box.py 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
import torch
from ._C import decode as decode_cuda
from ._C import iou as iou_cuda
from ._C import nms as nms_cuda
import numpy as np
from .utils import order_points, rotate_boxes

def generate_anchors(stride, ratio_vals, scales_vals, angles_vals=None):
    'Generate anchors coordinates from scales/ratios'

    scales = torch.FloatTensor(scales_vals).repeat(len(ratio_vals), 1)
    scales = scales.transpose(0, 1).contiguous().view(-1, 1)
    ratios = torch.FloatTensor(ratio_vals * len(scales_vals))

    wh = torch.FloatTensor([stride]).repeat(len(ratios), 2)
    ws = torch.sqrt(wh[:, 0] * wh[:, 1] / ratios)
    dwh = torch.stack([ws, ws * ratios], dim=1)
    xy1 = 0.5 * (wh - dwh * scales)
    xy2 = 0.5 * (wh + dwh * scales)
    return torch.cat([xy1, xy2], dim=1)


def generate_anchors_rotated(stride, ratio_vals, scales_vals, angles_vals):
    'Generate anchors coordinates from scales/ratios/angles'
    scales = torch.FloatTensor(scales_vals).repeat(len(ratio_vals), 1) 
    scales = scales.transpose(0, 1).contiguous().view(-1, 1)
    ratios = torch.FloatTensor(ratio_vals * len(scales_vals))

    wh = torch.FloatTensor([stride]).repeat(len(ratios), 2)
    ws = torch.round(torch.sqrt(wh[:, 0] * wh[:, 1] / ratios))
    dwh = torch.stack([ws, torch.round(ws * ratios)], dim=1)
    
    xy0 = 0.5 * (wh - dwh * scales)
    xy2 = 0.5 * (wh + dwh * scales) - 1
    xy1 = xy0 + (xy2 - xy0) * torch.FloatTensor([0,1])
    xy3 = xy0 + (xy2 - xy0) * torch.FloatTensor([1,0])
    
    angles = torch.FloatTensor(angles_vals)
    theta = angles.repeat(xy0.size(0),1)
    theta = theta.transpose(0,1).contiguous().view(-1,1)

    xmin_ymin = xy0.repeat(int(theta.size(0)/xy0.size(0)),1)
    xmax_ymax = xy2.repeat(int(theta.size(0)/xy2.size(0)),1)
    widths_heights = dwh * scales
    widths_heights = widths_heights.repeat(int(theta.size(0)/widths_heights.size(0)),1)

    u = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1)
    l = torch.stack([-torch.sin(angles), torch.cos(angles)], dim=1)
    R = torch.stack([u, l], dim=1)

    xy0R = torch.matmul(R,xy0.transpose(1,0) - stride/2 + 0.5) + stride/2 - 0.5
    xy1R = torch.matmul(R,xy1.transpose(1,0) - stride/2 + 0.5) + stride/2 - 0.5
    xy2R = torch.matmul(R,xy2.transpose(1,0) - stride/2 + 0.5) + stride/2 - 0.5
    xy3R = torch.matmul(R,xy3.transpose(1,0) - stride/2 + 0.5) + stride/2 - 0.5
    
    xy0R = xy0R.permute(0,2,1).contiguous().view(-1,2)
    xy1R = xy1R.permute(0,2,1).contiguous().view(-1,2)
    xy2R = xy2R.permute(0,2,1).contiguous().view(-1,2)
    xy3R = xy3R.permute(0,2,1).contiguous().view(-1,2)

    anchors_axis = torch.cat([xmin_ymin, xmax_ymax], dim=1)
    anchors_rotated = order_points(torch.stack([xy0R,xy1R,xy2R,xy3R],dim = 1)).view(-1,8)

    return anchors_axis, anchors_rotated


def box2delta(boxes, anchors):
    'Convert boxes to deltas from anchors'

    anchors_wh = anchors[:, 2:] - anchors[:, :2] + 1
    anchors_ctr = anchors[:, :2] + 0.5 * anchors_wh
    boxes_wh = boxes[:, 2:] - boxes[:, :2] + 1
    boxes_ctr = boxes[:, :2] + 0.5 * boxes_wh

