train2.py 25.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
#!/usr/bin/env python

"""
Copyright 2017-2018 Fizyr (https://fizyr.com)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

import argparse
import os
import sys
import warnings

from tensorflow import keras
import tensorflow as tf

from ../models import submodel

# Allow relative imports when being executed as script.
if __name__ == "__main__" and __package__ is None:
    sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", ".."))
    import keras_retinanet.bin  # noqa: F401

    __package__ = "keras_retinanet.bin"

# Change these to absolute imports if you copy this script outside the keras_retinanet package.
from .. import layers  # noqa: F401
from .. import losses
from .. import models
from ..callbacks import RedirectModel
from ..callbacks.eval import Evaluate
from ..models.retinanet import retinanet_bbox
from ..preprocessing.csv_generator import CSVGenerator
from ..preprocessing.kitti import KittiGenerator
from ..preprocessing.open_images import OpenImagesGenerator
from ..preprocessing.pascal_voc import PascalVocGenerator
from ..utils.anchors import make_shapes_callback
from ..utils.config import (
    read_config_file,
    parse_anchor_parameters,
    parse_pyramid_levels,
)
from ..utils.gpu import setup_gpu
from ..utils.image import random_visual_effect_generator
from ..utils.model import freeze as freeze_model
from ..utils.tf_version import check_tf_version
from ..utils.transform import random_transform_generator

#######################

from ..models import submodel


def makedirs(path):
    # Intended behavior: try to create the directory,
    # pass if the directory exists already, fails otherwise.
    # Meant for Python 2.7/3.n compatibility.
    try:
        os.makedirs(path)
    except OSError:
        if not os.path.isdir(path):
            raise


def model_with_weights(model, weights, skip_mismatch):
    """Load weights for model.

    Args
        model         : The model to load weights for.
        weights       : The weights to load.
        skip_mismatch : If True, skips layers whose shape of weights doesn't match with the model.
    """
    if weights is not None:
        model.load_weights(weights, by_name=True, skip_mismatch=skip_mismatch)
    return model


def create_models(
    backbone_retinanet,
    num_classes,
    weights,
    multi_gpu=0,
    freeze_backbone=False,
    lr=1e-5,
    optimizer_clipnorm=0.001,
    config=None,
    submodels=None,
):
    """Creates three models (model, training_model, prediction_model).

    Args
        backbone_retinanet : A function to call to create a retinanet model with a given backbone.
        num_classes        : The number of classes to train.
        weights            : The weights to load into the model.
        multi_gpu          : The number of GPUs to use for training.
        freeze_backbone    : If True, disables learning for the backbone.
        config             : Config parameters, None indicates the default configuration.

    Returns
        model            : The base model. This is also the model that is saved in snapshots.
        training_model   : The training model. If multi_gpu=0, this is identical to model.
        prediction_model : The model wrapped with utility functions to perform object detection (applies regression values and performs NMS).
    """

    modifier = freeze_model if freeze_backbone else None

    # load anchor parameters, or pass None (so that defaults will be used)
    anchor_params = None
    num_anchors = None
    pyramid_levels = None
    if config and "anchor_parameters" in config:
        anchor_params = parse_anchor_parameters(config)
        num_anchors = anchor_params.num_anchors()
    if config and "pyramid_levels" in config:
        pyramid_levels = parse_pyramid_levels(config)

    # Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors.
    # optionally wrap in a parallel model
    if multi_gpu > 1:
        from keras.utils import multi_gpu_model

        with tf.device("/cpu:0"):
            model = model_with_weights(
                backbone_retinanet(
                    num_classes,
                    num_anchors=num_anchors,
                    modifier=modifier,
                    pyramid_levels=pyramid_levels,
                ),
                weights=weights,
                skip_mismatch=True,
            )
        training_model = multi_gpu_model(model, gpus=multi_gpu)
    else:
        model = model_with_weights(
            backbone_retinanet(
                num_classes,
                num_anchors=num_anchors,
                modifier=modifier,
                pyramid_levels=pyramid_levels,
                submodels=submodels,
            ),
            weights=weights,
            skip_mismatch=True,
        )
        training_model = model

    # make prediction model
    prediction_model = retinanet_bbox(
        model=model, anchor_params=anchor_params, pyramid_levels=pyramid_levels
    )

    # compile model
    training_model.compile(
        loss={"regression": losses.smooth_l1(), "classification": losses.focal()},
        optimizer=keras.optimizers.Adam(lr=lr, clipnorm=optimizer_clipnorm),
    )

    return model, training_model, prediction_model


def create_callbacks(
    model, training_model, prediction_model, validation_generator, args
):
    """Creates the callbacks to use during training.

