Ryan

etc: add motion_crop

1 +import cv2
2 +import numpy as np
3 +
4 +cap = cv2.VideoCapture('./videos/test.mp4') #load video
5 +count1 = 0 #counts number of frames
6 +
7 +#capture two frames
8 +rval, frame1 = cap.read()
9 +rval, frame2 = cap.read()
10 +
11 +while cap.isOpened():
12 +
13 + diff = cv2.absdiff(frame1, frame2) #difference of two frames
14 + gray = cv2.cvtColor(diff,cv2.COLOR_BGR2GRAY) #convert diff into greyscale
15 +
16 + blur = cv2.GaussianBlur(gray, (5,5), 0) #blur image to reduce noise
17 + _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) #set threshold
18 + dilated = cv2.dilate(thresh, None, iterations=3) #fill holes in the thresholded image
19 +
20 + #find contour
21 + contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
22 +
23 + count2 = 0 #counts number of motions in a frame
24 +
25 + #further implementation(removing, rectangle)
26 + for contour in contours:
27 + (x, y, w, h) = cv2.boundingRect(contour) #values of contour
28 +
29 + if cv2.contourArea(contour) < 7000: #to remove small unnecessary contours, (modify number for better results)
30 + continue
31 +
32 + filename = "clip{}-{}.jpg".format(count1,count2)
33 +
34 + motion = frame1[y:y+h, x:x+w]
35 + cv2.imwrite(filename, motion)
36 +
37 + count2 += 1
38 + #cv2.rectangle(frame1, (x, y), (x+w, y+h), (0, 0, 255), 2) #draw rectangle on frame1
39 +
40 + count1 += 1
41 +
42 + #show results
43 + #cv2.imshow("feed", frame1)
44 +
45 + #change to next frame
46 + frame1 = frame2
47 + rval, frame2 = cap.read()
48 +
49 + #incase of error
50 + if cv2.waitKey(40) == 27:
51 + break
52 +
53 +cap.release()
54 +cv2.destroyAllWindows()
...\ No newline at end of file ...\ No newline at end of file