gnss.cpp
13.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/****************************************************************************
*
* Copyright (c) 2014, 2015 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file gnss.cpp
*
* @author Pavel Kirienko <pavel.kirienko@gmail.com>
* @author Andrew Chambers <achamber@gmail.com>
*
*/
#include "gnss.hpp"
#include <cstdint>
#include <drivers/drv_hrt.h>
#include <systemlib/err.h>
#include <mathlib/mathlib.h>
using namespace time_literals;
const char *const UavcanGnssBridge::NAME = "gnss";
UavcanGnssBridge::UavcanGnssBridge(uavcan::INode &node) :
UavcanSensorBridgeBase("uavcan_gnss", ORB_ID(sensor_gps)),
_node(node),
_sub_auxiliary(node),
_sub_fix(node),
_sub_fix2(node),
_pub_rtcm(node),
_channel_using_fix2(new bool[_max_channels]),
_rtcm_perf(perf_alloc(PC_INTERVAL, "uavcan: gnss: rtcm pub"))
{
for (uint8_t i = 0; i < _max_channels; i++) {
_channel_using_fix2[i] = false;
}
set_device_type(DRV_GPS_DEVTYPE_UAVCAN);
}
UavcanGnssBridge::~UavcanGnssBridge()
{
delete [] _channel_using_fix2;
perf_free(_rtcm_perf);
}
int
UavcanGnssBridge::init()
{
int res = _sub_auxiliary.start(AuxiliaryCbBinder(this, &UavcanGnssBridge::gnss_auxiliary_sub_cb));
if (res < 0) {
PX4_WARN("GNSS auxiliary sub failed %i", res);
return res;
}
res = _sub_fix.start(FixCbBinder(this, &UavcanGnssBridge::gnss_fix_sub_cb));
if (res < 0) {
PX4_WARN("GNSS fix sub failed %i", res);
return res;
}
res = _sub_fix2.start(Fix2CbBinder(this, &UavcanGnssBridge::gnss_fix2_sub_cb));
if (res < 0) {
PX4_WARN("GNSS fix2 sub failed %i", res);
return res;
}
_pub_rtcm.setPriority(uavcan::TransferPriority::OneHigherThanLowest);
return res;
}
void
UavcanGnssBridge::gnss_auxiliary_sub_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary> &msg)
{
// store latest hdop and vdop for use in process_fixx();
_last_gnss_auxiliary_timestamp = hrt_absolute_time();
_last_gnss_auxiliary_hdop = msg.hdop;
_last_gnss_auxiliary_vdop = msg.vdop;
}
void
UavcanGnssBridge::gnss_fix_sub_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix> &msg)
{
// Check to see if this node is also publishing a Fix2 message.
// If so, ignore the old "Fix" message for this node.
const int8_t ch = get_channel_index_for_node(msg.getSrcNodeID().get());
if (ch > -1 && _channel_using_fix2[ch]) {
return;
}
uint8_t fix_type = msg.status;
const bool valid_pos_cov = !msg.position_covariance.empty();
const bool valid_vel_cov = !msg.velocity_covariance.empty();
float pos_cov[9];
msg.position_covariance.unpackSquareMatrix(pos_cov);
float vel_cov[9];
msg.velocity_covariance.unpackSquareMatrix(vel_cov);
process_fixx(msg, fix_type, pos_cov, vel_cov, valid_pos_cov, valid_vel_cov);
}
void
UavcanGnssBridge::gnss_fix2_sub_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix2> &msg)
{
using uavcan::equipment::gnss::Fix2;
const int8_t ch = get_channel_index_for_node(msg.getSrcNodeID().get());
if (ch > -1 && !_channel_using_fix2[ch]) {
PX4_WARN("GNSS Fix2 msg detected for ch %d; disabling Fix msg for this node", ch);
_channel_using_fix2[ch] = true;
}
uint8_t fix_type = msg.status;
switch (msg.mode) {
case Fix2::MODE_DGPS:
fix_type = 4; // RTCM code differential
break;
case Fix2::MODE_RTK:
switch (msg.sub_mode) {
case Fix2::SUB_MODE_RTK_FLOAT:
fix_type = 5; // RTK float
break;
case Fix2::SUB_MODE_RTK_FIXED:
fix_type = 6; // RTK fixed
break;
}
break;
}
float pos_cov[9] {};
float vel_cov[9] {};
bool valid_covariances = true;
switch (msg.covariance.size()) {
case 1: {
// Scalar matrix
const auto x = msg.covariance[0];
pos_cov[0] = x;
pos_cov[4] = x;
pos_cov[8] = x;
vel_cov[0] = x;
vel_cov[4] = x;
vel_cov[8] = x;
}
break;
case 6: {
// Diagonal matrix (the most common case)
pos_cov[0] = msg.covariance[0];
pos_cov[4] = msg.covariance[1];
pos_cov[8] = msg.covariance[2];
vel_cov[0] = msg.covariance[3];
vel_cov[4] = msg.covariance[4];
vel_cov[8] = msg.covariance[5];
}
break;
case 21: {
// Upper triangular matrix.
