autopilot_tester.cpp
24.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "autopilot_tester.h"
#include "math_helpers.h"
#include <iostream>
#include <future>
#include <thread>
#include <unistd.h>
std::string connection_url {"udp://"};
std::optional<float> speed_factor {std::nullopt};
AutopilotTester::AutopilotTester() :
_real_time_report_thread([this]()
{
report_speed_factor();
})
{
}
AutopilotTester::~AutopilotTester()
{
_should_exit = true;
_real_time_report_thread.join();
}
void AutopilotTester::connect(const std::string uri)
{
ConnectionResult ret = _mavsdk.add_any_connection(uri);
REQUIRE(ret == ConnectionResult::Success);
std::cout << time_str() << "Waiting for system connect" << std::endl;
REQUIRE(poll_condition_with_timeout(
[this]() { return _mavsdk.is_connected(); }, std::chrono::seconds(25)));
auto &system = _mavsdk.system();
_action.reset(new Action(system));
_failure.reset(new Failure(system));
_info.reset(new Info(system));
_manual_control.reset(new ManualControl(system));
_mission.reset(new Mission(system));
_mission_raw.reset(new MissionRaw(system));
_offboard.reset(new Offboard(system));
_param.reset(new Param(system));
_telemetry.reset(new Telemetry(system));
}
void AutopilotTester::wait_until_ready()
{
std::cout << time_str() << "Waiting for system to be ready" << std::endl;
CHECK(poll_condition_with_timeout(
[this]() { return _telemetry->health_all_ok(); }, std::chrono::seconds(30)));
// FIXME: workaround to prevent race between PX4 switching to Hold mode
// and us trying to arm and take off. If PX4 is not in Hold mode yet,
// our arming presumably triggers a failsafe in manual mode.
std::this_thread::sleep_for(std::chrono::seconds(1));
}
void AutopilotTester::wait_until_ready_local_position_only()
{
std::cout << time_str() << "Waiting for system to be ready" << std::endl;
CHECK(poll_condition_with_timeout(
[this]() {
return
(_telemetry->health().is_gyrometer_calibration_ok &&
_telemetry->health().is_accelerometer_calibration_ok &&
_telemetry->health().is_magnetometer_calibration_ok &&
_telemetry->health().is_level_calibration_ok &&
_telemetry->health().is_local_position_ok);
}, std::chrono::seconds(20)));
}
void AutopilotTester::store_home()
{
request_ground_truth();
std::cout << time_str() << "Waiting to get home position" << std::endl;
CHECK(poll_condition_with_timeout(
[this]() {
_home = _telemetry->ground_truth();
return std::isfinite(_home.latitude_deg) && std::isfinite(_home.longitude_deg);
}, std::chrono::seconds(10)));
}
void AutopilotTester::check_home_within(float acceptance_radius_m)
{
CHECK(ground_truth_horizontal_position_close_to(_home, acceptance_radius_m));
}
void AutopilotTester::check_home_not_within(float min_distance_m)
{
CHECK(ground_truth_horizontal_position_far_from(_home, min_distance_m));
}
void AutopilotTester::set_takeoff_altitude(const float altitude_m)
{
CHECK(Action::Result::Success == _action->set_takeoff_altitude(altitude_m));
const auto result = _action->get_takeoff_altitude();
CHECK(result.first == Action::Result::Success);
CHECK(result.second == Approx(altitude_m));
}
void AutopilotTester::set_height_source(AutopilotTester::HeightSource height_source)
{
switch (height_source) {
case HeightSource::Baro:
CHECK(_param->set_param_int("EKF2_HGT_MODE", 0) == Param::Result::Success);
break;
case HeightSource::Gps:
CHECK(_param->set_param_int("EKF2_HGT_MODE", 1) == Param::Result::Success);
}
}
void AutopilotTester::arm()
{
const auto result = _action->arm();
REQUIRE(result == Action::Result::Success);
}
void AutopilotTester::takeoff()
{
const auto result = _action->takeoff();
REQUIRE(result == Action::Result::Success);
}
void AutopilotTester::land()
{
const auto result = _action->land();
REQUIRE(result == Action::Result::Success);
}
void AutopilotTester::transition_to_fixedwing()
{
const auto result = _action->transition_to_fixedwing();
REQUIRE(result == Action::Result::Success);
}
void AutopilotTester::transition_to_multicopter()
{
const auto result = _action->transition_to_multicopter();
REQUIRE(result == Action::Result::Success);
}
void AutopilotTester::wait_until_disarmed(std::chrono::seconds timeout_duration)
{
REQUIRE(poll_condition_with_timeout(
[this]() { return !_telemetry->armed(); }, timeout_duration));
}