    return torch.cat([
        (boxes_ctr - anchors_ctr) / anchors_wh,
        torch.log(boxes_wh / anchors_wh)
    ], 1)


def box2delta_rotated(boxes, anchors):
    'Convert boxes to deltas from anchors'

    anchors_wh = anchors[:, 2:4] - anchors[:, :2] + 1
    anchors_ctr = anchors[:, :2] + 0.5 * anchors_wh
    boxes_wh = boxes[:, 2:4] - boxes[:, :2] + 1
    boxes_ctr = boxes[:, :2] + 0.5 * boxes_wh
    boxes_sin = boxes[:, 4]
    boxes_cos = boxes[:, 5]

    return torch.cat([
        (boxes_ctr - anchors_ctr) / anchors_wh,
        torch.log(boxes_wh / anchors_wh), boxes_sin[:, None], boxes_cos[:, None]
    ], 1)


def delta2box(deltas, anchors, size, stride):
    'Convert deltas from anchors to boxes'

    anchors_wh = anchors[:, 2:] - anchors[:, :2] + 1
    ctr = anchors[:, :2] + 0.5 * anchors_wh
    pred_ctr = deltas[:, :2] * anchors_wh + ctr
    pred_wh = torch.exp(deltas[:, 2:]) * anchors_wh

    m = torch.zeros([2], device=deltas.device, dtype=deltas.dtype)
    M = (torch.tensor([size], device=deltas.device, dtype=deltas.dtype) * stride - 1)
    clamp = lambda t: torch.max(m, torch.min(t, M))
    return torch.cat([
        clamp(pred_ctr - 0.5 * pred_wh),
        clamp(pred_ctr + 0.5 * pred_wh - 1)
    ], 1)


def delta2box_rotated(deltas, anchors, size, stride):
    'Convert deltas from anchors to boxes'

    anchors_wh = anchors[:, 2:4] - anchors[:, :2] + 1
    ctr = anchors[:, :2] + 0.5 * anchors_wh
    pred_ctr = deltas[:, :2] * anchors_wh + ctr
    pred_wh = torch.exp(deltas[:, 2:4]) * anchors_wh
    pred_sin = deltas[:, 4]
    pred_cos = deltas[:, 5]

    m = torch.zeros([2], device=deltas.device, dtype=deltas.dtype)
    M = (torch.tensor([size], device=deltas.device, dtype=deltas.dtype) * stride - 1)
    clamp = lambda t: torch.max(m, torch.min(t, M))
    return torch.cat([
        clamp(pred_ctr - 0.5 * pred_wh),
        clamp(pred_ctr + 0.5 * pred_wh - 1),
        torch.atan2(pred_sin, pred_cos)[:, None]
    ], 1)


def snap_to_anchors(boxes, size, stride, anchors, num_classes, device, anchor_ious):
    'Snap target boxes (x, y, w, h) to anchors'

    num_anchors = anchors.size()[0] if anchors is not None else 1
    width, height = (int(size[0] / stride), int(size[1] / stride))

    if boxes.nelement() == 0:
        return (torch.zeros([num_anchors, num_classes, height, width], device=device),
                torch.zeros([num_anchors, 4, height, width], device=device),
                torch.zeros([num_anchors, 1, height, width], device=device))

    boxes, classes = boxes.split(4, dim=1)

    # Generate anchors
    x, y = torch.meshgrid([torch.arange(0, size[i], stride, device=device, dtype=classes.dtype) for i in range(2)])
    xyxy = torch.stack((x, y, x, y), 2).unsqueeze(0)
    anchors = anchors.view(-1, 1, 1, 4).to(dtype=classes.dtype)
    anchors = (xyxy + anchors).contiguous().view(-1, 4)

    # Compute overlap between boxes and anchors
    boxes = torch.cat([boxes[:, :2], boxes[:, :2] + boxes[:, 2:] - 1], 1)
    xy1 = torch.max(anchors[:, None, :2], boxes[:, :2])
    xy2 = torch.min(anchors[:, None, 2:], boxes[:, 2:])
    inter = torch.prod((xy2 - xy1 + 1).clamp(0), 2)
    boxes_area = torch.prod(boxes[:, 2:] - boxes[:, :2] + 1, 1)
    anchors_area = torch.prod(anchors[:, 2:] - anchors[:, :2] + 1, 1)
    overlap = inter / (anchors_area[:, None] + boxes_area - inter)

