PS11 + P(1,18) - P(10,18)*PS34 + P(11,18)*PS9 - P(12,18)*PS7 + P(2,18)*PS13 - P(3,18)*PS12;
nextP(2,18) = P(0,18)*PS12 - P(1,18)*PS13 - P(10,18)*PS9 - P(11,18)*PS34 + P(12,18)*PS6 + P(2,18) + P(3,18)*PS11;
nextP(3,18) = P(0,18)*PS13 + P(1,18)*PS12 + P(10,18)*PS7 - P(11,18)*PS6 - P(12,18)*PS34 - P(2,18)*PS11 + P(3,18);
nextP(4,18) = P(0,18)*PS72 + P(1,18)*PS62 - P(13,18)*PS44 + P(14,18)*PS140 - P(15,18)*PS139 + P(2,18)*PS60 - P(3,18)*PS74 + P(4,18);
nextP(5,18) = P(0,18)*PS74 - P(1,18)*PS60 - P(13,18)*PS162 - P(14,18)*PS65 + P(15,18)*PS160 + P(2,18)*PS62 + P(3,18)*PS72 + P(5,18);
nextP(6,18) = P(0,18)*PS60 + P(1,18)*PS74 + P(13,18)*PS166 - P(14,18)*PS165 - P(15,18)*PS70 - P(2,18)*PS72 + P(3,18)*PS62 + P(6,18);
nextP(7,18) = P(4,18)*dt + P(7,18);
nextP(8,18) = P(5,18)*dt + P(8,18);
nextP(9,18) = P(6,18)*dt + P(9,18);
nextP(10,18) = P(10,18);
nextP(11,18) = P(11,18);
nextP(12,18) = P(12,18);
nextP(13,18) = P(13,18);
nextP(14,18) = P(14,18);
nextP(15,18) = P(15,18);
nextP(16,18) = P(16,18);
nextP(17,18) = P(17,18);
nextP(18,18) = P(18,18);
nextP(0,19) = P(0,19) - P(1,19)*PS11 + P(10,19)*PS6 + P(11,19)*PS7 + P(12,19)*PS9 - P(2,19)*PS12 - P(3,19)*PS13;
nextP(1,19) = P(0,19)*PS11 + P(1,19) - P(10,19)*PS34 + P(11,19)*PS9 - P(12,19)*PS7 + P(2,19)*PS13 - P(3,19)*PS12;
nextP(2,19) = P(0,19)*PS12 - P(1,19)*PS13 - P(10,19)*PS9 - P(11,19)*PS34 + P(12,19)*PS6 + P(2,19) + P(3,19)*PS11;
nextP(3,19) = P(0,19)*PS13 + P(1,19)*PS12 + P(10,19)*PS7 - P(11,19)*PS6 - P(12,19)*PS34 - P(2,19)*PS11 + P(3,19);
nextP(4,19) = P(0,19)*PS72 + P(1,19)*PS62 - P(13,19)*PS44 + P(14,19)*PS140 - P(15,19)*PS139 + P(2,19)*PS60 - P(3,19)*PS74 + P(4,19);
nextP(5,19) = P(0,19)*PS74 - P(1,19)*PS60 - P(13,19)*PS162 - P(14,19)*PS65 + P(15,19)*PS160 + P(2,19)*PS62 + P(3,19)*PS72 + P(5,19);
nextP(6,19) = P(0,19)*PS60 + P(1,19)*PS74 + P(13,19)*PS166 - P(14,19)*PS165 - P(15,19)*PS70 - P(2,19)*PS72 + P(3,19)*PS62 + P(6,19);
nextP(7,19) = P(4,19)*dt + P(7,19);
nextP(8,19) = P(5,19)*dt + P(8,19);
nextP(9,19) = P(6,19)*dt + P(9,19);
nextP(10,19) = P(10,19);
nextP(11,19) = P(11,19);
nextP(12,19) = P(12,19);
nextP(13,19) = P(13,19);
nextP(14,19) = P(14,19);
nextP(15,19) = P(15,19);
nextP(16,19) = P(16,19);
nextP(17,19) = P(17,19);
nextP(18,19) = P(18,19);
nextP(19,19) = P(19,19);
nextP(0,20) = P(0,20) - P(1,20)*PS11 + P(10,20)*PS6 + P(11,20)*PS7 + P(12,20)*PS9 - P(2,20)*PS12 - P(3,20)*PS13;
nextP(1,20) = P(0,20)*PS11 + P(1,20) - P(10,20)*PS34 + P(11,20)*PS9 - P(12,20)*PS7 + P(2,20)*PS13 - P(3,20)*PS12;
nextP(2,20) = P(0,20)*PS12 - P(1,20)*PS13 - P(10,20)*PS9 - P(11,20)*PS34 + P(12,20)*PS6 + P(2,20) + P(3,20)*PS11;
nextP(3,20) = P(0,20)*PS13 + P(1,20)*PS12 + P(10,20)*PS7 - P(11,20)*PS6 - P(12,20)*PS34 - P(2,20)*PS11 + P(3,20);
nextP(4,20) = P(0,20)*PS72 + P(1,20)*PS62 - P(13,20)*PS44 + P(14,20)*PS140 - P(15,20)*PS139 + P(2,20)*PS60 - P(3,20)*PS74 + P(4,20);
