o1heap.c 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
// and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
// OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// Copyright (c) 2020 Pavel Kirienko
// Authors: Pavel Kirienko <pavel.kirienko@zubax.com>

#include "o1heap.h"
#include <assert.h>

// ---------------------------------------- BUILD CONFIGURATION OPTIONS ----------------------------------------

/// The assertion macro defaults to the standard assert().
/// It can be overridden to manually suppress assertion checks or use a different error handling policy.
#ifndef O1HEAP_ASSERT
// Intentional violation of MISRA: the assertion check macro cannot be replaced with a function definition.
#    define O1HEAP_ASSERT(x) assert(x)  // NOSONAR
#endif

/// Branch probability annotations are used to improve the worst case execution time (WCET). They are entirely optional.
/// A stock implementation is provided for some well-known compilers; for other compilers it defaults to nothing.
/// If you are using a different compiler, consider overriding this value.
#ifndef O1HEAP_LIKELY
#    if defined(__GNUC__) || defined(__clang__) || defined(__CC_ARM)
// Intentional violation of MISRA: branch hinting macro cannot be replaced with a function definition.
#        define O1HEAP_LIKELY(x) __builtin_expect((x), 1)  // NOSONAR
#    else
#        define O1HEAP_LIKELY(x) x
#    endif
#endif

/// This option is used for testing only. Do not use in production.
#if defined(O1HEAP_EXPOSE_INTERNALS) && O1HEAP_EXPOSE_INTERNALS
#    define O1HEAP_PRIVATE
#else
#    define O1HEAP_PRIVATE static inline
#endif

// ---------------------------------------- INTERNAL DEFINITIONS ----------------------------------------

#if !defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)
#    error "Unsupported language: ISO C99 or a newer version is required."
#endif

#if __STDC_VERSION__ < 201112L
// Intentional violation of MISRA: static assertion macro cannot be replaced with a function definition.
#    define static_assert(x, ...) typedef char _static_assert_gl(_static_assertion_, __LINE__)[(x) ? 1 : -1]  // NOSONAR
#    define _static_assert_gl(a, b) _static_assert_gl_impl(a, b)                                              // NOSONAR
// Intentional violation of MISRA: the paste operator ## cannot be avoided in this context.
#    define _static_assert_gl_impl(a, b) a##b  // NOSONAR
#endif

/// The overhead is at most O1HEAP_ALIGNMENT bytes large,
/// then follows the user data which shall keep the next fragment aligned.
#define FRAGMENT_SIZE_MIN (O1HEAP_ALIGNMENT * 2U)

/// This is risky, handle with care: if the allocation amount plus per-fragment overhead exceeds 2**(b-1),
/// where b is the pointer bit width, then ceil(log2(amount)) yields b; then 2**b causes an integer overflow.
/// To avoid this, we put a hard limit on fragment size (which is amount + per-fragment overhead): 2**(b-1)
#define FRAGMENT_SIZE_MAX ((SIZE_MAX >> 1U) + 1U)

/// Normally we should subtract log2(FRAGMENT_SIZE_MIN) but log2 is bulky to compute using the preprocessor only.
/// We will certainly end up with unused bins this way, but it is cheap to ignore.
#define NUM_BINS_MAX (sizeof(size_t) * 8U)

static_assert((O1HEAP_ALIGNMENT & (O1HEAP_ALIGNMENT - 1U)) == 0U, "Not a power of 2");
static_assert((FRAGMENT_SIZE_MIN & (FRAGMENT_SIZE_MIN - 1U)) == 0U, "Not a power of 2");
static_assert((FRAGMENT_SIZE_MAX & (FRAGMENT_SIZE_MAX - 1U)) == 0U, "Not a power of 2");

typedef struct Fragment Fragment;

typedef struct FragmentHeader {
	Fragment *next;
	Fragment *prev;
	size_t    size;
	bool      used;
} FragmentHeader;
static_assert(sizeof(FragmentHeader) <= O1HEAP_ALIGNMENT, "Memory layout error");

