Showing
1 changed file
with
45 additions
and
41 deletions
| ... | @@ -2,7 +2,7 @@ import os | ... | @@ -2,7 +2,7 @@ import os |
| 2 | import random | 2 | import random |
| 3 | import numpy as np | 3 | import numpy as np |
| 4 | import scipy.misc as misc | 4 | import scipy.misc as misc |
| 5 | -import skimage.measure as measure | 5 | +import skimage.metrics as metrics |
| 6 | from tensorboardX import SummaryWriter | 6 | from tensorboardX import SummaryWriter |
| 7 | import torch | 7 | import torch |
| 8 | import torch.nn as nn | 8 | import torch.nn as nn |
| ... | @@ -13,39 +13,39 @@ from dataset import TrainDataset, TestDataset | ... | @@ -13,39 +13,39 @@ from dataset import TrainDataset, TestDataset |
| 13 | class Solver(): | 13 | class Solver(): |
| 14 | def __init__(self, model, cfg): | 14 | def __init__(self, model, cfg): |
| 15 | if cfg.scale > 0: | 15 | if cfg.scale > 0: |
| 16 | - self.refiner = model(scale=cfg.scale, | 16 | + self.refiner = model(scale=cfg.scale, |
| 17 | group=cfg.group) | 17 | group=cfg.group) |
| 18 | else: | 18 | else: |
| 19 | - self.refiner = model(multi_scale=True, | 19 | + self.refiner = model(multi_scale=True, |
| 20 | group=cfg.group) | 20 | group=cfg.group) |
| 21 | - | 21 | + |
| 22 | - if cfg.loss_fn in ["MSE"]: | 22 | + if cfg.loss_fn in ["MSE"]: |
| 23 | self.loss_fn = nn.MSELoss() | 23 | self.loss_fn = nn.MSELoss() |
| 24 | - elif cfg.loss_fn in ["L1"]: | 24 | + elif cfg.loss_fn in ["L1"]: |
| 25 | self.loss_fn = nn.L1Loss() | 25 | self.loss_fn = nn.L1Loss() |
| 26 | elif cfg.loss_fn in ["SmoothL1"]: | 26 | elif cfg.loss_fn in ["SmoothL1"]: |
| 27 | self.loss_fn = nn.SmoothL1Loss() | 27 | self.loss_fn = nn.SmoothL1Loss() |
| 28 | 28 | ||
| 29 | self.optim = optim.Adam( | 29 | self.optim = optim.Adam( |
| 30 | - filter(lambda p: p.requires_grad, self.refiner.parameters()), | 30 | + filter(lambda p: p.requires_grad, self.refiner.parameters()), |
| 31 | cfg.lr) | 31 | cfg.lr) |
| 32 | - | 32 | + |
| 33 | - self.train_data = TrainDataset(cfg.train_data_path, | 33 | + self.train_data = TrainDataset(cfg.train_data_path, |
| 34 | - scale=cfg.scale, | 34 | + scale=cfg.scale, |
| 35 | size=cfg.patch_size) | 35 | size=cfg.patch_size) |
| 36 | self.train_loader = DataLoader(self.train_data, | 36 | self.train_loader = DataLoader(self.train_data, |
| 37 | batch_size=cfg.batch_size, | 37 | batch_size=cfg.batch_size, |
| 38 | num_workers=1, | 38 | num_workers=1, |
| 39 | shuffle=True, drop_last=True) | 39 | shuffle=True, drop_last=True) |
| 40 | - | 40 | + |
| 41 | - | 41 | + |
| 42 | self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 42 | self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 43 | self.refiner = self.refiner.to(self.device) | 43 | self.refiner = self.refiner.to(self.device) |
| 44 | self.loss_fn = self.loss_fn | 44 | self.loss_fn = self.loss_fn |
| 45 | 45 | ||
| 46 | self.cfg = cfg | 46 | self.cfg = cfg |
| 47 | self.step = 0 | 47 | self.step = 0 |
| 48 | - | 48 | + |
| 49 | self.writer = SummaryWriter(log_dir=os.path.join("runs", cfg.ckpt_name)) | 49 | self.writer = SummaryWriter(log_dir=os.path.join("runs", cfg.ckpt_name)) |
| 50 | if cfg.verbose: | 50 | if cfg.verbose: |
| 51 | num_params = 0 | 51 | num_params = 0 |
| ... | @@ -57,9 +57,9 @@ class Solver(): | ... | @@ -57,9 +57,9 @@ class Solver(): |
| 57 | 57 | ||
| 58 | def fit(self): | 58 | def fit(self): |
| 59 | cfg = self.cfg | 59 | cfg = self.cfg |
| 60 | - refiner = nn.DataParallel(self.refiner, | 60 | + refiner = nn.DataParallel(self.refiner, |
| 61 | device_ids=range(cfg.num_gpu)) | 61 | device_ids=range(cfg.num_gpu)) |
| 62 | - | 62 | + |
| 63 | learning_rate = cfg.lr | 63 | learning_rate = cfg.lr |
| 64 | while True: | 64 | while True: |