void AutopilotTester::wait_until_hovering()
{
wait_for_landed_state(Telemetry::LandedState::InAir, std::chrono::seconds(30));
}
void AutopilotTester::prepare_square_mission(MissionOptions mission_options)
{
const auto ct = get_coordinate_transformation();
Mission::MissionPlan mission_plan {};
mission_plan.mission_items.push_back(create_mission_item({mission_options.leg_length_m, 0.}, mission_options, ct));
mission_plan.mission_items.push_back(create_mission_item({mission_options.leg_length_m, mission_options.leg_length_m},
mission_options, ct));
mission_plan.mission_items.push_back(create_mission_item({0., mission_options.leg_length_m}, mission_options, ct));
_mission->set_return_to_launch_after_mission(mission_options.rtl_at_end);
REQUIRE(_mission->upload_mission(mission_plan) == Mission::Result::Success);
}
void AutopilotTester::prepare_straight_mission(MissionOptions mission_options)
{
const auto ct = get_coordinate_transformation();
Mission::MissionPlan mission_plan {};
mission_plan.mission_items.push_back(create_mission_item({0, 0.}, mission_options, ct));
mission_plan.mission_items.push_back(create_mission_item({mission_options.leg_length_m, 0}, mission_options, ct));
mission_plan.mission_items.push_back(create_mission_item({2 * mission_options.leg_length_m, 0}, mission_options, ct));
mission_plan.mission_items.push_back(create_mission_item({3 * mission_options.leg_length_m, 0}, mission_options, ct));
mission_plan.mission_items.push_back(create_mission_item({4 * mission_options.leg_length_m, 0}, mission_options, ct));
_mission->set_return_to_launch_after_mission(mission_options.rtl_at_end);
REQUIRE(_mission->upload_mission(mission_plan) == Mission::Result::Success);
}
void AutopilotTester::execute_mission()
{
std::promise<void> prom;
auto fut = prom.get_future();
REQUIRE(_mission->start_mission() == Mission::Result::Success);
// TODO: Adapt time limit based on mission size, flight speed, sim speed factor, etc.
wait_for_mission_finished(std::chrono::seconds(60));
}
void AutopilotTester::execute_mission_and_lose_gps()
{
CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success);
start_and_wait_for_first_mission_item();
CHECK(_failure->inject(Failure::FailureUnit::SensorGps, Failure::FailureType::Off, 0) == Failure::Result::Success);
// We expect that a blind land is performed.
wait_for_flight_mode(Telemetry::FlightMode::Land, std::chrono::seconds(30));
}
void AutopilotTester::execute_mission_and_lose_mag()
{
CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success);
start_and_wait_for_first_mission_item();
CHECK(_failure->inject(Failure::FailureUnit::SensorMag, Failure::FailureType::Off, 0) == Failure::Result::Success);
// We except the mission to continue without mag just fine.
REQUIRE(poll_condition_with_timeout(
[this]() {
auto progress = _mission->mission_progress();
return progress.current == progress.total;
}, std::chrono::seconds(90)));
}
void AutopilotTester::execute_mission_and_lose_baro()
{
CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success);
start_and_wait_for_first_mission_item();
CHECK(_failure->inject(Failure::FailureUnit::SensorBaro, Failure::FailureType::Off, 0) == Failure::Result::Success);
// We except the mission to continue without baro just fine.
REQUIRE(poll_condition_with_timeout(
[this]() {
auto progress = _mission->mission_progress();
return progress.current == progress.total;
}, std::chrono::seconds(90)));
}
void AutopilotTester::execute_mission_and_get_baro_stuck()
{
CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success);
start_and_wait_for_first_mission_item();
CHECK(_failure->inject(Failure::FailureUnit::SensorBaro, Failure::FailureType::Stuck, 0) == Failure::Result::Success);
// We except the mission to continue with a stuck baro just fine.
REQUIRE(poll_condition_with_timeout(
[this]() {
auto progress = _mission->mission_progress();
return progress.current == progress.total;
}, std::chrono::seconds(90)));
}
void AutopilotTester::execute_mission_and_get_mag_stuck()
{
CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success);
start_and_wait_for_first_mission_item();
CHECK(_failure->inject(Failure::FailureUnit::SensorMag, Failure::FailureType::Stuck, 0) == Failure::Result::Success);
// We except the mission to continue with a stuck mag just fine.
