BMI088_Accelerometer.cpp
17.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "BMI088_Accelerometer.hpp"
#include <ecl/geo/geo.h> // CONSTANTS_ONE_G
using namespace time_literals;
namespace Bosch::BMI088::Accelerometer
{
BMI088_Accelerometer::BMI088_Accelerometer(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation,
int bus_frequency, spi_mode_e spi_mode, spi_drdy_gpio_t drdy_gpio) :
BMI088(DRV_ACC_DEVTYPE_BMI088, "BMI088_Accelerometer", bus_option, bus, device, spi_mode, bus_frequency, drdy_gpio),
_px4_accel(get_device_id(), rotation)
{
if (drdy_gpio != 0) {
_drdy_missed_perf = perf_alloc(PC_COUNT, MODULE_NAME"_accel: DRDY missed");
}
ConfigureSampleRate(_px4_accel.get_max_rate_hz());
}
BMI088_Accelerometer::~BMI088_Accelerometer()
{
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_missed_perf);
}
void BMI088_Accelerometer::exit_and_cleanup()
{
DataReadyInterruptDisable();
I2CSPIDriverBase::exit_and_cleanup();
}
void BMI088_Accelerometer::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_missed_perf);
}
int BMI088_Accelerometer::probe()
{
/* 6.1 Serial Peripheral Interface (SPI)
* ... the accelerometer part starts always in I2C mode
* (regardless of the level of the PS pin) and needs to be changed to SPI
* mode actively by sending a rising edge on the CSB1 pin
* (chip select of the accelerometer), on which the accelerometer part
* switches to SPI mode and stays in this mode until the next power-up-reset.
*
* To change the sensor to SPI mode in the initialization phase, the user
* could perfom a dummy SPI read operation, e.g. of register ACC_CHIP_ID
* (the obtained value will be invalid).In case of read operations,
*/
RegisterRead(Register::ACC_CHIP_ID);
const uint8_t ACC_CHIP_ID = RegisterRead(Register::ACC_CHIP_ID);
if (ACC_CHIP_ID == ID_088) {
DEVICE_DEBUG("BMI088 Accel");
} else if (ACC_CHIP_ID == ID_090L) {
DEVICE_DEBUG("BMI090L Accel");
} else {
DEVICE_DEBUG("unexpected ACC_CHIP_ID 0x%02x", ACC_CHIP_ID);
return PX4_ERROR;
}
return PX4_OK;
}
void BMI088_Accelerometer::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::RESET:
// ACC_SOFTRESET: Writing a value of 0xB6 to this register resets the sensor
RegisterWrite(Register::ACC_SOFTRESET, 0xB6);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(1_ms); // Following a delay of 1 ms, all configuration settings are overwritten with their reset value.
break;
case STATE::WAIT_FOR_RESET:
if ((RegisterRead(Register::ACC_CHIP_ID) == ID_088) || (RegisterRead(Register::ACC_CHIP_ID) == ID_090L)) {
// ACC_PWR_CONF: Power on sensor
RegisterWrite(Register::ACC_PWR_CONF, 0);
// if reset succeeded then configure
_state = STATE::CONFIGURE;
ScheduleDelayed(10_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading from FIFO
_state = STATE::FIFO_READ;
if (DataReadyInterruptConfigure()) {
_data_ready_interrupt_enabled = true;
// backup schedule as a watchdog timeout
ScheduleDelayed(100_ms);
} else {
_data_ready_interrupt_enabled = false;
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
}
FIFOReset();
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::FIFO_READ: {
uint32_t samples = 0;
if (_data_ready_interrupt_enabled) {
// scheduled from interrupt if _drdy_fifo_read_samples was set as expected
if (_drdy_fifo_read_samples.fetch_and(0) != _fifo_samples) {
perf_count(_drdy_missed_perf);
} else {
samples = _fifo_samples;
}
// push backup schedule back
ScheduleDelayed(_fifo_empty_interval_us * 2);
}
if (samples == 0) {
// check current FIFO count
const uint16_t fifo_byte_counter = FIFOReadCount();
if (fifo_byte_counter >= FIFO::SIZE) {
FIFOReset();
perf_count(_fifo_overflow_perf);
} else if ((fifo_byte_counter == 0) || (fifo_byte_counter == 0x8000)) {
// An empty FIFO corresponds to 0x8000
perf_count(_fifo_empty_perf);
} else {
samples = fifo_byte_counter / sizeof(FIFO::DATA);
if (samples > FIFO_MAX_SAMPLES) {
// not technically an overflow, but more samples than we expected or can publish