    Args
        model: The base model.
        training_model: The model that is used for training.
        prediction_model: The model that should be used for validation.
        validation_generator: The generator for creating validation data.
        args: parseargs args object.

    Returns:
        A list of callbacks used for training.
    """
    callbacks = []

    tensorboard_callback = None

    if args.tensorboard_dir:
        makedirs(args.tensorboard_dir)
        update_freq = args.tensorboard_freq
        if update_freq not in ["epoch", "batch"]:
            update_freq = int(update_freq)
        tensorboard_callback = keras.callbacks.TensorBoard(
            log_dir=args.tensorboard_dir,
            histogram_freq=0,
            batch_size=args.batch_size,
            write_graph=True,
            write_grads=False,
            write_images=False,
            update_freq=update_freq,
            embeddings_freq=0,
            embeddings_layer_names=None,
            embeddings_metadata=None,
        )

    if args.evaluation and validation_generator:
        if args.dataset_type == "coco":
            from ..callbacks.coco import CocoEval

            # use prediction model for evaluation
            evaluation = CocoEval(
                validation_generator, tensorboard=tensorboard_callback
            )
        else:
            evaluation = Evaluate(
                validation_generator,
                tensorboard=tensorboard_callback,
                weighted_average=args.weighted_average,
            )
        evaluation = RedirectModel(evaluation, prediction_model)
        callbacks.append(evaluation)

    # save the model
    if args.snapshots:
        # ensure directory created first; otherwise h5py will error after epoch.
        makedirs(args.snapshot_path)
        checkpoint = keras.callbacks.ModelCheckpoint(
            os.path.join(
                args.snapshot_path,
                "{backbone}_{dataset_type}_{{epoch:02d}}.h5".format(
                    backbone=args.backbone, dataset_type=args.dataset_type
                ),
            ),
            verbose=1,
            # save_best_only=True,
            # monitor="mAP",
            # mode='max'
        )
        checkpoint = RedirectModel(checkpoint, model)
        callbacks.append(checkpoint)

    callbacks.append(
        keras.callbacks.ReduceLROnPlateau(
            monitor="loss",
            factor=args.reduce_lr_factor,
            patience=args.reduce_lr_patience,
            verbose=1,
            mode="auto",
            min_delta=0.0001,
            cooldown=0,
            min_lr=0,
        )
    )

    if args.evaluation and validation_generator:
        callbacks.append(
            keras.callbacks.EarlyStopping(
                monitor="mAP", patience=5, mode="max", min_delta=0.01
            )
        )

    if args.tensorboard_dir:
        callbacks.append(tensorboard_callback)

    return callbacks


def create_generators(args, preprocess_image):
    """Create generators for training and validation.

    Args
        args             : parseargs object containing configuration for generators.
        preprocess_image : Function that preprocesses an image for the network.
    """
    common_args = {
        "batch_size": args.batch_size,
        "config": args.config,
        "image_min_side": args.image_min_side,
        "image_max_side": args.image_max_side,
        "no_resize": args.no_resize,
        "preprocess_image": preprocess_image,
        "group_method": args.group_method,
    }

    # create random transform generator for augmenting training data
    if args.random_transform:
        transform_generator = random_transform_generator(
            min_rotation=-0.1,
            max_rotation=0.1,
            min_translation=(-0.1, -0.1),
            max_translation=(0.1, 0.1),
            min_shear=-0.1,
            max_shear=0.1,
            min_scaling=(0.9, 0.9),
            max_scaling=(1.1, 1.1),
            flip_x_chance=0.5,
            flip_y_chance=0.5,
        )
        visual_effect_generator = random_visual_effect_generator(
            contrast_range=(0.9, 1.1),
            brightness_range=(-0.1, 0.1),
            hue_range=(-0.05, 0.05),
            saturation_range=(0.95, 1.05),
        )
    else:
        transform_generator = random_transform_generator(flip_x_chance=0.5)
        visual_effect_generator = None

    if args.dataset_type == "coco":
        # import here to prevent unnecessary dependency on cocoapi
        from ..preprocessing.coco import CocoGenerator

        train_generator = CocoGenerator(
            args.coco_path,
            "train2017",
            transform_generator=transform_generator,
            visual_effect_generator=visual_effect_generator,
            **common_args
        )