// This code has been carefully optimized by hand. We could use unpackSquareMatrix(), but it's slow.
// Sub-matrix indexes (empty squares contain velocity-position covariance data):
// 0 1 2
// 1 6 7
// 2 7 11
// 15 16 17
// 16 18 19
// 17 19 20
pos_cov[0] = msg.covariance[0];
pos_cov[1] = msg.covariance[1];
pos_cov[2] = msg.covariance[2];
pos_cov[3] = msg.covariance[1];
pos_cov[4] = msg.covariance[6];
pos_cov[5] = msg.covariance[7];
pos_cov[6] = msg.covariance[2];
pos_cov[7] = msg.covariance[7];
pos_cov[8] = msg.covariance[11];
vel_cov[0] = msg.covariance[15];
vel_cov[1] = msg.covariance[16];
vel_cov[2] = msg.covariance[17];
vel_cov[3] = msg.covariance[16];
vel_cov[4] = msg.covariance[18];
vel_cov[5] = msg.covariance[19];
vel_cov[6] = msg.covariance[17];
vel_cov[7] = msg.covariance[19];
vel_cov[8] = msg.covariance[20];
}
/* FALLTHROUGH */
case 36: {
// Full matrix 6x6.
// This code has been carefully optimized by hand. We could use unpackSquareMatrix(), but it's slow.
// Sub-matrix indexes (empty squares contain velocity-position covariance data):
// 0 1 2
// 6 7 8
// 12 13 14
// 21 22 23
// 27 28 29
// 33 34 35
pos_cov[0] = msg.covariance[0];
pos_cov[1] = msg.covariance[1];
pos_cov[2] = msg.covariance[2];
pos_cov[3] = msg.covariance[6];
pos_cov[4] = msg.covariance[7];
pos_cov[5] = msg.covariance[8];
pos_cov[6] = msg.covariance[12];
pos_cov[7] = msg.covariance[13];
pos_cov[8] = msg.covariance[14];
vel_cov[0] = msg.covariance[21];
vel_cov[1] = msg.covariance[22];
vel_cov[2] = msg.covariance[23];
vel_cov[3] = msg.covariance[27];
vel_cov[4] = msg.covariance[28];
vel_cov[5] = msg.covariance[29];
vel_cov[6] = msg.covariance[33];
vel_cov[7] = msg.covariance[34];
vel_cov[8] = msg.covariance[35];
}
/* FALLTHROUGH */
default: {
// Either empty or invalid sized, interpret as zero matrix
valid_covariances = false;
break; // Nothing to do
}
}
process_fixx(msg, fix_type, pos_cov, vel_cov, valid_covariances, valid_covariances);
}
template <typename FixType>
void UavcanGnssBridge::process_fixx(const uavcan::ReceivedDataStructure<FixType> &msg,
uint8_t fix_type,
const float (&pos_cov)[9], const float (&vel_cov)[9],
const bool valid_pos_cov, const bool valid_vel_cov)
{
sensor_gps_s report{};
report.device_id = get_device_id();
/*
* FIXME HACK
* There used to be the following line of code:
* report.timestamp_position = msg.getMonotonicTimestamp().toUSec();
* It stopped working when the time sync feature has been introduced, because it caused libuavcan
* to use an independent time source (based on hardware TIM5) instead of HRT.
* The proper solution is to be developed.
*/
report.timestamp = hrt_absolute_time();
report.lat = msg.latitude_deg_1e8 / 10;
report.lon = msg.longitude_deg_1e8 / 10;
report.alt = msg.height_msl_mm;
report.alt_ellipsoid = msg.height_ellipsoid_mm;
if (valid_pos_cov) {
// Horizontal position uncertainty
const float horizontal_pos_variance = math::max(pos_cov[0], pos_cov[4]);
report.eph = (horizontal_pos_variance > 0) ? sqrtf(horizontal_pos_variance) : -1.0F;
// Vertical position uncertainty
report.epv = (pos_cov[8] > 0) ? sqrtf(pos_cov[8]) : -1.0F;
} else {
report.eph = -1.0F;
report.epv = -1.0F;
}
if (valid_vel_cov) {
report.s_variance_m_s = math::max(math::max(vel_cov[0], vel_cov[4]), vel_cov[8]);
/* There is a nonlinear relationship between the velocity vector and the heading.