struct Fragment {
	FragmentHeader header;
	// Everything past the header may spill over into the allocatable space. The header survives across alloc/free.
	Fragment *next_free;  // Next free fragment in the bin; NULL in the last one.
	Fragment *prev_free;  // Same but points back; NULL in the first one.
};
static_assert(sizeof(Fragment) <= FRAGMENT_SIZE_MIN, "Memory layout error");

struct O1HeapInstance {
	Fragment *bins[NUM_BINS_MAX];  ///< Smallest fragments are in the bin at index 0.
	size_t    nonempty_bin_mask;   ///< Bit 1 represents a non-empty bin; bin at index 0 is for the smallest fragments.

	O1HeapHook critical_section_enter;
	O1HeapHook critical_section_leave;

	O1HeapDiagnostics diagnostics;
};

/// The amount of space allocated for the heap instance.
/// Its size is padded up to O1HEAP_ALIGNMENT to ensure correct alignment of the allocation arena that follows.
#define INSTANCE_SIZE_PADDED ((sizeof(O1HeapInstance) + O1HEAP_ALIGNMENT - 1U) & ~(O1HEAP_ALIGNMENT - 1U))

static_assert(INSTANCE_SIZE_PADDED >= sizeof(O1HeapInstance), "Invalid instance footprint computation");
static_assert((INSTANCE_SIZE_PADDED % O1HEAP_ALIGNMENT) == 0U, "Invalid instance footprint computation");

/// True if the argument is an integer power of two or zero.
O1HEAP_PRIVATE bool isPowerOf2(const size_t x);
O1HEAP_PRIVATE bool isPowerOf2(const size_t x)
{
	return (x & (x - 1U)) == 0U;
}

/// Special case: if the argument is zero, returns zero.
O1HEAP_PRIVATE uint8_t log2Floor(const size_t x);
O1HEAP_PRIVATE uint8_t log2Floor(const size_t x)
{
	size_t  tmp = x;
	uint8_t y   = 0;

	// This is currently the only exception to the statement "routines contain neither loops nor recursion".
	// It is unclear if there is a better way to compute the binary logarithm than this.
	while (tmp > 1U) {
		tmp >>= 1U;
		y++;
	}

	return y;
}

/// Special case: if the argument is zero, returns zero.
O1HEAP_PRIVATE uint8_t log2Ceil(const size_t x);
O1HEAP_PRIVATE uint8_t log2Ceil(const size_t x)
{
	return (uint8_t)(log2Floor(x) + (isPowerOf2(x) ? 0U : 1U));
}

/// Raise 2 into the specified power.
/// You might be tempted to do something like (1U << power). WRONG! We humans are prone to forgetting things.
/// If you forget to cast your 1U to size_t or ULL, you may end up with undefined behavior.
O1HEAP_PRIVATE size_t pow2(const uint8_t power);
O1HEAP_PRIVATE size_t pow2(const uint8_t power)
{
	return ((size_t) 1U) << power;
}

O1HEAP_PRIVATE void invoke(const O1HeapHook hook);
O1HEAP_PRIVATE void invoke(const O1HeapHook hook)
{
	if (hook != NULL) {
		hook();
	}
}

/// Links two fragments so that their next/prev pointers point to each other; left goes before right.
O1HEAP_PRIVATE void interlink(Fragment *const left, Fragment *const right);
O1HEAP_PRIVATE void interlink(Fragment *const left, Fragment *const right)
{
	if (O1HEAP_LIKELY(left != NULL)) {
		left->header.next = right;
	}