REQUIRE(poll_condition_with_timeout(
[this]() {
auto progress = _mission->mission_progress();
return progress.current == progress.total;
}, std::chrono::seconds(120)));
}
CoordinateTransformation AutopilotTester::get_coordinate_transformation()
{
const auto home = _telemetry->home();
CHECK(std::isfinite(home.latitude_deg));
CHECK(std::isfinite(home.longitude_deg));
return CoordinateTransformation({home.latitude_deg, home.longitude_deg});
}
Mission::MissionItem AutopilotTester::create_mission_item(
const CoordinateTransformation::LocalCoordinate &local_coordinate,
const MissionOptions &mission_options,
const CoordinateTransformation &ct)
{
auto mission_item = Mission::MissionItem{};
const auto pos_north = ct.global_from_local(local_coordinate);
mission_item.latitude_deg = pos_north.latitude_deg;
mission_item.longitude_deg = pos_north.longitude_deg;
mission_item.relative_altitude_m = mission_options.relative_altitude_m;
mission_item.is_fly_through = mission_options.fly_through;
return mission_item;
}
void AutopilotTester::load_qgc_mission_raw_and_move_here(const std::string &plan_file)
{
auto import_result = _mission_raw->import_qgroundcontrol_mission(plan_file);
REQUIRE(import_result.first == MissionRaw::Result::Success);
move_mission_raw_here(import_result.second.mission_items);
REQUIRE(_mission_raw->upload_mission(import_result.second.mission_items) == MissionRaw::Result::Success);
}
void AutopilotTester::execute_mission_raw()
{
std::promise<void> prom;
auto fut = prom.get_future();
REQUIRE(_mission->start_mission() == Mission::Result::Success);
// TODO: Adapt time limit based on mission size, flight speed, sim speed factor, etc.
wait_for_mission_raw_finished(std::chrono::seconds(120));
}
void AutopilotTester::execute_rtl()
{
REQUIRE(Action::Result::Success == _action->return_to_launch());
}
void AutopilotTester::offboard_goto(const Offboard::PositionNedYaw &target, float acceptance_radius_m,
std::chrono::seconds timeout_duration)
{
_offboard->set_position_ned(target);
REQUIRE(_offboard->start() == Offboard::Result::Success);
CHECK(poll_condition_with_timeout(
[ = ]() { return estimated_position_close_to(target, acceptance_radius_m); }, timeout_duration));
std::cout << time_str() << "Target position reached" << std::endl;
}
void AutopilotTester::check_mission_item_speed_above(int item_index, float min_speed_m_s)
{
_telemetry->set_rate_velocity_ned(10);
_telemetry->subscribe_velocity_ned([item_index, min_speed_m_s, this](Telemetry::VelocityNed velocity) {
float horizontal = std::hypot(velocity.north_m_s, velocity.east_m_s);
auto progress = _mission->mission_progress();
if (progress.current == item_index) {
CHECK(horizontal > min_speed_m_s);
}
});
}
void AutopilotTester::fly_forward_in_posctl()
{
const unsigned manual_control_rate_hz = 50;
// Send something to make sure RC is available.
for (unsigned i = 0; i < 1 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
}
CHECK(_manual_control->start_position_control() == ManualControl::Result::Success);
// Climb up for 20 seconds
for (unsigned i = 0; i < 20 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 1.f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
}
// Fly forward for 60 seconds
for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.5f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
}
// Descend until disarmed
for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.0f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
if (!_telemetry->in_air()) {
break;
}
}
}
void AutopilotTester::fly_forward_in_altctl()
{
const unsigned manual_control_rate_hz = 50;
// Send something to make sure RC is available.