* Use Jacobian to transform velocity covariance to heading covariance
*
* Nonlinear equation:
* heading = atan2(vel_e_m_s, vel_n_m_s)
* For math, see http://en.wikipedia.org/wiki/Atan2#Derivative
*
* To calculate the variance of heading from the variance of velocity,
* cov(heading) = J(velocity)*cov(velocity)*J(velocity)^T
*/
float vel_n = msg.ned_velocity[0];
float vel_e = msg.ned_velocity[1];
float vel_n_sq = vel_n * vel_n;
float vel_e_sq = vel_e * vel_e;
report.c_variance_rad =
(vel_e_sq * vel_cov[0] +
-2 * vel_n * vel_e * vel_cov[1] + // Covariance matrix is symmetric
vel_n_sq * vel_cov[4]) / ((vel_n_sq + vel_e_sq) * (vel_n_sq + vel_e_sq));
} else {
report.s_variance_m_s = -1.0F;
report.c_variance_rad = -1.0F;
}
report.fix_type = fix_type;
report.vel_n_m_s = msg.ned_velocity[0];
report.vel_e_m_s = msg.ned_velocity[1];
report.vel_d_m_s = msg.ned_velocity[2];
report.vel_m_s = sqrtf(report.vel_n_m_s * report.vel_n_m_s +
report.vel_e_m_s * report.vel_e_m_s +
report.vel_d_m_s * report.vel_d_m_s);
report.cog_rad = atan2f(report.vel_e_m_s, report.vel_n_m_s);
report.vel_ned_valid = true;
report.timestamp_time_relative = 0;
const uint64_t gnss_ts_usec = uavcan::UtcTime(msg.gnss_timestamp).toUSec();
switch (msg.gnss_time_standard) {
case FixType::GNSS_TIME_STANDARD_UTC:
report.time_utc_usec = gnss_ts_usec;
break;
case FixType::GNSS_TIME_STANDARD_GPS:
if (msg.num_leap_seconds > 0) {
report.time_utc_usec = gnss_ts_usec - msg.num_leap_seconds + 9;
}
break;
case FixType::GNSS_TIME_STANDARD_TAI:
if (msg.num_leap_seconds > 0) {
report.time_utc_usec = gnss_ts_usec - msg.num_leap_seconds - 10;
}
break;
default:
break;
}
// If we haven't already done so, set the system clock using GPS data
if (valid_pos_cov && !_system_clock_set) {
timespec ts{};
// get the whole microseconds
ts.tv_sec = report.time_utc_usec / 1000000ULL;
// get the remainder microseconds and convert to nanoseconds
ts.tv_nsec = (report.time_utc_usec % 1000000ULL) * 1000;
px4_clock_settime(CLOCK_REALTIME, &ts);
_system_clock_set = true;
}
report.satellites_used = msg.sats_used;
if (hrt_elapsed_time(&_last_gnss_auxiliary_timestamp) < 2_s) {
report.hdop = _last_gnss_auxiliary_hdop;
report.vdop = _last_gnss_auxiliary_vdop;
} else {
// Using PDOP for HDOP and VDOP
// Relevant discussion: https://github.com/PX4/Firmware/issues/5153
report.hdop = msg.pdop;
report.vdop = msg.pdop;
}
report.heading = NAN;
report.heading_offset = NAN;
publish(msg.getSrcNodeID().get(), &report);
}
void UavcanGnssBridge::update()
{
handleInjectDataTopic();
}
// Partially taken from src/drivers/gps/gps.cpp
// This listens on the gps_inject_data uORB topic for RTCM data
// sent from a GCS (usually over MAVLINK GPS_RTCM_DATA).
// Forwarding this data to the UAVCAN bus enables DGPS/RTK GPS
// to work.
void UavcanGnssBridge::handleInjectDataTopic()
{
bool updated = false;
// Limit maximum number of GPS injections to 6 since usually
// GPS injections should consist of 1-4 packets (GPS, Glonass, BeiDou, Galileo).
// Looking at 6 packets thus guarantees, that at least a full injection
// data set is evaluated.
const size_t max_num_injections = 6;
size_t num_injections = 0;
do {
num_injections++;
updated = _orb_inject_data_sub.updated();
if (updated) {
gps_inject_data_s msg;
if (_orb_inject_data_sub.copy(&msg)) {
/* Write the message to the gps device. Note that the message could be fragmented.
* But as we don't write anywhere else to the device during operation, we don't
* need to assemble the message first.
*/
injectData(msg.data, msg.len);
}
}
} while (updated && num_injections < max_num_injections);
}
bool UavcanGnssBridge::injectData(const uint8_t *const data, const size_t data_len)
{
using uavcan::equipment::gnss::RTCMStream;
perf_count(_rtcm_perf);
RTCMStream msg;
msg.protocol_id = RTCMStream::PROTOCOL_ID_RTCM3;
const size_t capacity = msg.data.capacity();
size_t written = 0;
bool result = true;
while (result && written < data_len) {
size_t chunk_size = data_len - written;
if (chunk_size > capacity) {
chunk_size = capacity;
}
for (size_t i = 0; i < chunk_size; ++i) {
msg.data.push_back(data[written]);
written += 1;
}
result = _pub_rtcm.broadcast(msg) >= 0;
msg.data.clear();
}
return result;
}
void UavcanGnssBridge::print_status() const
{
UavcanSensorBridgeBase::print_status();
perf_print_counter(_rtcm_perf);
}