	if (O1HEAP_LIKELY(right != NULL)) {
		right->header.prev = left;
	}
}

/// Adds a new block into the appropriate bin and updates the lookup mask.
O1HEAP_PRIVATE void rebin(O1HeapInstance *const handle, Fragment *const fragment);
O1HEAP_PRIVATE void rebin(O1HeapInstance *const handle, Fragment *const fragment)
{
	O1HEAP_ASSERT(handle != NULL);
	O1HEAP_ASSERT(fragment != NULL);
	O1HEAP_ASSERT(fragment->header.size >= FRAGMENT_SIZE_MIN);
	O1HEAP_ASSERT((fragment->header.size % FRAGMENT_SIZE_MIN) == 0U);
	const uint8_t idx = log2Floor(fragment->header.size / FRAGMENT_SIZE_MIN);  // Round DOWN when inserting.
	O1HEAP_ASSERT(idx < NUM_BINS_MAX);
	// Add the new fragment to the beginning of the bin list.
	// I.e., each allocation will be returning the least-recently-used fragment -- good for caching.
	fragment->next_free = handle->bins[idx];
	fragment->prev_free = NULL;

	if (O1HEAP_LIKELY(handle->bins[idx] != NULL)) {
		handle->bins[idx]->prev_free = fragment;
	}

	handle->bins[idx] = fragment;
	handle->nonempty_bin_mask |= pow2(idx);
}

/// Removes the specified block from its bin.
O1HEAP_PRIVATE void unbin(O1HeapInstance *const handle, const Fragment *const fragment);
O1HEAP_PRIVATE void unbin(O1HeapInstance *const handle, const Fragment *const fragment)
{
	O1HEAP_ASSERT(handle != NULL);
	O1HEAP_ASSERT(fragment != NULL);
	O1HEAP_ASSERT(fragment->header.size >= FRAGMENT_SIZE_MIN);
	O1HEAP_ASSERT((fragment->header.size % FRAGMENT_SIZE_MIN) == 0U);
	const uint8_t idx = log2Floor(fragment->header.size / FRAGMENT_SIZE_MIN);  // Round DOWN when removing.
	O1HEAP_ASSERT(idx < NUM_BINS_MAX);

	// Remove the bin from the free fragment list.
	if (O1HEAP_LIKELY(fragment->next_free != NULL)) {
		fragment->next_free->prev_free = fragment->prev_free;
	}

	if (O1HEAP_LIKELY(fragment->prev_free != NULL)) {
		fragment->prev_free->next_free = fragment->next_free;
	}

	// Update the bin header.
	if (O1HEAP_LIKELY(handle->bins[idx] == fragment)) {
		O1HEAP_ASSERT(fragment->prev_free == NULL);
		handle->bins[idx] = fragment->next_free;

		if (O1HEAP_LIKELY(handle->bins[idx] == NULL)) {
			handle->nonempty_bin_mask &= ~pow2(idx);
		}
	}
}

// ---------------------------------------- PUBLIC API IMPLEMENTATION ----------------------------------------

O1HeapInstance *o1heapInit(void *const      base,
			   const size_t     size,
			   const O1HeapHook critical_section_enter,
			   const O1HeapHook critical_section_leave)
{
	O1HeapInstance *out = NULL;

	if ((base != NULL) && ((((size_t) base) % O1HEAP_ALIGNMENT) == 0U) &&
	    (size >= (INSTANCE_SIZE_PADDED + FRAGMENT_SIZE_MIN))) {
		// Allocate the core heap metadata structure in the beginning of the arena.
		O1HEAP_ASSERT(((size_t) base) % sizeof(O1HeapInstance *) == 0U);
		out                         = (O1HeapInstance *) base;
		out->nonempty_bin_mask      = 0U;
		out->critical_section_enter = critical_section_enter;
		out->critical_section_leave = critical_section_leave;

		for (size_t i = 0; i < NUM_BINS_MAX; i++) {
			out->bins[i] = NULL;
		}

		// Limit and align the capacity.
		size_t capacity = size - INSTANCE_SIZE_PADDED;

		if (capacity > FRAGMENT_SIZE_MAX) {
			capacity = FRAGMENT_SIZE_MAX;
		}

		while ((capacity % FRAGMENT_SIZE_MIN) != 0) {
			O1HEAP_ASSERT(capacity > 0U);
			capacity--;
		}