for (unsigned i = 0; i < 1 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
}
CHECK(_manual_control->start_altitude_control() == ManualControl::Result::Success);
// Climb up for 20 seconds
for (unsigned i = 0; i < 20 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 1.f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
}
// Fly forward for 60 seconds
for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.5f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
}
// Descend until disarmed
for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) {
CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.0f, 0.f) == ManualControl::Result::Success);
sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz));
if (!_telemetry->in_air()) {
break;
}
}
}
void AutopilotTester::check_tracks_mission(float corridor_radius_m)
{
auto mission = _mission->download_mission();
CHECK(mission.first == Mission::Result::Success);
std::vector<Mission::MissionItem> mission_items = mission.second.mission_items;
auto ct = get_coordinate_transformation();
_telemetry->set_rate_position_velocity_ned(5);
_telemetry->subscribe_position_velocity_ned([ct, mission_items, corridor_radius_m,
this](Telemetry::PositionVelocityNed position_velocity_ned) {
auto progress = _mission->mission_progress();
if (progress.current > 0 && progress.current < progress.total) {
// Get shortest distance of current position to 3D line between previous and next waypoint
std::array<float, 3> current { position_velocity_ned.position.north_m,
position_velocity_ned.position.east_m,
position_velocity_ned.position.down_m };
std::array<float, 3> wp_prev = get_local_mission_item<float>(mission_items[progress.current - 1], ct);
std::array<float, 3> wp_next = get_local_mission_item<float>(mission_items[progress.current], ct);
float distance_to_trajectory = point_to_line_distance(current, wp_prev, wp_next);
CHECK(distance_to_trajectory < corridor_radius_m);
}
});
}
void AutopilotTester::offboard_land()
{
Offboard::VelocityNedYaw land_velocity;
land_velocity.north_m_s = 0.0f;
land_velocity.east_m_s = 0.0f;
land_velocity.down_m_s = 1.0f;
land_velocity.yaw_deg = 0.0f;
_offboard->set_velocity_ned(land_velocity);
}
bool AutopilotTester::estimated_position_close_to(const Offboard::PositionNedYaw &target_pos, float acceptance_radius_m)
{
Telemetry::PositionNed est_pos = _telemetry->position_velocity_ned().position;
const float distance_m = std::sqrt(sq(est_pos.north_m - target_pos.north_m) +
sq(est_pos.east_m - target_pos.east_m) +
sq(est_pos.down_m - target_pos.down_m));
const bool pass = distance_m < acceptance_radius_m;
if (!pass) {
std::cout << time_str() << "distance: " << distance_m << ", " << "acceptance: " << acceptance_radius_m << std::endl;
}
return pass;
}
bool AutopilotTester::estimated_horizontal_position_close_to(const Offboard::PositionNedYaw &target_pos,
float acceptance_radius_m)
{
Telemetry::PositionNed est_pos = _telemetry->position_velocity_ned().position;
return sq(est_pos.north_m - target_pos.north_m) +
sq(est_pos.east_m - target_pos.east_m) < sq(acceptance_radius_m);
}
void AutopilotTester::request_ground_truth()
{
CHECK(_telemetry->set_rate_ground_truth(15) == Telemetry::Result::Success);
}
bool AutopilotTester::ground_truth_horizontal_position_close_to(const Telemetry::GroundTruth &target_pos,
float acceptance_radius_m)
{
CHECK(std::isfinite(target_pos.latitude_deg));
CHECK(std::isfinite(target_pos.longitude_deg));
using GlobalCoordinate = CoordinateTransformation::GlobalCoordinate;
using LocalCoordinate = CoordinateTransformation::LocalCoordinate;
CoordinateTransformation ct(GlobalCoordinate{target_pos.latitude_deg, target_pos.longitude_deg});
Telemetry::GroundTruth current_pos = _telemetry->ground_truth();
CHECK(std::isfinite(current_pos.latitude_deg));
CHECK(std::isfinite(current_pos.longitude_deg));
GlobalCoordinate global_current;
global_current.latitude_deg = current_pos.latitude_deg;
global_current.longitude_deg = current_pos.longitude_deg;
LocalCoordinate local_pos = ct.local_from_global(global_current);
const double distance_m = sqrt(sq(local_pos.north_m) + sq(local_pos.east_m));
const bool pass = distance_m < acceptance_radius_m;
if (!pass) {
std::cout << time_str() << "target_pos.lat: " << target_pos.latitude_deg << std::endl;
std::cout << time_str() << "target_pos.lon: " << target_pos.longitude_deg << std::endl;
std::cout << time_str() << "current.lat: " << current_pos.latitude_deg << std::endl;
std::cout << time_str() << "current.lon: " << current_pos.longitude_deg << std::endl;
std::cout << time_str() << "Distance: " << distance_m << std::endl;
std::cout << time_str() << "Acceptance radius: " << acceptance_radius_m << std::endl;
}
return pass;
}