    # Keep best box per anchor
    overlap, indices = overlap.max(1)
    box_target = box2delta(boxes[indices], anchors)
    box_target = box_target.view(num_anchors, 1, width, height, 4)
    box_target = box_target.transpose(1, 4).transpose(2, 3)
    box_target = box_target.squeeze().contiguous()

    depth = torch.ones_like(overlap) * -1
    depth[overlap < anchor_ious[0]] = 0  # background
    depth[overlap >= anchor_ious[1]] = classes[indices][overlap >= anchor_ious[1]].squeeze() + 1  # objects
    depth = depth.view(num_anchors, width, height).transpose(1, 2).contiguous()

    # Generate target classes
    cls_target = torch.zeros((anchors.size()[0], num_classes + 1), device=device, dtype=boxes.dtype)
    if classes.nelement() == 0:
        classes = torch.LongTensor([num_classes], device=device).expand_as(indices)
    else:
        classes = classes[indices].long()
    classes = classes.view(-1, 1)
    classes[overlap < anchor_ious[0]] = num_classes  # background has no class
    cls_target.scatter_(1, classes, 1)
    cls_target = cls_target[:, :num_classes].view(-1, 1, width, height, num_classes)
    cls_target = cls_target.transpose(1, 4).transpose(2, 3)
    cls_target = cls_target.squeeze().contiguous()

    return (cls_target.view(num_anchors, num_classes, height, width),
            box_target.view(num_anchors, 4, height, width),
            depth.view(num_anchors, 1, height, width))


def snap_to_anchors_rotated(boxes, size, stride, anchors, num_classes, device, anchor_ious):
    'Snap target boxes (x, y, w, h, a) to anchors'

    anchors_axis, anchors_rotated = anchors

    num_anchors = anchors_rotated.size()[0] if anchors_rotated is not None else 1
    width, height = (int(size[0] / stride), int(size[1] / stride))

    if boxes.nelement() == 0:
        return (torch.zeros([num_anchors, num_classes, height, width], device=device),
                torch.zeros([num_anchors, 6, height, width], device=device),
                torch.zeros([num_anchors, 1, height, width], device=device))

    boxes, classes = boxes.split(5, dim=1)
    boxes_axis, boxes_rotated = rotate_boxes(boxes)
    
    boxes_axis = boxes_axis.to(device)
    boxes_rotated = boxes_rotated.to(device)
    anchors_axis = anchors_axis.to(device)
    anchors_rotated = anchors_rotated.to(device)

    # Generate anchors
    x, y = torch.meshgrid([torch.arange(0, size[i], stride, device=device, dtype=classes.dtype) for i in range(2)])
    xy_2corners = torch.stack((x, y, x, y), 2).unsqueeze(0)
    xy_4corners = torch.stack((x, y, x, y, x, y, x, y), 2).unsqueeze(0)
    anchors_axis = (xy_2corners.to(torch.float) + anchors_axis.view(-1, 1, 1, 4)).contiguous().view(-1, 4)
    anchors_rotated = (xy_4corners.to(torch.float) + anchors_rotated.view(-1, 1, 1, 8)).contiguous().view(-1, 8)

    if torch.cuda.is_available():
        iou = iou_cuda

    overlap = iou(boxes_rotated.contiguous().view(-1), anchors_rotated.contiguous().view(-1))[0]

    # Keep best box per anchor
    overlap, indices = overlap.max(1)
    box_target = box2delta_rotated(boxes_axis[indices], anchors_axis)
    box_target = box_target.view(num_anchors, 1, width, height, 6)
    box_target = box_target.transpose(1, 4).transpose(2, 3)
    box_target = box_target.squeeze().contiguous()

    depth = torch.ones_like(overlap, device=device) * -1
    depth[overlap < anchor_ious[0]] = 0  # background
    depth[overlap >= anchor_ious[1]] = classes[indices][overlap >= anchor_ious[1]].squeeze() + 1  # objects
    depth = depth.view(num_anchors, width, height).transpose(1, 2).contiguous()