nextP(5,20) = P(0,20)*PS74 - P(1,20)*PS60 - P(13,20)*PS162 - P(14,20)*PS65 + P(15,20)*PS160 + P(2,20)*PS62 + P(3,20)*PS72 + P(5,20);
nextP(6,20) = P(0,20)*PS60 + P(1,20)*PS74 + P(13,20)*PS166 - P(14,20)*PS165 - P(15,20)*PS70 - P(2,20)*PS72 + P(3,20)*PS62 + P(6,20);
nextP(7,20) = P(4,20)*dt + P(7,20);
nextP(8,20) = P(5,20)*dt + P(8,20);
nextP(9,20) = P(6,20)*dt + P(9,20);
nextP(10,20) = P(10,20);
nextP(11,20) = P(11,20);
nextP(12,20) = P(12,20);
nextP(13,20) = P(13,20);
nextP(14,20) = P(14,20);
nextP(15,20) = P(15,20);
nextP(16,20) = P(16,20);
nextP(17,20) = P(17,20);
nextP(18,20) = P(18,20);
nextP(19,20) = P(19,20);
nextP(20,20) = P(20,20);
nextP(0,21) = P(0,21) - P(1,21)*PS11 + P(10,21)*PS6 + P(11,21)*PS7 + P(12,21)*PS9 - P(2,21)*PS12 - P(3,21)*PS13;
nextP(1,21) = P(0,21)*PS11 + P(1,21) - P(10,21)*PS34 + P(11,21)*PS9 - P(12,21)*PS7 + P(2,21)*PS13 - P(3,21)*PS12;
nextP(2,21) = P(0,21)*PS12 - P(1,21)*PS13 - P(10,21)*PS9 - P(11,21)*PS34 + P(12,21)*PS6 + P(2,21) + P(3,21)*PS11;
nextP(3,21) = P(0,21)*PS13 + P(1,21)*PS12 + P(10,21)*PS7 - P(11,21)*PS6 - P(12,21)*PS34 - P(2,21)*PS11 + P(3,21);
nextP(4,21) = P(0,21)*PS72 + P(1,21)*PS62 - P(13,21)*PS44 + P(14,21)*PS140 - P(15,21)*PS139 + P(2,21)*PS60 - P(3,21)*PS74 + P(4,21);
nextP(5,21) = P(0,21)*PS74 - P(1,21)*PS60 - P(13,21)*PS162 - P(14,21)*PS65 + P(15,21)*PS160 + P(2,21)*PS62 + P(3,21)*PS72 + P(5,21);
nextP(6,21) = P(0,21)*PS60 + P(1,21)*PS74 + P(13,21)*PS166 - P(14,21)*PS165 - P(15,21)*PS70 - P(2,21)*PS72 + P(3,21)*PS62 + P(6,21);
nextP(7,21) = P(4,21)*dt + P(7,21);
nextP(8,21) = P(5,21)*dt + P(8,21);
nextP(9,21) = P(6,21)*dt + P(9,21);
nextP(10,21) = P(10,21);
nextP(11,21) = P(11,21);
nextP(12,21) = P(12,21);
nextP(13,21) = P(13,21);
nextP(14,21) = P(14,21);
nextP(15,21) = P(15,21);
nextP(16,21) = P(16,21);
nextP(17,21) = P(17,21);
nextP(18,21) = P(18,21);
nextP(19,21) = P(19,21);
nextP(20,21) = P(20,21);
nextP(21,21) = P(21,21);
// add process noise that is not from the IMU
for (unsigned i = 16; i <= 21; i++) {
nextP(i,i) += process_noise(i);
}
}
// Don't do covariance prediction on wind states unless we are using them
if (_control_status.flags.wind) {
// calculate variances and upper diagonal covariances for wind states
nextP(0,22) = P(0,22) - P(1,22)*PS11 + P(10,22)*PS6 + P(11,22)*PS7 + P(12,22)*PS9 - P(2,22)*PS12 - P(3,22)*PS13;
nextP(1,22) = P(0,22)*PS11 + P(1,22) - P(10,22)*PS34 + P(11,22)*PS9 - P(12,22)*PS7 + P(2,22)*PS13 - P(3,22)*PS12;
nextP(2,22) = P(0,22)*PS12 - P(1,22)*PS13 - P(10,22)*PS9 - P(11,22)*PS34 + P(12,22)*PS6 + P(2,22) + P(3,22)*PS11;
nextP(3,22) = P(0,22)*PS13 + P(1,22)*PS12 + P(10,22)*PS7 - P(11,22)*PS6 - P(12,22)*PS34 - P(2,22)*PS11 + P(3,22);
nextP(4,22) = P(0,22)*PS72 + P(1,22)*PS62 - P(13,22)*PS44 + P(14,22)*PS140 - P(15,22)*PS139 + P(2,22)*PS60 - P(3,22)*PS74 + P(4,22);
nextP(5,22) = P(0,22)*PS74 - P(1,22)*PS60 - P(13,22)*PS162 - P(14,22)*PS65 + P(15,22)*PS160 + P(2,22)*PS62 + P(3,22)*PS72 + P(5,22);