| 65 | for inputs in self.train_loader: | 65 | for inputs in self.train_loader: |
| ... | @@ -73,13 +73,13 @@ class Solver(): | ... | @@ -73,13 +73,13 @@ class Solver(): |
| 73 | # i know this is stupid but just temporary | 73 | # i know this is stupid but just temporary |
| 74 | scale = random.randint(2, 4) | 74 | scale = random.randint(2, 4) |
| 75 | hr, lr = inputs[scale-2][0], inputs[scale-2][1] | 75 | hr, lr = inputs[scale-2][0], inputs[scale-2][1] |
| 76 | - | 76 | + |
| 77 | hr = hr.to(self.device) | 77 | hr = hr.to(self.device) |
| 78 | lr = lr.to(self.device) | 78 | lr = lr.to(self.device) |
| 79 | - | 79 | + |
| 80 | sr = refiner(lr, scale) | 80 | sr = refiner(lr, scale) |
| 81 | loss = self.loss_fn(sr, hr) | 81 | loss = self.loss_fn(sr, hr) |
| 82 | - | 82 | + |
| 83 | self.optim.zero_grad() | 83 | self.optim.zero_grad() |
| 84 | loss.backward() | 84 | loss.backward() |
| 85 | nn.utils.clip_grad_norm(self.refiner.parameters(), cfg.clip) | 85 | nn.utils.clip_grad_norm(self.refiner.parameters(), cfg.clip) |
| ... | @@ -88,18 +88,19 @@ class Solver(): | ... | @@ -88,18 +88,19 @@ class Solver(): |
| 88 | learning_rate = self.decay_learning_rate() | 88 | learning_rate = self.decay_learning_rate() |
| 89 | for param_group in self.optim.param_groups: | 89 | for param_group in self.optim.param_groups: |
| 90 | param_group["lr"] = learning_rate | 90 | param_group["lr"] = learning_rate |
| 91 | - | 91 | + |
| 92 | self.step += 1 | 92 | self.step += 1 |
| 93 | if cfg.verbose and self.step % cfg.print_interval == 0: | 93 | if cfg.verbose and self.step % cfg.print_interval == 0: |
| 94 | if cfg.scale > 0: | 94 | if cfg.scale > 0: |
| 95 | - psnr = self.evaluate("dataset/Urban100", scale=cfg.scale, num_step=self.step) | 95 | + psnr, ssim = self.evaluate("dataset/Urban100", scale=cfg.scale, num_step=self.step) |
| 96 | - self.writer.add_scalar("Urban100", psnr, self.step) | 96 | + self.writer.add_scalar("PSNR", psnr, self.step) |
| 97 | - else: | 97 | + self.writer.add_scalar("SSIM", ssim, self.step) |
| 98 | + else: | ||
| 98 | psnr = [self.evaluate("dataset/Urban100", scale=i, num_step=self.step) for i in range(2, 5)] | 99 | psnr = [self.evaluate("dataset/Urban100", scale=i, num_step=self.step) for i in range(2, 5)] |
| 99 | self.writer.add_scalar("Urban100_2x", psnr[0], self.step) | 100 | self.writer.add_scalar("Urban100_2x", psnr[0], self.step) |
| 100 | self.writer.add_scalar("Urban100_3x", psnr[1], self.step) | 101 | self.writer.add_scalar("Urban100_3x", psnr[1], self.step) |
| 101 | self.writer.add_scalar("Urban100_4x", psnr[2], self.step) | 102 | self.writer.add_scalar("Urban100_4x", psnr[2], self.step) |
| 102 | - | 103 | + |
| 103 | self.save(cfg.ckpt_dir, cfg.ckpt_name) | 104 | self.save(cfg.ckpt_dir, cfg.ckpt_name) |
| 104 | 105 | ||
| 105 | if self.step > cfg.max_steps: break | 106 | if self.step > cfg.max_steps: break |
| ... | @@ -107,8 +108,9 @@ class Solver(): | ... | @@ -107,8 +108,9 @@ class Solver(): |
| 107 | def evaluate(self, test_data_dir, scale=2, num_step=0): | 108 | def evaluate(self, test_data_dir, scale=2, num_step=0): |
| 108 | cfg = self.cfg | 109 | cfg = self.cfg |
| 109 | mean_psnr = 0 | 110 | mean_psnr = 0 |
| 111 | + mean_ssim = 0 | ||
| 110 | self.refiner.eval() | 112 | self.refiner.eval() |
| 111 | - | 113 | + |
| 112 | test_data = TestDataset(test_data_dir, scale=scale) | 114 | test_data = TestDataset(test_data_dir, scale=scale) |
| 113 | test_loader = DataLoader(test_data, | 115 | test_loader = DataLoader(test_data, |
| 114 | batch_size=1, | 116 | batch_size=1, |
| ... | @@ -131,13 +133,13 @@ class Solver(): | ... | @@ -131,13 +133,13 @@ class Solver(): |
