voc2coco.py
5.89 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import argparse
import json
import xml.etree.ElementTree as ET
from typing import Dict, List
from tqdm import tqdm
import re
def get_label2id(labels_path: str, labeltable_path: str) -> Dict[str, int]:
"""id is 1 start"""
with open(labels_path, 'r') as f:
labels_str = f.read().split()
with open(labeltable_path, 'r') as f2:
table_str = f2.read().split()
table_int = list(map(int, table_str))
labels_ids = list(range(1, len(labels_str)+1))
for i in range(0, len(labels_str)):
labels_ids[i] = table_int[i]+1
return dict(zip(labels_str, labels_ids))
def get_annpaths(ann_dir_path: str = None,
ann_ids_path: str = None,
ext: str = '',
annpaths_list_path: str = None) -> List[str]:
# If use annotation paths list
if annpaths_list_path is not None:
with open(annpaths_list_path, 'r') as f:
ann_paths = f.read().split()
return ann_paths
# If use annotaion ids list
ext_with_dot = '.' + ext if ext != '' else ''
with open(ann_ids_path, 'r') as f:
ann_ids = f.read().split()
ann_paths = [os.path.join(ann_dir_path, aid+ext_with_dot) for aid in ann_ids]
return ann_paths
def get_image_info(annotation_root, id, extract_num_from_imgid=True):
path = annotation_root.findtext('path')
if path is None:
filename = annotation_root.findtext('filename')
else:
filename = os.path.basename(path)
img_name = os.path.basename(filename)
# img_id = os.path.splitext(img_name)[0]
# if extract_num_from_imgid and isinstance(img_id, str):
# img_id = int(re.findall(r'\d+', img_id)[0])
img_id = id
size = annotation_root.find('size')
width = int(size.findtext('width'))
height = int(size.findtext('height'))
image_info = {
'file_name': filename,
'height': height,
'width': width,
'id': img_id
}
return image_info
def get_coco_annotation_from_obj(obj, label2id):
label = obj.findtext('name')
assert label in label2id, f"Error: {label} is not in label2id !"
category_id = label2id[label]
bndbox = obj.find('bndbox')
xmin = int(float(bndbox.findtext('xmin'))) - 1
ymin = int(float(bndbox.findtext('ymin'))) - 1
xmax = int(float(bndbox.findtext('xmax')))
ymax = int(float(bndbox.findtext('ymax')))
assert xmax > xmin and ymax > ymin, f"Box size error !: (xmin, ymin, xmax, ymax): {xmin, ymin, xmax, ymax}"
o_width = xmax - xmin
o_height = ymax - ymin
ann = {
'area': o_width * o_height,
'iscrowd': 0,
'bbox': [xmin, ymin, o_width, o_height],
'category_id': category_id,
'ignore': 0,
'segmentation': [] # This script is not for segmentation
}
return ann
def convert_xmls_to_cocojson(annotation_paths: List[str],
label2id: Dict[str, int],
output_jsonpath: str,
extract_num_from_imgid: bool = True):
output_json_dict = {
"images": [],
"type": "instances",
"annotations": [],
"categories": []
}
bnd_id = 1 # START_BOUNDING_BOX_ID, TODO input as args ?
print('Start converting !')
i = 1
for a_path in tqdm(annotation_paths):
# Read annotation xml
ann_tree = ET.parse(a_path)
ann_root = ann_tree.getroot()
img_info = get_image_info(annotation_root=ann_root, id=i,
extract_num_from_imgid=extract_num_from_imgid)
img_id = img_info['id']
output_json_dict['images'].append(img_info)
i+=1
for obj in ann_root.findall('object'):
ann = get_coco_annotation_from_obj(obj=obj, label2id=label2id)
ann.update({'image_id': img_id, 'id': bnd_id})
output_json_dict['annotations'].append(ann)
bnd_id = bnd_id + 1
for label, label_id in label2id.items():
category_info = {'supercategory': 'none', 'id': label_id, 'name': label}
output_json_dict['categories'].append(category_info)
with open(output_jsonpath, 'w') as f:
output_json = json.dumps(output_json_dict)
f.write(output_json)
def main():
parser = argparse.ArgumentParser(
description='This script support converting voc format xmls to coco format json')
parser.add_argument('--ann_dir', type=str, default=None,
help='path to annotation files directory. It is not need when use --ann_paths_list')
parser.add_argument('--ann_ids', type=str, default=None,
help='path to annotation files ids list. It is not need when use --ann_paths_list')
parser.add_argument('--ann_paths_list', type=str, default=None,
help='path of annotation paths list. It is not need when use --ann_dir and --ann_ids')
parser.add_argument('--labels', type=str, default=None,
help='path to label list.')
parser.add_argument('--labelt', type=str, default=None,
help='path to label table.')
parser.add_argument('--output', type=str, default='output.json', help='path to output json file')
parser.add_argument('--ext', type=str, default='', help='additional extension of annotation file')
parser.add_argument('--extract_num_from_imgid', action="store_true",
help='Extract image number from the image filename')
args = parser.parse_args()
label2id = get_label2id(labels_path=args.labels, labeltable_path=args.labelt)
ann_paths = get_annpaths(
ann_dir_path=args.ann_dir,
ann_ids_path=args.ann_ids,
ext=args.ext,
annpaths_list_path=args.ann_paths_list
)
convert_xmls_to_cocojson(
annotation_paths=ann_paths,
label2id=label2id,
output_jsonpath=args.output,
extract_num_from_imgid=args.extract_num_from_imgid
)
if __name__ == '__main__':
main()