nextP(6,22) = P(0,22)*PS60 + P(1,22)*PS74 + P(13,22)*PS166 - P(14,22)*PS165 - P(15,22)*PS70 - P(2,22)*PS72 + P(3,22)*PS62 + P(6,22);
nextP(7,22) = P(4,22)*dt + P(7,22);
nextP(8,22) = P(5,22)*dt + P(8,22);
nextP(9,22) = P(6,22)*dt + P(9,22);
nextP(10,22) = P(10,22);
nextP(11,22) = P(11,22);
nextP(12,22) = P(12,22);
nextP(13,22) = P(13,22);
nextP(14,22) = P(14,22);
nextP(15,22) = P(15,22);
nextP(16,22) = P(16,22);
nextP(17,22) = P(17,22);
nextP(18,22) = P(18,22);
nextP(19,22) = P(19,22);
nextP(20,22) = P(20,22);
nextP(21,22) = P(21,22);
nextP(22,22) = P(22,22);
nextP(0,23) = P(0,23) - P(1,23)*PS11 + P(10,23)*PS6 + P(11,23)*PS7 + P(12,23)*PS9 - P(2,23)*PS12 - P(3,23)*PS13;
nextP(1,23) = P(0,23)*PS11 + P(1,23) - P(10,23)*PS34 + P(11,23)*PS9 - P(12,23)*PS7 + P(2,23)*PS13 - P(3,23)*PS12;
nextP(2,23) = P(0,23)*PS12 - P(1,23)*PS13 - P(10,23)*PS9 - P(11,23)*PS34 + P(12,23)*PS6 + P(2,23) + P(3,23)*PS11;
nextP(3,23) = P(0,23)*PS13 + P(1,23)*PS12 + P(10,23)*PS7 - P(11,23)*PS6 - P(12,23)*PS34 - P(2,23)*PS11 + P(3,23);
nextP(4,23) = P(0,23)*PS72 + P(1,23)*PS62 - P(13,23)*PS44 + P(14,23)*PS140 - P(15,23)*PS139 + P(2,23)*PS60 - P(3,23)*PS74 + P(4,23);
nextP(5,23) = P(0,23)*PS74 - P(1,23)*PS60 - P(13,23)*PS162 - P(14,23)*PS65 + P(15,23)*PS160 + P(2,23)*PS62 + P(3,23)*PS72 + P(5,23);
nextP(6,23) = P(0,23)*PS60 + P(1,23)*PS74 + P(13,23)*PS166 - P(14,23)*PS165 - P(15,23)*PS70 - P(2,23)*PS72 + P(3,23)*PS62 + P(6,23);
nextP(7,23) = P(4,23)*dt + P(7,23);
nextP(8,23) = P(5,23)*dt + P(8,23);
nextP(9,23) = P(6,23)*dt + P(9,23);
nextP(10,23) = P(10,23);
nextP(11,23) = P(11,23);
nextP(12,23) = P(12,23);
nextP(13,23) = P(13,23);
nextP(14,23) = P(14,23);
nextP(15,23) = P(15,23);
nextP(16,23) = P(16,23);
nextP(17,23) = P(17,23);
nextP(18,23) = P(18,23);
nextP(19,23) = P(19,23);
nextP(20,23) = P(20,23);
nextP(21,23) = P(21,23);
nextP(22,23) = P(22,23);
nextP(23,23) = P(23,23);
// add process noise that is not from the IMU
for (unsigned i = 22; i <= 23; i++) {
nextP(i,i) += process_noise(i);
}
}
// stop position covariance growth if our total position variance reaches 100m
// this can happen if we lose gps for some time
if ((P(7,7) + P(8,8)) > 1e4f) {
for (uint8_t i = 7; i <= 8; i++) {
for (uint8_t j = 0; j < _k_num_states; j++) {
nextP(i,j) = P(i,j);
nextP(j,i) = P(j,i);
}
}
}
// covariance matrix is symmetrical, so copy upper half to lower half
for (unsigned row = 1; row < _k_num_states; row++) {
for (unsigned column = 0 ; column < row; column++) {
P(row,column) = P(column,row) = nextP(column,row);
}
}
// copy variances (diagonals)
for (unsigned i = 0; i < _k_num_states; i++) {
P(i,i) = nextP(i,i);
}
// fix gross errors in the covariance matrix and ensure rows and
// columns for un-used states are zero
fixCovarianceErrors(false);
}
void Ekf::fixCovarianceErrors(bool force_symmetry)
{
// NOTE: This limiting is a last resort and should not be relied on