bool AutopilotTester::ground_truth_horizontal_position_far_from(const Telemetry::GroundTruth &target_pos,
float min_distance_m)
{
CHECK(std::isfinite(target_pos.latitude_deg));
CHECK(std::isfinite(target_pos.longitude_deg));
using GlobalCoordinate = CoordinateTransformation::GlobalCoordinate;
using LocalCoordinate = CoordinateTransformation::LocalCoordinate;
CoordinateTransformation ct(GlobalCoordinate{target_pos.latitude_deg, target_pos.longitude_deg});
Telemetry::GroundTruth current_pos = _telemetry->ground_truth();
CHECK(std::isfinite(current_pos.latitude_deg));
CHECK(std::isfinite(current_pos.longitude_deg));
GlobalCoordinate global_current;
global_current.latitude_deg = current_pos.latitude_deg;
global_current.longitude_deg = current_pos.longitude_deg;
LocalCoordinate local_pos = ct.local_from_global(global_current);
const double distance_m = sqrt(sq(local_pos.north_m) + sq(local_pos.east_m));
const bool pass = distance_m > min_distance_m;
if (!pass) {
std::cout << time_str() << "target_pos.lat: " << target_pos.latitude_deg << std::endl;
std::cout << time_str() << "target_pos.lon: " << target_pos.longitude_deg << std::endl;
std::cout << time_str() << "current.lat: " << current_pos.latitude_deg << std::endl;
std::cout << time_str() << "current.lon: " << current_pos.longitude_deg << std::endl;
std::cout << time_str() << "Distance: " << distance_m << std::endl;
std::cout << time_str() << "Min distance: " << min_distance_m << std::endl;
}
return pass;
}
void AutopilotTester::start_and_wait_for_first_mission_item()
{
auto prom = std::promise<void> {};
auto fut = prom.get_future();
_mission->subscribe_mission_progress([&prom, this](Mission::MissionProgress progress) {
std::cout << time_str() << "Progress: " << progress.current << "/" << progress.total << std::endl;
if (progress.current >= 1) {
_mission->subscribe_mission_progress(nullptr);
prom.set_value();
}
});
REQUIRE(_mission->start_mission() == Mission::Result::Success);
REQUIRE(fut.wait_for(std::chrono::seconds(60)) == std::future_status::ready);
}
void AutopilotTester::wait_for_flight_mode(Telemetry::FlightMode flight_mode, std::chrono::seconds timeout)
{
auto prom = std::promise<void> {};
auto fut = prom.get_future();
_telemetry->subscribe_flight_mode([&prom, flight_mode, this](Telemetry::FlightMode new_flight_mode) {
if (new_flight_mode == flight_mode) {
_telemetry->subscribe_flight_mode(nullptr);
prom.set_value();
}
});
REQUIRE(fut.wait_for(timeout) == std::future_status::ready);
}
void AutopilotTester::wait_for_landed_state(Telemetry::LandedState landed_state, std::chrono::seconds timeout)
{
auto prom = std::promise<void> {};
auto fut = prom.get_future();
_telemetry->subscribe_landed_state([&prom, landed_state, this](Telemetry::LandedState new_landed_state) {
if (new_landed_state == landed_state) {
_telemetry->subscribe_landed_state(nullptr);
prom.set_value();
}
});
REQUIRE(fut.wait_for(timeout) == std::future_status::ready);
}
void AutopilotTester::wait_for_mission_finished(std::chrono::seconds timeout)
{
auto prom = std::promise<void> {};
auto fut = prom.get_future();
_mission->subscribe_mission_progress([&prom, this](Mission::MissionProgress progress) {
if (progress.current == progress.total) {
_mission->subscribe_mission_progress(nullptr);
prom.set_value();
}
});
REQUIRE(fut.wait_for(timeout) == std::future_status::ready);
}
void AutopilotTester::wait_for_mission_raw_finished(std::chrono::seconds timeout)
{
auto prom = std::promise<void> {};
auto fut = prom.get_future();
_mission_raw->subscribe_mission_progress([&prom, this](MissionRaw::MissionProgress progress) {
if (progress.current == progress.total) {
_mission_raw->subscribe_mission_progress(nullptr);
prom.set_value();
}
});
REQUIRE(fut.wait_for(timeout) == std::future_status::ready);
}
void AutopilotTester::move_mission_raw_here(std::vector<MissionRaw::MissionItem> &mission_items)
{
const auto position = _telemetry->position();
REQUIRE(std::isfinite(position.latitude_deg));
REQUIRE(std::isfinite(position.longitude_deg));
auto offset_x = mission_items[0].x - static_cast<int32_t>(1e7 * position.latitude_deg);
auto offset_y = mission_items[1].y - static_cast<int32_t>(1e7 * position.longitude_deg);
for (auto &item : mission_items) {
if (item.frame == 3) { // MAV_FRAME_GLOBAL_RELATIVE_ALT
item.x -= offset_x;
}
item.y -= offset_y;
}
}
void AutopilotTester::report_speed_factor()
{
// We check the exit flag more often than the speed factor.
unsigned counter = 0;
while (!_should_exit) {
if (counter++ % 10 == 0) {
if (_info != nullptr) {
std::cout << "Current speed factor: " << _info->get_speed_factor().second ;
if (speed_factor.has_value()) {
std::cout << " (set: " << speed_factor.value() << ')';
}
std::cout << '\n';
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}