resnet.py
4.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from tensorflow import keras
import keras_resnet
import keras_resnet.models
from . import retinanet
from . import Backbone
from ..utils.image import preprocess_image
class ResNetBackbone(Backbone):
"""Describes backbone information and provides utility functions."""
def __init__(self, backbone):
super(ResNetBackbone, self).__init__(backbone)
self.custom_objects.update(keras_resnet.custom_objects)
def retinanet(self, *args, **kwargs):
"""Returns a retinanet model using the correct backbone."""
return resnet_retinanet(*args, backbone=self.backbone, **kwargs)
def download_imagenet(self):
"""Downloads ImageNet weights and returns path to weights file."""
resnet_filename = "ResNet-{}-model.keras.h5"
resnet_resource = (
"https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}".format(
resnet_filename
)
)
depth = int(self.backbone.replace("resnet", ""))
filename = resnet_filename.format(depth)
resource = resnet_resource.format(depth)
if depth == 50:
checksum = "3e9f4e4f77bbe2c9bec13b53ee1c2319"
elif depth == 101:
checksum = "05dc86924389e5b401a9ea0348a3213c"
elif depth == 152:
checksum = "6ee11ef2b135592f8031058820bb9e71"
return keras.utils.get_file(
filename, resource, cache_subdir="models", md5_hash=checksum
)
def validate(self):
"""Checks whether the backbone string is correct."""
allowed_backbones = ["resnet50", "resnet101", "resnet152"]
backbone = self.backbone.split("_")[0]
if backbone not in allowed_backbones:
raise ValueError(
"Backbone ('{}') not in allowed backbones ({}).".format(
backbone, allowed_backbones
)
)
def preprocess_image(self, inputs):
"""Takes as input an image and prepares it for being passed through the network."""
return preprocess_image(inputs, mode="caffe")
def resnet_retinanet(
num_classes, backbone="resnet50", inputs=None, modifier=None, **kwargs
):
"""Constructs a retinanet model using a resnet backbone.
Args
num_classes: Number of classes to predict.
backbone: Which backbone to use (one of ('resnet50', 'resnet101', 'resnet152')).
inputs: The inputs to the network (defaults to a Tensor of shape (None, None, 3)).
modifier: A function handler which can modify the backbone before using it in retinanet (this can be used to freeze backbone layers for example).
Returns
RetinaNet model with a ResNet backbone.
"""
# choose default input
if inputs is None:
if keras.backend.image_data_format() == "channels_first":
inputs = keras.layers.Input(shape=(3, None, None))
else:
inputs = keras.layers.Input(shape=(None, None, 3))
# create the resnet backbone
if backbone == "resnet50":
resnet = keras_resnet.models.ResNet50(inputs, include_top=False, freeze_bn=True)
elif backbone == "resnet101":
resnet = keras_resnet.models.ResNet101(
inputs, include_top=False, freeze_bn=True
)
elif backbone == "resnet152":
resnet = keras_resnet.models.ResNet152(
inputs, include_top=False, freeze_bn=True
)
else:
raise ValueError("Backbone ('{}') is invalid.".format(backbone))
# invoke modifier if given
if modifier:
resnet = modifier(resnet)
# create the full model
# resnet.outputs contains 4 layers
backbone_layers = {
"C2": resnet.outputs[0],
"C3": resnet.outputs[1],
"C4": resnet.outputs[2],
"C5": resnet.outputs[3],
}
return retinanet.retinanet(
inputs=inputs,
num_classes=num_classes,
backbone_layers=backbone_layers,
**kwargs
)
def resnet50_retinanet(num_classes, inputs=None, **kwargs):
return resnet_retinanet(
num_classes=num_classes, backbone="resnet50", inputs=inputs, **kwargs
)
def resnet101_retinanet(num_classes, inputs=None, **kwargs):
return resnet_retinanet(
num_classes=num_classes, backbone="resnet101", inputs=inputs, **kwargs
)
def resnet152_retinanet(num_classes, inputs=None, **kwargs):
return resnet_retinanet(
num_classes=num_classes, backbone="resnet152", inputs=inputs, **kwargs
)