// TODO: Split covariance prediction into separate F*P*transpose(F) and Q contributions
// and set corresponding entries in Q to zero when states exceed 50% of the limit
// Covariance diagonal limits. Use same values for states which
// belong to the same group (e.g. vel_x, vel_y, vel_z)
float P_lim[8] = {};
P_lim[0] = 1.0f; // quaternion max var
P_lim[1] = 1e6f; // velocity max var
P_lim[2] = 1e6f; // positiion max var
P_lim[3] = 1.0f; // gyro bias max var
P_lim[4] = 1.0f; // delta velocity z bias max var
P_lim[5] = 1.0f; // earth mag field max var
P_lim[6] = 1.0f; // body mag field max var
P_lim[7] = 1e6f; // wind max var
for (int i = 0; i <= 3; i++) {
// quaternion states
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[0]);
}
for (int i = 4; i <= 6; i++) {
// NED velocity states
P(i,i) = math::constrain(P(i,i), 1e-6f, P_lim[1]);
}
for (int i = 7; i <= 9; i++) {
// NED position states
P(i,i) = math::constrain(P(i,i), 1e-6f, P_lim[2]);
}
for (int i = 10; i <= 12; i++) {
// gyro bias states
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[3]);
}
// force symmetry on the quaternion, velocity and position state covariances
if (force_symmetry) {
P.makeRowColSymmetric<13>(0);
}
// the following states are optional and are deactivated when not required
// by ensuring the corresponding covariance matrix values are kept at zero
// accelerometer bias states
if (!_accel_bias_inhibit[0] || !_accel_bias_inhibit[1] || !_accel_bias_inhibit[2]) {
// Find the maximum delta velocity bias state variance and request a covariance reset if any variance is below the safe minimum
const float minSafeStateVar = 1e-9f;
float maxStateVar = minSafeStateVar;
bool resetRequired = false;
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
if (_accel_bias_inhibit[stateIndex - 13]) {
// Skip the check for the inhibited axis
continue;
}
if (P(stateIndex,stateIndex) > maxStateVar) {
maxStateVar = P(stateIndex,stateIndex);
} else if (P(stateIndex,stateIndex) < minSafeStateVar) {
resetRequired = true;
}
}
// To ensure stability of the covariance matrix operations, the ratio of a max and min variance must
// not exceed 100 and the minimum variance must not fall below the target minimum
// Also limit variance to a maximum equivalent to a 0.1g uncertainty
const float minStateVarTarget = 5E-8f;
float minAllowedStateVar = fmaxf(0.01f * maxStateVar, minStateVarTarget);
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
if (_accel_bias_inhibit[stateIndex - 13]) {
// Skip the check for the inhibited axis
continue;
}
P(stateIndex,stateIndex) = math::constrain(P(stateIndex,stateIndex), minAllowedStateVar, sq(0.1f * CONSTANTS_ONE_G * _dt_ekf_avg));
}
// If any one axis has fallen below the safe minimum, all delta velocity covariance terms must be reset to zero
if (resetRequired) {
P.uncorrelateCovariance<3>(13);
}
// Run additional checks to see if the delta velocity bias has hit limits in a direction that is clearly wrong