FIFOReset();
perf_count(_fifo_overflow_perf);
samples = 0;
}
}
}
bool success = false;
if (samples >= 1) {
if (FIFORead(now, samples)) {
success = true;
if (_failure_count > 0) {
_failure_count--;
}
}
}
if (!success) {
_failure_count++;
// full reset if things are failing consistently
if (_failure_count > 10) {
Reset();
return;
}
}
if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
// check configuration registers periodically or immediately following any failure
if (RegisterCheck(_register_cfg[_checked_register])) {
_last_config_check_timestamp = now;
_checked_register = (_checked_register + 1) % size_register_cfg;
} else {
// register check failed, force reset
perf_count(_bad_register_perf);
Reset();
}
} else {
// periodically update temperature (~1 Hz)
if (hrt_elapsed_time(&_temperature_update_timestamp) >= 1_s) {
UpdateTemperature();
_temperature_update_timestamp = now;
}
}
}
break;
}
}
void BMI088_Accelerometer::ConfigureAccel()
{
const uint8_t ACC_RANGE = RegisterRead(Register::ACC_RANGE) & (Bit1 | Bit0);
switch (ACC_RANGE) {
case acc_range_3g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(3.f);
break;
case acc_range_6g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(6.f);
break;
case acc_range_12g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(12.f);
break;
case acc_range_24g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(24.f);
break;
}
}
void BMI088_Accelerometer::ConfigureSampleRate(int sample_rate)
{
// round down to nearest FIFO sample dt * SAMPLES_PER_TRANSFER
const float min_interval = FIFO_SAMPLE_DT;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
_fifo_samples = math::min((float)_fifo_empty_interval_us / (1e6f / RATE), (float)FIFO_MAX_SAMPLES);
// recompute FIFO empty interval (us) with actual sample limit
_fifo_empty_interval_us = _fifo_samples * (1e6f / RATE);
ConfigureFIFOWatermark(_fifo_samples);
}
void BMI088_Accelerometer::ConfigureFIFOWatermark(uint8_t samples)
{
// FIFO_WTM: 13 bit FIFO watermark level value
// unit of the fifo watermark is one byte
const uint16_t fifo_watermark_threshold = samples * sizeof(FIFO::DATA);
for (auto &r : _register_cfg) {
if (r.reg == Register::FIFO_WTM_0) {
// fifo_water_mark[7:0]
r.set_bits = fifo_watermark_threshold & 0x00FF;
r.clear_bits = ~r.set_bits;
} else if (r.reg == Register::FIFO_WTM_1) {
// fifo_water_mark[12:8]
r.set_bits = (fifo_watermark_threshold & 0x0700) >> 8;
r.clear_bits = ~r.set_bits;
}
}
}
bool BMI088_Accelerometer::Configure()
{
// first set and clear all configured register bits
for (const auto ®_cfg : _register_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
// now check that all are configured
bool success = true;
for (const auto ®_cfg : _register_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
ConfigureAccel();
return success;
}
int BMI088_Accelerometer::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
static_cast<BMI088_Accelerometer *>(arg)->DataReady();
return 0;
}
void BMI088_Accelerometer::DataReady()
{
uint32_t expected = 0;
if (_drdy_fifo_read_samples.compare_exchange(&expected, _fifo_samples)) {
ScheduleNow();
}
}
bool BMI088_Accelerometer::DataReadyInterruptConfigure()
{
if (_drdy_gpio == 0) {
return false;
}
// Setup data ready on falling edge
return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
}
bool BMI088_Accelerometer::DataReadyInterruptDisable()
{
if (_drdy_gpio == 0) {
return false;
}
return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}
bool BMI088_Accelerometer::RegisterCheck(const register_config_t ®_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
uint8_t BMI088_Accelerometer::RegisterRead(Register reg)
{
// 6.1.2 SPI interface of accelerometer part
//
// In case of read operations of the accelerometer part, the requested data
// is not sent immediately, but instead first a dummy byte is sent, and
// after this dummy byte the actual requested register content is transmitted.
