model.py
12.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os.path
import io
import numpy as np
import math
import torch
import torch.nn as nn
from . import backbones as backbones_mod
from ._C import Engine
from .box import generate_anchors, snap_to_anchors, decode, nms
from .box import generate_anchors_rotated, snap_to_anchors_rotated, nms_rotated
from .loss import FocalLoss, SmoothL1Loss
class Model(nn.Module):
'RetinaNet - https://arxiv.org/abs/1708.02002'
def __init__(
self,
backbones='ResNet50FPN',
classes=80,
ratios=[1.0, 2.0, 0.5],
scales=[4 * 2 ** (i / 3) for i in range(3)],
angles=None,
rotated_bbox=False,
anchor_ious=[0.4, 0.5],
config={}
):
super().__init__()
if not isinstance(backbones, list):
backbones = [backbones]
self.backbones = nn.ModuleDict({b: getattr(backbones_mod, b)() for b in backbones})
self.name = 'RetinaNet'
self.unused_modules = []
for b in backbones: self.unused_modules.extend(getattr(self.backbones, b).features.unused_modules)
self.exporting = False
self.rotated_bbox = rotated_bbox
self.anchor_ious = anchor_ious
self.ratios = ratios
self.scales = scales
self.angles = angles if angles is not None else \
[-np.pi / 6, 0, np.pi / 6] if self.rotated_bbox else None
self.anchors = {}
self.classes = classes
self.threshold = config.get('threshold', 0.05)
self.top_n = config.get('top_n', 1000)
self.nms = config.get('nms', 0.5)
self.detections = config.get('detections', 100)
self.stride = max([b.stride for _, b in self.backbones.items()])
# classification and box regression heads
def make_head(out_size):
layers = []
for _ in range(4):
layers += [nn.Conv2d(256, 256, 3, padding=1), nn.ReLU()]
layers += [nn.Conv2d(256, out_size, 3, padding=1)]
return nn.Sequential(*layers)
self.num_anchors = len(self.ratios) * len(self.scales)
self.num_anchors = self.num_anchors if not self.rotated_bbox else (self.num_anchors * len(self.angles))
self.cls_head = make_head(classes * self.num_anchors)
self.box_head = make_head(4 * self.num_anchors) if not self.rotated_bbox \
else make_head(6 * self.num_anchors) # theta -> cos(theta), sin(theta)
self.cls_criterion = FocalLoss()
self.box_criterion = SmoothL1Loss(beta=0.11)
def __repr__(self):
return '\n'.join([
' model: {}'.format(self.name),
' backbone: {}'.format(', '.join([k for k, _ in self.backbones.items()])),
' classes: {}, anchors: {}'.format(self.classes, self.num_anchors)
])
def initialize(self, pre_trained):
if pre_trained:
# Initialize using weights from pre-trained model
if not os.path.isfile(pre_trained):
raise ValueError('No checkpoint {}'.format(pre_trained))
print('Fine-tuning weights from {}...'.format(os.path.basename(pre_trained)))
state_dict = self.state_dict()
chk = torch.load(pre_trained, map_location=lambda storage, loc: storage)
ignored = ['cls_head.8.bias', 'cls_head.8.weight']
if self.rotated_bbox:
ignored += ['box_head.8.bias', 'box_head.8.weight']
weights = {k: v for k, v in chk['state_dict'].items() if k not in ignored}
state_dict.update(weights)
self.load_state_dict(state_dict)
del chk, weights
torch.cuda.empty_cache()
else:
# Initialize backbone(s)
for _, backbone in self.backbones.items():
backbone.initialize()
# Initialize heads
def initialize_layer(layer):
if isinstance(layer, nn.Conv2d):
nn.init.normal_(layer.weight, std=0.01)
if layer.bias is not None:
nn.init.constant_(layer.bias, val=0)
self.cls_head.apply(initialize_layer)
self.box_head.apply(initialize_layer)
# Initialize class head prior
def initialize_prior(layer):
pi = 0.01
b = - math.log((1 - pi) / pi)
nn.init.constant_(layer.bias, b)
nn.init.normal_(layer.weight, std=0.01)
self.cls_head[-1].apply(initialize_prior)
if self.rotated_bbox:
self.box_head[-1].apply(initialize_prior)
def forward(self, x, rotated_bbox=None):
if self.training: x, targets = x
# Backbones forward pass
features = []
for _, backbone in self.backbones.items():
features.extend(backbone(x))
# Heads forward pass
cls_heads = [self.cls_head(t) for t in features]
box_heads = [self.box_head(t) for t in features]
if self.training:
return self._compute_loss(x, cls_heads, box_heads, targets.float())
cls_heads = [cls_head.sigmoid() for cls_head in cls_heads]
if self.exporting:
self.strides = [x.shape[-1] // cls_head.shape[-1] for cls_head in cls_heads]
return cls_heads, box_heads
global nms, generate_anchors
if self.rotated_bbox:
nms = nms_rotated
generate_anchors = generate_anchors_rotated
# Inference post-processing
decoded = []
for cls_head, box_head in zip(cls_heads, box_heads):
# Generate level's anchors
stride = x.shape[-1] // cls_head.shape[-1]
if stride not in self.anchors:
self.anchors[stride] = generate_anchors(stride, self.ratios, self.scales, self.angles)
# Decode and filter boxes
decoded.append(decode(cls_head.contiguous(), box_head.contiguous(), stride, self.threshold,
self.top_n, self.anchors[stride], self.rotated_bbox))
# Perform non-maximum suppression
decoded = [torch.cat(tensors, 1) for tensors in zip(*decoded)]
return nms(*decoded, self.nms, self.detections)