// calculate accel bias term aligned with the gravity vector
const float dVel_bias_lim = 0.9f * _params.acc_bias_lim * _dt_ekf_avg;
const float down_dvel_bias = _state.delta_vel_bias.dot(Vector3f(_R_to_earth.row(2)));
// check that the vertical component of accel bias is consistent with both the vertical position and velocity innovation
bool bad_acc_bias = (fabsf(down_dvel_bias) > dVel_bias_lim
&& ( (down_dvel_bias * _gps_vel_innov(2) < 0.0f && _control_status.flags.gps)
|| (down_dvel_bias * _ev_vel_innov(2) < 0.0f && _control_status.flags.ev_vel) )
&& ( (down_dvel_bias * _gps_pos_innov(2) < 0.0f && _control_status.flags.gps_hgt)
|| (down_dvel_bias * _baro_hgt_innov(2) < 0.0f && _control_status.flags.baro_hgt)
|| (down_dvel_bias * _rng_hgt_innov(2) < 0.0f && _control_status.flags.rng_hgt)
|| (down_dvel_bias * _ev_pos_innov(2) < 0.0f && _control_status.flags.ev_hgt) ) );
// record the pass/fail
if (!bad_acc_bias) {
_fault_status.flags.bad_acc_bias = false;
_time_acc_bias_check = _time_last_imu;
} else {
_fault_status.flags.bad_acc_bias = true;
}
// if we have failed for 7 seconds continuously, reset the accel bias covariances to fix bad conditioning of
// the covariance matrix but preserve the variances (diagonals) to allow bias learning to continue
if (isTimedOut(_time_acc_bias_check, (uint64_t)7e6)) {
P.uncorrelateCovariance<3>(13);
_time_acc_bias_check = _time_last_imu;
_fault_status.flags.bad_acc_bias = false;
_warning_events.flags.invalid_accel_bias_cov_reset = true;
ECL_WARN("invalid accel bias - covariance reset");
} else if (force_symmetry) {
// ensure the covariance values are symmetrical
P.makeRowColSymmetric<3>(13);
}
}
// magnetic field states
if (!_control_status.flags.mag_3D) {
zeroMagCov();
} else {
// constrain variances
for (int i = 16; i <= 18; i++) {
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[5]);
}
for (int i = 19; i <= 21; i++) {
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[6]);
}
// force symmetry
if (force_symmetry) {
P.makeRowColSymmetric<3>(16);
P.makeRowColSymmetric<3>(19);
}
}
// wind velocity states
if (!_control_status.flags.wind) {
P.uncorrelateCovarianceSetVariance<2>(22, 0.0f);
} else {
// constrain variances
for (int i = 22; i <= 23; i++) {
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[7]);
}
// force symmetry
if (force_symmetry) {
P.makeRowColSymmetric<2>(22);
}
}
}
// if the covariance correction will result in a negative variance, then
// the covariance matrix is unhealthy and must be corrected
bool Ekf::checkAndFixCovarianceUpdate(const SquareMatrix24f& KHP) {
bool healthy = true;
for (int i = 0; i < _k_num_states; i++) {
if (P(i, i) < KHP(i, i)) {
P.uncorrelateCovarianceSetVariance<1>(i, 0.0f);
healthy = false;
}
}
return healthy;
}
void Ekf::resetMagRelatedCovariances()
{
resetQuatCov();
resetMagCov();
}
void Ekf::resetQuatCov(){