        validation_generator = CocoGenerator(
            args.coco_path, "val2017", shuffle_groups=False, **common_args
        )
    elif args.dataset_type == "pascal":
        train_generator = PascalVocGenerator(
            args.pascal_path,
            "train",
            image_extension=args.image_extension,
            transform_generator=transform_generator,
            visual_effect_generator=visual_effect_generator,
            **common_args
        )

        validation_generator = PascalVocGenerator(
            args.pascal_path,
            "val",
            image_extension=args.image_extension,
            shuffle_groups=False,
            **common_args
        )
    elif args.dataset_type == "csv":
        train_generator = CSVGenerator(
            args.annotations,
            args.classes,
            transform_generator=transform_generator,
            visual_effect_generator=visual_effect_generator,
            **common_args
        )

        if args.val_annotations:
            validation_generator = CSVGenerator(
                args.val_annotations, args.classes, shuffle_groups=False, **common_args
            )
        else:
            validation_generator = None
    elif args.dataset_type == "oid":
        train_generator = OpenImagesGenerator(
            args.main_dir,
            subset="train",
            version=args.version,
            labels_filter=args.labels_filter,
            annotation_cache_dir=args.annotation_cache_dir,
            parent_label=args.parent_label,
            transform_generator=transform_generator,
            visual_effect_generator=visual_effect_generator,
            **common_args
        )

        validation_generator = OpenImagesGenerator(
            args.main_dir,
            subset="validation",
            version=args.version,
            labels_filter=args.labels_filter,
            annotation_cache_dir=args.annotation_cache_dir,
            parent_label=args.parent_label,
            shuffle_groups=False,
            **common_args
        )
    elif args.dataset_type == "kitti":
        train_generator = KittiGenerator(
            args.kitti_path,
            subset="train",
            transform_generator=transform_generator,
            visual_effect_generator=visual_effect_generator,
            **common_args
        )

        validation_generator = KittiGenerator(
            args.kitti_path, subset="val", shuffle_groups=False, **common_args
        )
    else:
        raise ValueError("Invalid data type received: {}".format(args.dataset_type))

    return train_generator, validation_generator


def check_args(parsed_args):
    """Function to check for inherent contradictions within parsed arguments.
    For example, batch_size < num_gpus
    Intended to raise errors prior to backend initialisation.

    Args
        parsed_args: parser.parse_args()

    Returns
        parsed_args
    """

    if parsed_args.multi_gpu > 1 and parsed_args.batch_size < parsed_args.multi_gpu:
        raise ValueError(
            "Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(
                parsed_args.batch_size, parsed_args.multi_gpu
            )
        )

    if parsed_args.multi_gpu > 1 and parsed_args.snapshot:
        raise ValueError(
            "Multi GPU training ({}) and resuming from snapshots ({}) is not supported.".format(
                parsed_args.multi_gpu, parsed_args.snapshot
            )
        )

    if parsed_args.multi_gpu > 1 and not parsed_args.multi_gpu_force:
        raise ValueError(
            "Multi-GPU support is experimental, use at own risk! Run with --multi-gpu-force if you wish to continue."
        )

    if "resnet" not in parsed_args.backbone:
        warnings.warn(
            "Using experimental backbone {}. Only resnet50 has been properly tested.".format(
                parsed_args.backbone
            )
        )

    return parsed_args


def parse_args(args):
    """Parse the arguments."""
    parser = argparse.ArgumentParser(
        description="Simple training script for training a RetinaNet network."
    )
    subparsers = parser.add_subparsers(
        help="Arguments for specific dataset types.", dest="dataset_type"
    )
    subparsers.required = True

    coco_parser = subparsers.add_parser("coco")
    coco_parser.add_argument(
        "coco_path", help="Path to dataset directory (ie. /tmp/COCO)."
    )

    pascal_parser = subparsers.add_parser("pascal")
    pascal_parser.add_argument(
        "pascal_path", help="Path to dataset directory (ie. /tmp/VOCdevkit)."
    )
    pascal_parser.add_argument(
        "--image-extension",
        help="Declares the dataset images' extension.",
        default=".jpg",
    )

    kitti_parser = subparsers.add_parser("kitti")
    kitti_parser.add_argument(
        "kitti_path", help="Path to dataset directory (ie. /tmp/kitti)."
    )

    def csv_list(string):
        return string.split(",")