def _extract_targets(self, targets, stride, size):
global generate_anchors, snap_to_anchors
if self.rotated_bbox:
generate_anchors = generate_anchors_rotated
snap_to_anchors = snap_to_anchors_rotated
cls_target, box_target, depth = [], [], []
for target in targets:
target = target[target[:, -1] > -1]
if stride not in self.anchors:
self.anchors[stride] = generate_anchors(stride, self.ratios, self.scales, self.angles)
anchors = self.anchors[stride]
if not self.rotated_bbox:
anchors = anchors.to(targets.device)
snapped = snap_to_anchors(target, [s * stride for s in size[::-1]], stride,
anchors, self.classes, targets.device, self.anchor_ious)
for l, s in zip((cls_target, box_target, depth), snapped): l.append(s)
return torch.stack(cls_target), torch.stack(box_target), torch.stack(depth)
def _compute_loss(self, x, cls_heads, box_heads, targets):
cls_losses, box_losses, fg_targets = [], [], []
for cls_head, box_head in zip(cls_heads, box_heads):
size = cls_head.shape[-2:]
stride = x.shape[-1] / cls_head.shape[-1]
cls_target, box_target, depth = self._extract_targets(targets, stride, size)
fg_targets.append((depth > 0).sum().float().clamp(min=1))
cls_head = cls_head.view_as(cls_target).float()
cls_mask = (depth >= 0).expand_as(cls_target).float()
cls_loss = self.cls_criterion(cls_head, cls_target)
cls_loss = cls_mask * cls_loss
cls_losses.append(cls_loss.sum())
box_head = box_head.view_as(box_target).float()
box_mask = (depth > 0).expand_as(box_target).float()
box_loss = self.box_criterion(box_head, box_target)
box_loss = box_mask * box_loss
box_losses.append(box_loss.sum())
fg_targets = torch.stack(fg_targets).sum()
cls_loss = torch.stack(cls_losses).sum() / fg_targets
box_loss = torch.stack(box_losses).sum() / fg_targets
return cls_loss, box_loss
def save(self, state):
checkpoint = {
'backbone': [k for k, _ in self.backbones.items()],
'classes': self.classes,
'state_dict': self.state_dict(),
'ratios': self.ratios,
'scales': self.scales
}
if self.rotated_bbox and self.angles:
checkpoint['angles'] = self.angles
for key in ('iteration', 'optimizer', 'scheduler'):
if key in state:
checkpoint[key] = state[key]
torch.save(checkpoint, state['path'])
@classmethod
def load(cls, filename, rotated_bbox=False):
if not os.path.isfile(filename):
raise ValueError('No checkpoint {}'.format(filename))
checkpoint = torch.load(filename, map_location=lambda storage, loc: storage)
kwargs = {}
for i in ['ratios', 'scales', 'angles']:
if i in checkpoint:
kwargs[i] = checkpoint[i]
if ('angles' in checkpoint) or rotated_bbox:
kwargs['rotated_bbox'] = True
# Recreate model from checkpoint instead of from individual backbones
model = cls(backbones=checkpoint['backbone'], classes=checkpoint['classes'], **kwargs)
model.load_state_dict(checkpoint['state_dict'])
state = {}
for key in ('iteration', 'optimizer', 'scheduler'):
if key in checkpoint:
state[key] = checkpoint[key]
del checkpoint
torch.cuda.empty_cache()
return model, state
def export(self, size, dynamic_batch_opts, precision, calibration_files, calibration_table, verbose, onnx_only=False):
# import torch.onnx.symbolic_opset11 as onnx_symbolic
# def upsample_nearest2d(g, input, output_size, *args):
# # Currently, TRT 7.1 ONNX Parser does not support all ONNX ops
# # needed to support dynamic upsampling ONNX forumlation
# # Here we hardcode scale=2 as a temporary workaround
# scales = g.op("Constant", value_t=torch.tensor([1., 1., 2., 2.]))
# empty_tensor = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32))
# return g.op("Resize", input, empty_tensor, scales, mode_s="nearest", nearest_mode_s="floor")
# onnx_symbolic.upsample_nearest2d = upsample_nearest2d
# Export to ONNX
print('Exporting to ONNX...')
self.exporting = True
onnx_bytes = io.BytesIO()
zero_input = torch.zeros([1, 3, *size]).cuda()
input_names = ['input_1']
output_names = ['score_1', 'score_2', 'score_3', 'score_4', 'score_5',
'box_1', 'box_2', 'box_3', 'box_4', 'box_5']
dynamic_axes = {input_names[0]: {0:'batch'}}
for _, name in enumerate(output_names):
dynamic_axes[name] = dynamic_axes[input_names[0]]
extra_args = {'opset_version': 12, 'verbose': verbose,
'input_names': input_names, 'output_names': output_names,
'dynamic_axes': dynamic_axes}
torch.onnx.export(self.cuda(), zero_input, onnx_bytes, **extra_args)
self.exporting = False
if onnx_only:
return onnx_bytes.getvalue()
# Build TensorRT engine
model_name = '_'.join([k for k, _ in self.backbones.items()])
anchors = []
if not self.rotated_bbox:
anchors = [generate_anchors(stride, self.ratios, self.scales,
self.angles).view(-1).tolist() for stride in self.strides]
else:
anchors = [generate_anchors_rotated(stride, self.ratios, self.scales,
self.angles)[0].view(-1).tolist() for stride in self.strides]
return Engine(onnx_bytes.getvalue(), len(onnx_bytes.getvalue()), dynamic_batch_opts, precision,
self.threshold, self.top_n, anchors, self.rotated_bbox, self.nms, self.detections,
calibration_files, model_name, calibration_table, verbose)