zeroQuatCov();
// define the initial angle uncertainty as variances for a rotation vector
Vector3f rot_vec_var;
rot_vec_var.setAll(sq(_params.initial_tilt_err));
initialiseQuatCovariances(rot_vec_var);
}
void Ekf::zeroQuatCov()
{
P.uncorrelateCovarianceSetVariance<2>(0, 0.0f);
P.uncorrelateCovarianceSetVariance<2>(2, 0.0f);
}
void Ekf::resetMagCov()
{
// reset the corresponding rows and columns in the covariance matrix and
// set the variances on the magnetic field states to the measurement variance
clearMagCov();
P.uncorrelateCovarianceSetVariance<3>(16, sq(_params.mag_noise));
P.uncorrelateCovarianceSetVariance<3>(19, sq(_params.mag_noise));
if (!_control_status.flags.mag_3D) {
// save covariance data for re-use when auto-switching between heading and 3-axis fusion
// if already in 3-axis fusion mode, the covariances are automatically saved when switching out
// of this mode
saveMagCovData();
}
}
void Ekf::clearMagCov()
{
zeroMagCov();
_mag_decl_cov_reset = false;
}
void Ekf::zeroMagCov()
{
P.uncorrelateCovarianceSetVariance<3>(16, 0.0f);
P.uncorrelateCovarianceSetVariance<3>(19, 0.0f);
}
void Ekf::resetWindCovariance()
{
if (_tas_data_ready && (_imu_sample_delayed.time_us - _airspeed_sample_delayed.time_us < (uint64_t)5e5)) {
// Derived using EKF/matlab/scripts/Inertial Nav EKF/wind_cov.py
// TODO: explicitly include the sideslip angle in the derivation
const float euler_yaw = getEuler321Yaw(_state.quat_nominal);
const float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f));
constexpr float initial_sideslip_uncertainty = math::radians(15.0f);
const float initial_wind_var_body_y = sq(_airspeed_sample_delayed.true_airspeed * sinf(initial_sideslip_uncertainty));
constexpr float R_yaw = sq(math::radians(10.0f));
const float cos_yaw = cosf(euler_yaw);
const float sin_yaw = sinf(euler_yaw);
// rotate wind velocity into earth frame aligned with vehicle yaw
const float Wx = _state.wind_vel(0) * cos_yaw + _state.wind_vel(1) * sin_yaw;
const float Wy = -_state.wind_vel(0) * sin_yaw + _state.wind_vel(1) * cos_yaw;
// it is safer to remove all existing correlations to other states at this time
P.uncorrelateCovarianceSetVariance<2>(22, 0.0f);
P(22,22) = R_TAS*sq(cos_yaw) + R_yaw*sq(-Wx*sin_yaw - Wy*cos_yaw) + initial_wind_var_body_y*sq(sin_yaw);
P(22,23) = R_TAS*sin_yaw*cos_yaw + R_yaw*(-Wx*sin_yaw - Wy*cos_yaw)*(Wx*cos_yaw - Wy*sin_yaw) - initial_wind_var_body_y*sin_yaw*cos_yaw;
P(23,22) = P(22,23);
P(23,23) = R_TAS*sq(sin_yaw) + R_yaw*sq(Wx*cos_yaw - Wy*sin_yaw) + initial_wind_var_body_y*sq(cos_yaw);
// Now add the variance due to uncertainty in vehicle velocity that was used to calculate the initial wind speed
P(22,22) += P(4,4);
P(23,23) += P(5,5);
} else {
// without airspeed, start with a small initial uncertainty to improve the initial estimate
P.uncorrelateCovarianceSetVariance<2>(22, _params.initial_wind_uncertainty);
}
}