geo.cpp 15.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/****************************************************************************
 *
 *   Copyright (c) 2012-2014 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file geo.c
 *
 * Geo / math functions to perform geodesic calculations
 *
 * @author Thomas Gubler <thomasgubler@student.ethz.ch>
 * @author Julian Oes <joes@student.ethz.ch>
 * @author Lorenz Meier <lm@inf.ethz.ch>
 * @author Anton Babushkin <anton.babushkin@me.com>
 */

#include "geo.h"
#include <ecl.h>

#include <mathlib/mathlib.h>
#include <matrix/math.hpp>
#include <float.h>

using matrix::wrap_pi;
using matrix::wrap_2pi;

/*
 * Azimuthal Equidistant Projection
 * formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
 */

bool map_projection_initialized(const struct map_projection_reference_s *ref)
{
	return ref->init_done;
}

uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref)
{
	return ref->timestamp;
}

// lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp)
{
	ref->lat_rad = math::radians(lat_0);
	ref->lon_rad = math::radians(lon_0);
	ref->sin_lat = sin(ref->lat_rad);
	ref->cos_lat = cos(ref->lat_rad);

	ref->timestamp = timestamp;
	ref->init_done = true;

	return 0;
}

//lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_init(struct map_projection_reference_s *ref, double lat_0, double lon_0)
{
	return map_projection_init_timestamped(ref, lat_0, lon_0, ecl_absolute_time());
}

int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad)
{
	if (!map_projection_initialized(ref)) {
		return -1;
	}

	*ref_lat_rad = ref->lat_rad;
	*ref_lon_rad = ref->lon_rad;

	return 0;
}

int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y)
{
	if (!map_projection_initialized(ref)) {
		return -1;
	}

	const double lat_rad = math::radians(lat);
	const double lon_rad = math::radians(lon);

	const double sin_lat = sin(lat_rad);
	const double cos_lat = cos(lat_rad);

	const double cos_d_lon = cos(lon_rad - ref->lon_rad);

	const double arg = math::constrain(ref->sin_lat * sin_lat + ref->cos_lat * cos_lat * cos_d_lon, -1.0,  1.0);
	const double c = acos(arg);

	double k = 1.0;

	if (fabs(c) > 0) {
		k = (c / sin(c));
	}

	*x = static_cast<float>(k * (ref->cos_lat * sin_lat - ref->sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH);
	*y = static_cast<float>(k * cos_lat * sin(lon_rad - ref->lon_rad) * CONSTANTS_RADIUS_OF_EARTH);

	return 0;
}

int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon)
{
	if (!map_projection_initialized(ref)) {
		return -1;
	}

	const double x_rad = (double)x / CONSTANTS_RADIUS_OF_EARTH;
	const double y_rad = (double)y / CONSTANTS_RADIUS_OF_EARTH;
	const double c = sqrt(x_rad * x_rad + y_rad * y_rad);

	if (fabs(c) > 0) {
		const double sin_c = sin(c);
		const double cos_c = cos(c);

		const double lat_rad = asin(cos_c * ref->sin_lat + (x_rad * sin_c * ref->cos_lat) / c);
		const double lon_rad = (ref->lon_rad + atan2(y_rad * sin_c, c * ref->cos_lat * cos_c - x_rad * ref->sin_lat * sin_c));

		*lat = math::degrees(lat_rad);
		*lon = math::degrees(lon_rad);

	} else {
		*lat = math::degrees(ref->lat_rad);
		*lon = math::degrees(ref->lon_rad);
	}

	return 0;
}

float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{
	const double lat_now_rad = math::radians(lat_now);
	const double lat_next_rad = math::radians(lat_next);

	const double d_lat = lat_next_rad - lat_now_rad;
	const double d_lon = math::radians(lon_next) - math::radians(lon_now);

	const double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(lat_next_rad);

	const double c = atan2(sqrt(a), sqrt(1.0 - a));

	return static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * 2.0 * c);
}

void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,
					double *lat_target, double *lon_target)
{
	if (fabsf(dist) < FLT_EPSILON) {
		*lat_target = lat_A;
		*lon_target = lon_A;
	} else {
		float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B);
		waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target);
	}
}

void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,
					double *lat_target, double *lon_target)
{
	bearing = wrap_2pi(bearing);
	double radius_ratio = static_cast<double>(dist) / CONSTANTS_RADIUS_OF_EARTH;

	double lat_start_rad = math::radians(lat_start);
	double lon_start_rad = math::radians(lon_start);

	*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((double)bearing));
	*lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad),
					    cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target));

	*lat_target = math::degrees(*lat_target);
	*lon_target = math::degrees(*lon_target);
}

float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{
	const double lat_now_rad = math::radians(lat_now);
	const double lat_next_rad = math::radians(lat_next);

	const double cos_lat_next = cos(lat_next_rad);
	const double d_lon = math::radians(lon_next - lon_now);

	/* conscious mix of double and float trig function to maximize speed and efficiency */

	const float y = static_cast<float>(sin(d_lon) * cos_lat_next);
	const float x = static_cast<float>(cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos_lat_next * cos(d_lon));

	return wrap_pi(atan2f(y, x));
}

void
get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{
	const double lat_now_rad = math::radians(lat_now);
	const double lat_next_rad = math::radians(lat_next);
	const double d_lon = math::radians(lon_next) - math::radians(lon_now);

	/* conscious mix of double and float trig function to maximize speed and efficiency */
	*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)));
	*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad));
}

void
get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{
	double lat_now_rad = math::radians(lat_now);
	double lon_now_rad = math::radians(lon_now);
	double lat_next_rad = math::radians(lat_next);
	double lon_next_rad = math::radians(lon_next);

	double d_lat = lat_next_rad - lat_now_rad;
	double d_lon = lon_next_rad - lon_now_rad;