uint8_t cmd[3] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
// cmd[1] dummy byte
transfer(cmd, cmd, sizeof(cmd));
return cmd[2];
}
void BMI088_Accelerometer::RegisterWrite(Register reg, uint8_t value)
{
uint8_t cmd[2] { (uint8_t)reg, value };
transfer(cmd, cmd, sizeof(cmd));
}
void BMI088_Accelerometer::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}
uint16_t BMI088_Accelerometer::FIFOReadCount()
{
// FIFO length registers FIFO_LENGTH_1 and FIFO_LENGTH_0 contain the 14 bit FIFO byte
uint8_t fifo_len_buf[4] {};
fifo_len_buf[0] = static_cast<uint8_t>(Register::FIFO_LENGTH_0) | DIR_READ;
// fifo_len_buf[1] dummy byte
if (transfer(&fifo_len_buf[0], &fifo_len_buf[0], sizeof(fifo_len_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return 0;
}
const uint8_t FIFO_LENGTH_0 = fifo_len_buf[2]; // fifo_byte_counter[7:0]
const uint8_t FIFO_LENGTH_1 = fifo_len_buf[3] & 0x3F; // fifo_byte_counter[13:8]
return combine(FIFO_LENGTH_1, FIFO_LENGTH_0);
}
bool BMI088_Accelerometer::FIFORead(const hrt_abstime ×tamp_sample, uint8_t samples)
{
FIFOTransferBuffer buffer{};
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 4, FIFO::SIZE);
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
perf_count(_bad_transfer_perf);
return false;
}
const size_t fifo_byte_counter = combine(buffer.FIFO_LENGTH_1 & 0x3F, buffer.FIFO_LENGTH_0);
// An empty FIFO corresponds to 0x8000
if (fifo_byte_counter == 0x8000) {
perf_count(_fifo_empty_perf);
return false;
} else if (fifo_byte_counter >= FIFO::SIZE) {
perf_count(_fifo_overflow_perf);
return false;
}
sensor_accel_fifo_s accel{};
accel.timestamp_sample = timestamp_sample;
accel.samples = 0;
accel.dt = FIFO_SAMPLE_DT;
// first find all sensor data frames in the buffer
uint8_t *data_buffer = (uint8_t *)&buffer.f[0];
unsigned fifo_buffer_index = 0; // start of buffer
while (fifo_buffer_index < math::min(fifo_byte_counter, transfer_size - 4)) {
// look for header signature (first 6 bits) followed by two bits indicating the status of INT1 and INT2
switch (data_buffer[fifo_buffer_index] & 0xFC) {
case FIFO::header::sensor_data_frame: {
// Acceleration sensor data frame
// Frame length: 7 bytes (1 byte header + 6 bytes payload)
FIFO::DATA *fifo_sample = (FIFO::DATA *)&data_buffer[fifo_buffer_index];
const int16_t accel_x = combine(fifo_sample->ACC_X_MSB, fifo_sample->ACC_X_LSB);
const int16_t accel_y = combine(fifo_sample->ACC_Y_MSB, fifo_sample->ACC_Y_LSB);
const int16_t accel_z = combine(fifo_sample->ACC_Z_MSB, fifo_sample->ACC_Z_LSB);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
accel.x[accel.samples] = accel_x;
accel.y[accel.samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
accel.z[accel.samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
accel.samples++;
fifo_buffer_index += 7; // move forward to next record
}
break;
case FIFO::header::skip_frame:
// Skip Frame
// Frame length: 2 bytes (1 byte header + 1 byte payload)
PX4_DEBUG("Skip Frame");
fifo_buffer_index += 2;
break;
case FIFO::header::sensor_time_frame:
// Sensortime Frame
// Frame length: 4 bytes (1 byte header + 3 bytes payload)
PX4_DEBUG("Sensortime Frame");
fifo_buffer_index += 4;
break;
case FIFO::header::FIFO_input_config_frame:
// FIFO input config Frame
// Frame length: 2 bytes (1 byte header + 1 byte payload)
PX4_DEBUG("FIFO input config Frame");
fifo_buffer_index += 2;
break;
case FIFO::header::sample_drop_frame:
// Sample drop Frame
// Frame length: 2 bytes (1 byte header + 1 byte payload)
PX4_DEBUG("Sample drop Frame");
fifo_buffer_index += 2;
break;
default:
fifo_buffer_index++;
break;
}
}
_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (accel.samples > 0) {
_px4_accel.updateFIFO(accel);
return true;
}
return false;
}
void BMI088_Accelerometer::FIFOReset()
{
perf_count(_fifo_reset_perf);
// ACC_SOFTRESET: trigger a FIFO reset by writing 0xB0 to ACC_SOFTRESET (register 0x7E).
RegisterWrite(Register::ACC_SOFTRESET, 0xB0);
// reset while FIFO is disabled
_drdy_fifo_read_samples.store(0);
}
void BMI088_Accelerometer::UpdateTemperature()
{
// stored in an 11-bit value in 2’s complement format
uint8_t temperature_buf[4] {};
temperature_buf[0] = static_cast<uint8_t>(Register::TEMP_MSB) | DIR_READ;
// temperature_buf[1] dummy byte
if (transfer(&temperature_buf[0], &temperature_buf[0], sizeof(temperature_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return;
}
const uint8_t TEMP_MSB = temperature_buf[2];
const uint8_t TEMP_LSB = temperature_buf[3];
// Datasheet 5.3.7: Register 0x22 – 0x23: Temperature sensor data
uint16_t Temp_uint11 = (TEMP_MSB * 8) + (TEMP_LSB / 32);
int16_t Temp_int11 = 0;
if (Temp_uint11 > 1023) {
Temp_int11 = Temp_uint11 - 2048;
} else {
Temp_int11 = Temp_uint11;
}
float temperature = (Temp_int11 * 0.125f) + 23.f; // Temp_int11 * 0.125°C/LSB + 23°C
if (PX4_ISFINITE(temperature)) {
_px4_accel.set_temperature(temperature);
} else {
perf_count(_bad_transfer_perf);
}
}
} // namespace Bosch::BMI088::Accelerometer