		O1HEAP_ASSERT((capacity % FRAGMENT_SIZE_MIN) == 0);
		O1HEAP_ASSERT((capacity >= FRAGMENT_SIZE_MIN) && (capacity <= FRAGMENT_SIZE_MAX));

		// Initialize the root fragment.
		Fragment *const frag = (Fragment *)(void *)(((uint8_t *) base) + INSTANCE_SIZE_PADDED);
		O1HEAP_ASSERT((((size_t) frag) % O1HEAP_ALIGNMENT) == 0U);
		frag->header.next = NULL;
		frag->header.prev = NULL;
		frag->header.size = capacity;
		frag->header.used = false;
		frag->next_free   = NULL;
		frag->prev_free   = NULL;
		rebin(out, frag);
		O1HEAP_ASSERT(out->nonempty_bin_mask != 0U);

		// Initialize the diagnostics.
		out->diagnostics.capacity          = capacity;
		out->diagnostics.allocated         = 0U;
		out->diagnostics.peak_allocated    = 0U;
		out->diagnostics.peak_request_size = 0U;
		out->diagnostics.oom_count         = 0U;
	}

	return out;
}

void *o1heapAllocate(O1HeapInstance *const handle, const size_t amount)
{
	O1HEAP_ASSERT(handle != NULL);
	O1HEAP_ASSERT(handle->diagnostics.capacity <= FRAGMENT_SIZE_MAX);
	void *out = NULL;

	// If the amount approaches approx. SIZE_MAX/2, an undetected integer overflow may occur.
	// To avoid that, we do not attempt allocation if the amount exceeds the hard limit.
	// We perform multiple redundant checks to account for a possible unaccounted overflow.
	if (O1HEAP_LIKELY((amount > 0U) && (amount <= (handle->diagnostics.capacity - O1HEAP_ALIGNMENT)))) {
		// Add the header size and align the allocation size to the power of 2.
		// See "Timing-Predictable Memory Allocation In Hard Real-Time Systems", Herter, page 27.
		const size_t fragment_size = pow2(log2Ceil(amount + O1HEAP_ALIGNMENT));
		O1HEAP_ASSERT(fragment_size <= FRAGMENT_SIZE_MAX);
		O1HEAP_ASSERT(fragment_size >= FRAGMENT_SIZE_MIN);
		O1HEAP_ASSERT(fragment_size >= amount + O1HEAP_ALIGNMENT);
		O1HEAP_ASSERT(isPowerOf2(fragment_size));

		const uint8_t optimal_bin_index = log2Ceil(fragment_size / FRAGMENT_SIZE_MIN);  // Use CEIL when fetching.
		O1HEAP_ASSERT(optimal_bin_index < NUM_BINS_MAX);
		const size_t candidate_bin_mask = ~(pow2(optimal_bin_index) - 1U);

		invoke(handle->critical_section_enter);

		// Find the smallest non-empty bin we can use.
		const size_t suitable_bins     = handle->nonempty_bin_mask & candidate_bin_mask;
		const size_t smallest_bin_mask = suitable_bins & ~(suitable_bins - 1U);  // Clear all bits but the lowest.

		if (O1HEAP_LIKELY(smallest_bin_mask != 0)) {
			O1HEAP_ASSERT(isPowerOf2(smallest_bin_mask));
			const uint8_t bin_index = log2Floor(smallest_bin_mask);
			O1HEAP_ASSERT(bin_index >= optimal_bin_index);
			O1HEAP_ASSERT(bin_index < NUM_BINS_MAX);

			// The bin we found shall not be empty, otherwise it's a state divergence (memory corruption?).
			Fragment *const frag = handle->bins[bin_index];
			O1HEAP_ASSERT(frag != NULL);
			O1HEAP_ASSERT(frag->header.size >= fragment_size);
			O1HEAP_ASSERT((frag->header.size % FRAGMENT_SIZE_MIN) == 0U);
			O1HEAP_ASSERT(!frag->header.used);
			unbin(handle, frag);