| 131 | lr_patch[2].copy_(lr[:, h-h_chop:h, 0:w_chop]) | 133 | lr_patch[2].copy_(lr[:, h-h_chop:h, 0:w_chop]) |
| 132 | lr_patch[3].copy_(lr[:, h-h_chop:h, w-w_chop:w]) | 134 | lr_patch[3].copy_(lr[:, h-h_chop:h, w-w_chop:w]) |
| 133 | lr_patch = lr_patch.to(self.device) | 135 | lr_patch = lr_patch.to(self.device) |
| 134 | - | 136 | + |
| 135 | # run refine process in here! | 137 | # run refine process in here! |
| 136 | sr = self.refiner(lr_patch, scale).data | 138 | sr = self.refiner(lr_patch, scale).data |
| 137 | - | 139 | + |
| 138 | h, h_half, h_chop = h*scale, h_half*scale, h_chop*scale | 140 | h, h_half, h_chop = h*scale, h_half*scale, h_chop*scale |
| 139 | w, w_half, w_chop = w*scale, w_half*scale, w_chop*scale | 141 | w, w_half, w_chop = w*scale, w_half*scale, w_chop*scale |
| 140 | - | 142 | + |
| 141 | # merge splited patch images | 143 | # merge splited patch images |
| 142 | result = torch.FloatTensor(3, h, w).to(self.device) | 144 | result = torch.FloatTensor(3, h, w).to(self.device) |
| 143 | result[:, 0:h_half, 0:w_half].copy_(sr[0, :, 0:h_half, 0:w_half]) | 145 | result[:, 0:h_half, 0:w_half].copy_(sr[0, :, 0:h_half, 0:w_half]) |
| ... | @@ -148,16 +150,17 @@ class Solver(): | ... | @@ -148,16 +150,17 @@ class Solver(): |
| 148 | 150 | ||
| 149 | hr = hr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() | 151 | hr = hr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() |
| 150 | sr = sr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() | 152 | sr = sr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() |
| 151 | - | 153 | + |
| 152 | - # evaluate PSNR | 154 | + # evaluate PSNR and SSIM |
| 153 | # this evaluation is different to MATLAB version | 155 | # this evaluation is different to MATLAB version |
| 154 | - # we evaluate PSNR in RGB channel not Y in YCbCR | 156 | + # we evaluate PSNR in RGB channel not Y in YCbCR |
| 155 | bnd = scale | 157 | bnd = scale |
| 156 | - im1 = hr[bnd:-bnd, bnd:-bnd] | 158 | + im1 = im2double(hr[bnd:-bnd, bnd:-bnd]) |
| 157 | - im2 = sr[bnd:-bnd, bnd:-bnd] | 159 | + im2 = im2double(sr[bnd:-bnd, bnd:-bnd]) |
| 158 | mean_psnr += psnr(im1, im2) / len(test_data) | 160 | mean_psnr += psnr(im1, im2) / len(test_data) |
| 161 | + mean_ssim += ssim(im1, im2) / len(test_data) | ||
| 159 | 162 | ||
| 160 | - return mean_psnr | 163 | + return mean_psnr, mean_ssim |
| 161 | 164 | ||
| 162 | def load(self, path): | 165 | def load(self, path): |
| 163 | self.refiner.load_state_dict(torch.load(path)) | 166 | self.refiner.load_state_dict(torch.load(path)) |
| ... | @@ -177,14 +180,15 @@ class Solver(): | ... | @@ -177,14 +180,15 @@ class Solver(): |
| 177 | lr = self.cfg.lr * (0.5 ** (self.step // self.cfg.decay)) | 180 | lr = self.cfg.lr * (0.5 ** (self.step // self.cfg.decay)) |
| 178 | return lr | 181 | return lr |
| 179 | 182 | ||
| 183 | +def im2double(im): | ||
| 184 | + min_val, max_val = 0, 255 | ||
| 185 | + out = (im.astype(np.float64)-min_val) / (max_val-min_val) | ||
| 186 | + return out | ||
| 180 | 187 | ||
| 181 | def psnr(im1, im2): | 188 | def psnr(im1, im2): |
| 182 | - def im2double(im): | 189 | + psnr = metrics.peak_signal_noise_ratio(im1, im2, data_range=1) |
| 183 | - min_val, max_val = 0, 255 | ||
| 184 | - out = (im.astype(np.float64)-min_val) / (max_val-min_val) | ||
| 185 | - return out | ||
| 186 | - | ||
| 187 | - im1 = im2double(im1) | ||
| 188 | - im2 = im2double(im2) | ||
| 189 | - psnr = measure.compare_psnr(im1, im2, data_range=1) | ||
| 190 | return psnr | 190 | return psnr |
| 191 | + | ||
| 192 | +def ssim(im1, im2): | ||
| 193 | + ssim = metrics.structural_similarity(im1, im2, data_range=1, multichannel=True) | ||
| 194 | + return ssim | ... | ... |
-
Please register or login to post a comment