    oid_parser = subparsers.add_parser("oid")
    oid_parser.add_argument("main_dir", help="Path to dataset directory.")
    oid_parser.add_argument(
        "--version", help="The current dataset version is v4.", default="v4"
    )
    oid_parser.add_argument(
        "--labels-filter",
        help="A list of labels to filter.",
        type=csv_list,
        default=None,
    )
    oid_parser.add_argument(
        "--annotation-cache-dir", help="Path to store annotation cache.", default="."
    )
    oid_parser.add_argument(
        "--parent-label", help="Use the hierarchy children of this label.", default=None
    )

    csv_parser = subparsers.add_parser("csv")
    csv_parser.add_argument(
        "annotations", help="Path to CSV file containing annotations for training."
    )
    csv_parser.add_argument(
        "classes", help="Path to a CSV file containing class label mapping."
    )
    csv_parser.add_argument(
        "--val-annotations",
        help="Path to CSV file containing annotations for validation (optional).",
    )

    group = parser.add_mutually_exclusive_group()
    group.add_argument("--snapshot", help="Resume training from a snapshot.")
    group.add_argument(
        "--imagenet-weights",
        help="Initialize the model with pretrained imagenet weights. This is the default behaviour.",
        action="store_const",
        const=True,
        default=True,
    )
    group.add_argument(
        "--weights", help="Initialize the model with weights from a file."
    )
    group.add_argument(
        "--no-weights",
        help="Don't initialize the model with any weights.",
        dest="imagenet_weights",
        action="store_const",
        const=False,
    )
    parser.add_argument(
        "--backbone",
        help="Backbone model used by retinanet.",
        default="resnet50",
        type=str,
    )
    parser.add_argument(
        "--batch-size", help="Size of the batches.", default=1, type=int
    )
    parser.add_argument(
        "--gpu", help="Id of the GPU to use (as reported by nvidia-smi)."
    )
    parser.add_argument(
        "--multi-gpu",
        help="Number of GPUs to use for parallel processing.",
        type=int,
        default=0,
    )
    parser.add_argument(
        "--multi-gpu-force",
        help="Extra flag needed to enable (experimental) multi-gpu support.",
        action="store_true",
    )
    parser.add_argument(
        "--initial-epoch",
        help="Epoch from which to begin the train, useful if resuming from snapshot.",
        type=int,
        default=0,
    )
    parser.add_argument(
        "--epochs", help="Number of epochs to train.", type=int, default=50
    )
    parser.add_argument(
        "--steps", help="Number of steps per epoch.", type=int, default=10000
    )
    parser.add_argument("--lr", help="Learning rate.", type=float, default=1e-5)
    parser.add_argument(
        "--optimizer-clipnorm",
        help="Clipnorm parameter for  optimizer.",
        type=float,
        default=0.001,
    )
    parser.add_argument(
        "--snapshot-path",
        help="Path to store snapshots of models during training (defaults to './snapshots')",
        default="./snapshots",
    )
    parser.add_argument(
        "--tensorboard-dir", help="Log directory for Tensorboard output", default=""
    )  # default='./logs') => https://github.com/tensorflow/tensorflow/pull/34870
    parser.add_argument(
        "--tensorboard-freq",
        help="Update frequency for Tensorboard output. Values 'epoch', 'batch' or int",
        default="epoch",
    )
    parser.add_argument(
        "--no-snapshots",
        help="Disable saving snapshots.",
        dest="snapshots",
        action="store_false",
    )
    parser.add_argument(
        "--no-evaluation",
        help="Disable per epoch evaluation.",
        dest="evaluation",
        action="store_false",
    )
    parser.add_argument(
        "--freeze-backbone",
        help="Freeze training of backbone layers.",
        action="store_true",
    )
    parser.add_argument(
        "--random-transform",
        help="Randomly transform image and annotations.",
        action="store_true",
    )
    parser.add_argument(
        "--image-min-side",
        help="Rescale the image so the smallest side is min_side.",
        type=int,
        default=800,
    )
    parser.add_argument(
        "--image-max-side",
        help="Rescale the image if the largest side is larger than max_side.",
        type=int,
        default=1333,
    )
    parser.add_argument(
        "--no-resize", help="Don" "t rescale the image.", action="store_true"
    )
    parser.add_argument(
        "--config", help="Path to a configuration parameters .ini file."
    )
    parser.add_argument(
        "--weighted-average",
        help="Compute the mAP using the weighted average of precisions among classes.",
        action="store_true",
    )
    parser.add_argument(
        "--compute-val-loss",
        help="Compute validation loss during training",
        dest="compute_val_loss",
        action="store_true",
    )
    parser.add_argument(
        "--reduce-lr-patience",
        help="Reduce learning rate after validation loss decreases over reduce_lr_patience epochs",
        type=int,
        default=2,
    )
    parser.add_argument(
        "--reduce-lr-factor",
        help="When learning rate is reduced due to reduce_lr_patience, multiply by reduce_lr_factor",
        type=float,
        default=0.1,
    )
    parser.add_argument(
        "--group-method",
        help="Determines how images are grouped together",
        type=str,
        default="ratio",
        choices=["none", "random", "ratio"],
    )