			// Split the fragment if it is too large.
			const size_t leftover = frag->header.size - fragment_size;
			frag->header.size     = fragment_size;
			O1HEAP_ASSERT(leftover < handle->diagnostics.capacity);  // Overflow check.
			O1HEAP_ASSERT(leftover % FRAGMENT_SIZE_MIN == 0U);       // Alignment check.

			if (O1HEAP_LIKELY(leftover >= FRAGMENT_SIZE_MIN)) {
				Fragment *const new_frag = (Fragment *)(void *)(((uint8_t *) frag) + fragment_size);
				O1HEAP_ASSERT(((size_t) new_frag) % O1HEAP_ALIGNMENT == 0U);
				new_frag->header.size = leftover;
				new_frag->header.used = false;
				interlink(new_frag, frag->header.next);
				interlink(frag, new_frag);
				rebin(handle, new_frag);
			}

			// Update the diagnostics.
			O1HEAP_ASSERT((handle->diagnostics.allocated % FRAGMENT_SIZE_MIN) == 0U);
			handle->diagnostics.allocated += fragment_size;
			O1HEAP_ASSERT(handle->diagnostics.allocated <= handle->diagnostics.capacity);

			if (O1HEAP_LIKELY(handle->diagnostics.peak_allocated < handle->diagnostics.allocated)) {
				handle->diagnostics.peak_allocated = handle->diagnostics.allocated;
			}

			// Finalize the fragment we just allocated.
			O1HEAP_ASSERT(frag->header.size >= amount + O1HEAP_ALIGNMENT);
			frag->header.used = true;

			out = ((uint8_t *) frag) + O1HEAP_ALIGNMENT;
		}

	} else {
		invoke(handle->critical_section_enter);
	}

	// Update the diagnostics.
	if (O1HEAP_LIKELY(handle->diagnostics.peak_request_size < amount)) {
		handle->diagnostics.peak_request_size = amount;
	}

	if (O1HEAP_LIKELY((out == NULL) && (amount > 0U))) {
		handle->diagnostics.oom_count++;
	}

	invoke(handle->critical_section_leave);
	return out;
}

void o1heapFree(O1HeapInstance *const handle, void *const pointer)
{
	O1HEAP_ASSERT(handle != NULL);
	O1HEAP_ASSERT(handle->diagnostics.capacity <= FRAGMENT_SIZE_MAX);

	if (O1HEAP_LIKELY(pointer != NULL)) { // NULL pointer is a no-op.
		Fragment *const frag = (Fragment *)(void *)(((uint8_t *) pointer) - O1HEAP_ALIGNMENT);

		// Check for heap corruption in debug builds.
		O1HEAP_ASSERT(((size_t) frag) % sizeof(Fragment *) == 0U);
		O1HEAP_ASSERT(((size_t) frag) >= (((size_t) handle) + INSTANCE_SIZE_PADDED));
		O1HEAP_ASSERT(((size_t) frag) <=
			      (((size_t) handle) + INSTANCE_SIZE_PADDED + handle->diagnostics.capacity - FRAGMENT_SIZE_MIN));
		O1HEAP_ASSERT(frag->header.used);  // Catch double-free
		O1HEAP_ASSERT(((size_t) frag->header.next) % sizeof(Fragment *) == 0U);
		O1HEAP_ASSERT(((size_t) frag->header.prev) % sizeof(Fragment *) == 0U);
		O1HEAP_ASSERT(frag->header.size >= FRAGMENT_SIZE_MIN);
		O1HEAP_ASSERT(frag->header.size <= handle->diagnostics.capacity);
		O1HEAP_ASSERT((frag->header.size % FRAGMENT_SIZE_MIN) == 0U);

		invoke(handle->critical_section_enter);

		// Even if we're going to drop the fragment later, mark it free anyway to prevent double-free.
		frag->header.used = false;

		// Update the diagnostics. It must be done before merging because it invalidates the fragment size information.
		O1HEAP_ASSERT(handle->diagnostics.allocated >= frag->header.size);  // Heap corruption check.
		handle->diagnostics.allocated -= frag->header.size;