    # Generate target classes
    cls_target = torch.zeros((anchors_axis.size()[0], num_classes + 1), device=device, dtype=boxes_axis.dtype)
    if classes.nelement() == 0:
        classes = torch.LongTensor([num_classes], device=device).expand_as(indices)
    else:
        classes = classes[indices].long()
    classes = classes.view(-1, 1)
    classes[overlap < anchor_ious[0]] = num_classes  # background has no class
    cls_target.scatter_(1, classes, 1)
    cls_target = cls_target[:, :num_classes].view(-1, 1, width, height, num_classes)
    cls_target = cls_target.transpose(1, 4).transpose(2, 3)
    cls_target = cls_target.squeeze().contiguous()

    return (cls_target.view(num_anchors, num_classes, height, width),
            box_target.view(num_anchors, 6, height, width),
            depth.view(num_anchors, 1, height, width))


def decode(all_cls_head, all_box_head, stride=1, threshold=0.05, top_n=1000, anchors=None, rotated=False):
    'Box Decoding and Filtering'

    if rotated:
        anchors = anchors[0]
    num_boxes = 4 if not rotated else 6

    if torch.cuda.is_available():
        return decode_cuda(all_cls_head.float(), all_box_head.float(),
            anchors.view(-1).tolist(), stride, threshold, top_n, rotated)

    device = all_cls_head.device
    anchors = anchors.to(device).type(all_cls_head.type())
    num_anchors = anchors.size()[0] if anchors is not None else 1
    num_classes = all_cls_head.size()[1] // num_anchors
    height, width = all_cls_head.size()[-2:]

    batch_size = all_cls_head.size()[0]
    out_scores = torch.zeros((batch_size, top_n), device=device)
    out_boxes = torch.zeros((batch_size, top_n, num_boxes), device=device)
    out_classes = torch.zeros((batch_size, top_n), device=device)

    # Per item in batch
    for batch in range(batch_size):
        cls_head = all_cls_head[batch, :, :, :].contiguous().view(-1)
        box_head = all_box_head[batch, :, :, :].contiguous().view(-1, num_boxes)

        # Keep scores over threshold
        keep = (cls_head >= threshold).nonzero().view(-1)
        if keep.nelement() == 0:
            continue

        # Gather top elements
        scores = torch.index_select(cls_head, 0, keep)
        scores, indices = torch.topk(scores, min(top_n, keep.size()[0]), dim=0)
        indices = torch.index_select(keep, 0, indices).view(-1)
        classes = (indices / width / height) % num_classes
        classes = classes.type(all_cls_head.type())

        # Infer kept bboxes
        x = indices % width
        y = (indices / width) % height
        a = indices / num_classes / height / width
        box_head = box_head.view(num_anchors, num_boxes, height, width)
        boxes = box_head[a, :, y, x]

        if anchors is not None:
            grid = torch.stack([x, y, x, y], 1).type(all_cls_head.type()) * stride + anchors[a, :]
            boxes = delta2box(boxes, grid, [width, height], stride)

        out_scores[batch, :scores.size()[0]] = scores
        out_boxes[batch, :boxes.size()[0], :] = boxes
        out_classes[batch, :classes.size()[0]] = classes

    return out_scores, out_boxes, out_classes


def nms(all_scores, all_boxes, all_classes, nms=0.5, ndetections=100):
    'Non Maximum Suppression'

    if torch.cuda.is_available():
        return nms_cuda(all_scores.float(), all_boxes.float(), all_classes.float(), 
            nms, ndetections, False)

    device = all_scores.device
    batch_size = all_scores.size()[0]
    out_scores = torch.zeros((batch_size, ndetections), device=device)
    out_boxes = torch.zeros((batch_size, ndetections, 4), device=device)
    out_classes = torch.zeros((batch_size, ndetections), device=device)

    # Per item in batch
    for batch in range(batch_size):
        # Discard null scores
        keep = (all_scores[batch, :].view(-1) > 0).nonzero()
        scores = all_scores[batch, keep].view(-1)
        boxes = all_boxes[batch, keep, :].view(-1, 4)
        classes = all_classes[batch, keep].view(-1)

        if scores.nelement() == 0:
            continue

        # Sort boxes
        scores, indices = torch.sort(scores, descending=True)
        boxes, classes = boxes[indices], classes[indices]
        areas = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1).view(-1)
        keep = torch.ones(scores.nelement(), device=device, dtype=torch.uint8).view(-1)

        for i in range(ndetections):
            if i >= keep.nonzero().nelement() or i >= scores.nelement():
                i -= 1
                break