    # Fit generator arguments
    parser.add_argument(
        "--multiprocessing",
        help="Use multiprocessing in fit_generator.",
        action="store_true",
    )
    parser.add_argument(
        "--workers", help="Number of generator workers.", type=int, default=1
    )
    parser.add_argument(
        "--max-queue-size",
        help="Queue length for multiprocessing workers in fit_generator.",
        type=int,
        default=10,
    )

    return check_args(parser.parse_args(args))


def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # create object that stores backbone information
    backbone = models.backbone(args.backbone)

    # make sure tensorflow is the minimum required version
    check_tf_version()

    # optionally choose specific GPU
    if args.gpu is not None:
        setup_gpu(args.gpu)

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args.config)

    # create the generators
    train_generator, validation_generator = create_generators(
        args, backbone.preprocess_image
    )

    # create the model
    if args.snapshot is not None:
        print("Loading model, this may take a second...")
        model = models.load_model(args.snapshot, backbone_name=args.backbone)
        training_model = model
        anchor_params = None
        pyramid_levels = None
        if args.config and "anchor_parameters" in args.config:
            anchor_params = parse_anchor_parameters(args.config)
        if args.config and "pyramid_levels" in args.config:
            pyramid_levels = parse_pyramid_levels(args.config)

        prediction_model = retinanet_bbox(
            model=model, anchor_params=anchor_params, pyramid_levels=pyramid_levels
        )
    else:
        weights = args.weights
        # default to imagenet if nothing else is specified
        if weights is None and args.imagenet_weights:
            weights = backbone.download_imagenet()

        #################
        # subclass1 = submodel.custom_classification_model(num_classes=51, num_anchors=None, name="classification_submodel1")
        # subregress1 = submodel.custom_regression_model(num_values=4, num_anchors=None, name="regression_submodel1")

        # subclass2 = submodel.custom_classification_model(num_classes=10, num_anchors=None, name="classification_submodel2")
        # subregress2 = submodel.custom_regression_model(num_values=4, num_anchors=None, name="regression_submodel2")

        # subclass3 = submodel.custom_classification_model(num_classes=16, num_anchors=None, name="classification_submodel3")
        # subregress3 = submodel.custom_regression_model(num_values=4, num_anchors=None, name="regression_submodel3")

        # submodels = [
        #     ("regression", subregress1), ("classification", subclass1),
        #     ("regression", subregress2), ("classification", subclass2),
        #     ("regression", subregress3), ("classification", subclass3),
        # ]

        # s1 = submodel.custom_default_submodels(51, None)
        # s2 = submodel.custom_default_submodels(10, None)
        # s3 = submodel.custom_default_submodels(16, None) 

        # submodels = s1 + s2 + s3

        #################
        print("Creating model, this may take a second...")
        model, training_model, prediction_model = create_models(
            backbone_retinanet=backbone.retinanet,
            num_classes=train_generator.num_classes(),
            weights=weights,
            multi_gpu=args.multi_gpu,
            freeze_backbone=args.freeze_backbone,
            lr=args.lr,
            optimizer_clipnorm=args.optimizer_clipnorm,
            config=args.config,
            submodels=submodel.custom_classification_model(76,),
        )

    # print model summary
    print(model.summary())

    # this lets the generator compute backbone layer shapes using the actual backbone model
    if "vgg" in args.backbone or "densenet" in args.backbone:
        train_generator.compute_shapes = make_shapes_callback(model)
        if validation_generator:
            validation_generator.compute_shapes = train_generator.compute_shapes

    # create the callbacks
    callbacks = create_callbacks(
        model,
        training_model,
        prediction_model,
        validation_generator,
        args,
    )

    if not args.compute_val_loss:
        validation_generator = None

    # start training
    return training_model.fit_generator(
        generator=train_generator,
        steps_per_epoch=args.steps,
        epochs=args.epochs,
        verbose=1,
        callbacks=callbacks,
        workers=args.workers,
        use_multiprocessing=args.multiprocessing,
        max_queue_size=args.max_queue_size,
        validation_data=validation_generator,
        initial_epoch=args.initial_epoch,
    )


if __name__ == "__main__":
    main()