		// Merge with siblings and insert the returned fragment into the appropriate bin and update metadata.
		Fragment *const prev       = frag->header.prev;
		Fragment *const next       = frag->header.next;
		const bool      join_left  = (prev != NULL) && (!prev->header.used);
		const bool      join_right = (next != NULL) && (!next->header.used);

		if (join_left && join_right) { // [ prev ][ this ][ next ] => [ ------- prev ------- ]
			unbin(handle, prev);
			unbin(handle, next);
			prev->header.size += frag->header.size + next->header.size;
			frag->header.size = 0;  // Invalidate the dropped fragment headers to prevent double-free.
			next->header.size = 0;
			O1HEAP_ASSERT((prev->header.size % FRAGMENT_SIZE_MIN) == 0U);
			interlink(prev, next->header.next);
			rebin(handle, prev);

		} else if (join_left) { // [ prev ][ this ][ next ] => [ --- prev --- ][ next ]
			unbin(handle, prev);
			prev->header.size += frag->header.size;
			frag->header.size = 0;
			O1HEAP_ASSERT((prev->header.size % FRAGMENT_SIZE_MIN) == 0U);
			interlink(prev, next);
			rebin(handle, prev);

		} else if (join_right) { // [ prev ][ this ][ next ] => [ prev ][ --- this --- ]
			unbin(handle, next);
			frag->header.size += next->header.size;
			next->header.size = 0;
			O1HEAP_ASSERT((frag->header.size % FRAGMENT_SIZE_MIN) == 0U);
			interlink(frag, next->header.next);
			rebin(handle, frag);

		} else {
			rebin(handle, frag);
		}

		invoke(handle->critical_section_leave);
	}
}

bool o1heapDoInvariantsHold(const O1HeapInstance *const handle)
{
	O1HEAP_ASSERT(handle != NULL);
	bool valid = true;

	invoke(handle->critical_section_enter);

	// Check the bin mask consistency.
	for (size_t i = 0; i < NUM_BINS_MAX; i++) { // Dear compiler, feel free to unroll this loop.
		const bool mask_bit_set = (handle->nonempty_bin_mask & pow2((uint8_t) i)) != 0U;
		const bool bin_nonempty = handle->bins[i] != NULL;
		valid                   = valid && (mask_bit_set == bin_nonempty);
	}

	// Create a local copy of the diagnostics struct to check later and release the critical section early.
	const O1HeapDiagnostics diag = handle->diagnostics;

	invoke(handle->critical_section_leave);

	// Capacity check.
	valid = valid && (diag.capacity <= FRAGMENT_SIZE_MAX) && (diag.capacity >= FRAGMENT_SIZE_MIN) &&
		((diag.capacity % FRAGMENT_SIZE_MIN) == 0U);

	// Allocation info check.
	valid = valid && (diag.allocated <= diag.capacity) && ((diag.allocated % FRAGMENT_SIZE_MIN) == 0U) &&
		(diag.peak_allocated <= diag.capacity) && (diag.peak_allocated >= diag.allocated) &&
		((diag.peak_allocated % FRAGMENT_SIZE_MIN) == 0U);

	// Peak request check
	valid = valid && ((diag.peak_request_size < diag.capacity) || (diag.oom_count > 0U));

	if (diag.peak_request_size == 0U) {
		valid = valid && (diag.peak_allocated == 0U) && (diag.allocated == 0U) && (diag.oom_count == 0U);

	} else {
		valid = valid &&  // Overflow on summation is possible but safe to ignore.
			(((diag.peak_request_size + O1HEAP_ALIGNMENT) <= diag.peak_allocated) || (diag.oom_count > 0U));
	}

	return valid;
}

O1HeapDiagnostics o1heapGetDiagnostics(const O1HeapInstance *const handle)
{
	O1HEAP_ASSERT(handle != NULL);
	invoke(handle->critical_section_enter);
	const O1HeapDiagnostics out = handle->diagnostics;
	invoke(handle->critical_section_leave);
	return out;
}