            # Find overlapping boxes with lower score
            xy1 = torch.max(boxes[:, :2], boxes[i, :2])
            xy2 = torch.min(boxes[:, 2:], boxes[i, 2:])
            inter = torch.prod((xy2 - xy1 + 1).clamp(0), 1)
            criterion = ((scores > scores[i]) |
                         (inter / (areas + areas[i] - inter) <= nms) |
                         (classes != classes[i]))
            criterion[i] = 1

            # Only keep relevant boxes
            scores = scores[criterion.nonzero()].view(-1)
            boxes = boxes[criterion.nonzero(), :].view(-1, 4)
            classes = classes[criterion.nonzero()].view(-1)
            areas = areas[criterion.nonzero()].view(-1)
            keep[(~criterion).nonzero()] = 0

        out_scores[batch, :i + 1] = scores[:i + 1]
        out_boxes[batch, :i + 1, :] = boxes[:i + 1, :]
        out_classes[batch, :i + 1] = classes[:i + 1]

    return out_scores, out_boxes, out_classes


def nms_rotated(all_scores, all_boxes, all_classes, nms=0.5, ndetections=100):
    'Non Maximum Suppression'

    if torch.cuda.is_available():
        return nms_cuda(all_scores.float(), all_boxes.float(), all_classes.float(), 
            nms, ndetections, True)

    device = all_scores.device
    batch_size = all_scores.size()[0]
    out_scores = torch.zeros((batch_size, ndetections), device=device)
    out_boxes = torch.zeros((batch_size, ndetections, 6), device=device)
    out_classes = torch.zeros((batch_size, ndetections), device=device)

    # Per item in batch
    for batch in range(batch_size):
        # Discard null scores
        keep = (all_scores[batch, :].view(-1) > 0).nonzero()
        scores = all_scores[batch, keep].view(-1)
        boxes = all_boxes[batch, keep, :].view(-1, 6)
        classes = all_classes[batch, keep].view(-1)
        theta = torch.atan2(boxes[:, -2], boxes[:, -1])
        boxes_theta = torch.cat([boxes[:, :-2], theta[:, None]], dim=1)

        if scores.nelement() == 0:
            continue

        # Sort boxes
        scores, indices = torch.sort(scores, descending=True)
        boxes, boxes_theta, classes = boxes[indices], boxes_theta[indices], classes[indices]
        areas = (boxes_theta[:, 2] - boxes_theta[:, 0] + 1) * (boxes_theta[:, 3] - boxes_theta[:, 1] + 1).view(-1)
        keep = torch.ones(scores.nelement(), device=device, dtype=torch.uint8).view(-1)

        for i in range(ndetections):
            if i >= keep.nonzero().nelement() or i >= scores.nelement():
                i -= 1
                break

            boxes_axis, boxes_rotated = rotate_boxes(boxes_theta, points=True)
            overlap, inter = iou(boxes_rotated.contiguous().view(-1), boxes_rotated[i, :].contiguous().view(-1))
            inter = inter.squeeze()
            criterion = ((scores > scores[i]) |
                         (inter / (areas + areas[i] - inter) <= nms) |
                         (classes != classes[i]))
            criterion[i] = 1

            # Only keep relevant boxes
            scores = scores[criterion.nonzero()].view(-1)
            boxes = boxes[criterion.nonzero(), :].view(-1, 6)
            boxes_theta = boxes_theta[criterion.nonzero(), :].view(-1, 5)
            classes = classes[criterion.nonzero()].view(-1)
            areas = areas[criterion.nonzero()].view(-1)
            keep[(~criterion).nonzero()] = 0

        out_scores[batch, :i + 1] = scores[:i + 1]
        out_boxes[batch, :i + 1, :] = boxes[:i + 1, :]
        out_classes[batch, :i + 1] = classes[:i + 1]

    return out_scores, out_boxes, out_classes