	/* conscious mix of double and float trig function to maximize speed and efficiency */
	*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lat);
	*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad));
}

void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res)
{
	double lat_now_rad = math::radians(lat_now);
	double lon_now_rad = math::radians(lon_now);

	*lat_res = math::degrees(lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH);
	*lon_res = math::degrees(lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad)));
}

// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>

int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
			 double lat_start, double lon_start, double lat_end, double lon_end)
{
	// This function returns the distance to the nearest point on the track line.  Distance is positive if current
	// position is right of the track and negative if left of the track as seen from a point on the track line
	// headed towards the end point.

	int return_value = -1;	// Set error flag, cleared when valid result calculated.
	crosstrack_error->past_end = false;
	crosstrack_error->distance = 0.0f;
	crosstrack_error->bearing = 0.0f;

	float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);

	// Return error if arguments are bad
	if (dist_to_end < 0.1f) {
		return -1;
	}

	float bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
	float bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
	float bearing_diff = wrap_pi(bearing_track - bearing_end);

	// Return past_end = true if past end point of line
	if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {
		crosstrack_error->past_end = true;
		return_value = 0;
		return return_value;
	}

	crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff);

	if (sinf(bearing_diff) >= 0) {
		crosstrack_error->bearing = wrap_pi(bearing_track - M_PI_2_F);

	} else {
		crosstrack_error->bearing = wrap_pi(bearing_track + M_PI_2_F);
	}

	return_value = 0;

	return return_value;
}

int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
			double lat_center, double lon_center,
			float radius, float arc_start_bearing, float arc_sweep)
{
	// This function returns the distance to the nearest point on the track arc.  Distance is positive if current
	// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
	// headed towards the end point.

	// Determine if the current position is inside or outside the sector between the line from the center
	// to the arc start and the line from the center to the arc end
	float bearing_sector_start = 0.0f;
	float bearing_sector_end = 0.0f;
	float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);

	int return_value = -1;		// Set error flag, cleared when valid result calculated.
	crosstrack_error->past_end = false;
	crosstrack_error->distance = 0.0f;
	crosstrack_error->bearing = 0.0f;

	// Return error if arguments are bad
	if (radius < 0.1f) {
		return return_value;
	}

	if (arc_sweep >= 0.0f) {
		bearing_sector_start = arc_start_bearing;
		bearing_sector_end = arc_start_bearing + arc_sweep;

		if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= (2 * M_PI_F); }

	} else {
		bearing_sector_end = arc_start_bearing;
		bearing_sector_start = arc_start_bearing - arc_sweep;

		if (bearing_sector_start < 0.0f) { bearing_sector_start += (2 * M_PI_F); }
	}

	bool in_sector = false;

	// Case where sector does not span zero
	if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start
	    && bearing_now <= bearing_sector_end) {

		in_sector = true;
	}

	// Case where sector does span zero
	if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start
			|| bearing_now < bearing_sector_end)) {

		in_sector = true;
	}

	// If in the sector then calculate distance and bearing to closest point
	if (in_sector) {
		crosstrack_error->past_end = false;
		float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);

		if (dist_to_center <= radius) {
			crosstrack_error->distance = radius - dist_to_center;
			crosstrack_error->bearing = bearing_now + M_PI_F;

		} else {
			crosstrack_error->distance = dist_to_center - radius;
			crosstrack_error->bearing = bearing_now;
		}

		// If out of the sector then calculate dist and bearing to start or end point

	} else {

		// Use the approximation  that 111,111 meters in the y direction is 1 degree (of latitude)
		// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to
		// calculate the position of the start and end points.  We should not be doing this often
		// as this function generally will not be called repeatedly when we are out of the sector.

		double start_disp_x = (double)radius * sin((double)arc_start_bearing);
		double start_disp_y = (double)radius * cos((double)arc_start_bearing);
		double end_disp_x = (double)radius * sin((double)wrap_pi(arc_start_bearing + arc_sweep));
		double end_disp_y = (double)radius * cos((double)wrap_pi(arc_start_bearing + arc_sweep));
		double lon_start = lon_now + start_disp_x / 111111.0;
		double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0;
		double lon_end = lon_now + end_disp_x / 111111.0;
		double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0;
		float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
		float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);

		if (dist_to_start < dist_to_end) {
			crosstrack_error->distance = dist_to_start;
			crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);

		} else {
			crosstrack_error->past_end = true;
			crosstrack_error->distance = dist_to_end;
			crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
		}
	}

	crosstrack_error->bearing = wrap_pi(crosstrack_error->bearing);
	return_value = 0;

	return return_value;
}

float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now,
		double lat_next, double lon_next, float alt_next,
		float *dist_xy, float *dist_z)
{
	double current_x_rad = math::radians(lat_next);
	double current_y_rad = math::radians(lon_next);
	double x_rad = math::radians(lat_now);
	double y_rad = math::radians(lon_now);

	double d_lat = x_rad - current_x_rad;
	double d_lon = y_rad - current_y_rad;

	double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad);
	double c = 2 * atan2(sqrt(a), sqrt(1 - a));

	const float dxy = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * c);
	const float dz = static_cast<float>(alt_now - alt_next);

	*dist_xy = fabsf(dxy);
	*dist_z = fabsf(dz);

	return sqrtf(dxy * dxy + dz * dz);
}

float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,
		float x_next, float y_next, float z_next,
		float *dist_xy, float *dist_z)
{
	float dx = x_now - x_next;
	float dy = y_now - y_next;
	float dz = z_now - z_next;

	*dist_xy = sqrtf(dx * dx + dy * dy);
	*dist_z = fabsf(dz);

	return sqrtf(dx * dx + dy * dy + dz * dz);
}