API.html 103 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
<!DOCTYPE HTML>
<html>
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="Author" content="MMclaughlin">
  <title>decimal.js API</title>
  <style>
html{font-size:100%}
body{background:#fff;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;
  line-height:1.65em;min-height:100%;margin:0}
body,i{color:#000}
.nav{background:#fff;position:fixed;top:0;bottom:0;left:0;width:210px;overflow-y:auto;
  padding:15px 0 30px 15px}
div.container{width:600px;margin:50px 0 50px 240px}
p{margin:0 0 1em;width:600px}
pre,ul{margin:1em 0}
h1,h2,h3,h4,h5{margin:0;padding:1.5em 0 0}
h1,h2{padding:.75em 0}
h1{font:400 3em Consolas, monaco, monospace;color:#000;margin-bottom:1em}
h2{font-size:2.25em;color:#f00}
h3{font-size:1.75em;color:#69d2e7}
h4{font-size:1.75em;color:#f00;padding-bottom:.75em}
h5{font-size:1.2em;margin-bottom:.4em}
h6{font-size:1.1em;margin-bottom:0.8em;padding:0.5em 0}
dd dt{font-size:1.2em}
dt{padding-top:.5em}
dd{padding-top:.35em}
b{font-weight:700}
a,a:visited{color:#f00;text-decoration:none}
a:active,a:hover{outline:0;text-decoration:underline}
.nav a,.nav b,.nav a:visited{display:block;color:#f00;font-weight:700;margin-top:15px}
.nav b{color:#69d2e7;margin-top:20px;cursor:default;width:auto}
ul{list-style-type:none;padding:0 0 0 20px}
.nav ul{line-height:14px;padding-left:0;margin:5px 0 0}
.nav ul a,.nav ul a:visited,span{display:inline;color:#000;font-family:Verdana,Geneva,sans-serif;
  font-size:11px;font-weight:400;margin:0}
.inset{margin-left:20px;font-size:.9em}
.nav li{width:auto;margin:0 0 3px}
.alias{font-style:italic;margin-left:20px}
table{border-collapse:collapse;border-spacing:0;border:2px solid #a7dbd8;margin:1.75em 0;padding:0}
td,th{text-align:left;margin:0;padding:2px 5px;border:1px dotted #a7dbd8}
th{border-top:2px solid #a7dbd8;border-bottom:2px solid #a7dbd8;color:#f00}
code,pre{font-family:Consolas, monaco, monospace;font-weight:400}
pre{background:#f5f5f5;white-space:pre-wrap;word-wrap:break-word;border-left:5px solid #a7dbd8;
  padding:1px 0 1px 15px;margin:1.2em 0}
code,.nav-title{color:#f00}
.end{margin-bottom:25px}
.centre{text-align:center}
#modes,#configProps{color:#f00}
.spacer{line-height:0px}
#faq{margin:3em 0 0}
li span{float:right;margin-right:10px;color:#c0c0c0}
#js{font:inherit;color:#f00}
  </style>
</head>
<body>

  <div class="nav">

    <a class='nav-title' href="#">API</a>

    <b>CONSTRUCTOR</b>
    <ul><li><a href="#decimal"><strong>Decimal</strong></a></li></ul>

    <a href="#methods">Methods</a>
    <ul>
      <li><a href="#Dabs"       >abs</a></li>
      <li><a href="#Dacos"      >acos</a></li>
      <li><a href="#Dacosh"     >acosh</a></li>
      <li><a href="#Dadd"       >add</a></li>
      <li><a href="#Dasin"      >asin</a></li>
      <li><a href="#Dasinh"     >asinh</a></li>
      <li><a href="#Datan"      >atan</a></li>
      <li><a href="#Datanh"     >atanh</a></li>
      <li><a href="#Datan2"     >atan2</a></li>
      <li><a href="#Dcbrt"      >cbrt</a></li>
      <li><a href="#Dceil"      >ceil</a></li>
      <li><a href="#Dclone"     >clone</a></li>
      <li><a href="#Dcos"       >cos</a></li>
      <li><a href="#Dcosh"      >cosh</a></li>
      <li><a href="#Ddiv"       >div</a></li>
      <li><a href="#Dexp"       >exp</a></li>
      <li><a href="#Dfloor"     >floor</a></li>
      <li><a href="#Dhypot"     >hypot</a></li>
      <li><a href="#DisDecimal" >isDecimal</a></li>
      <li><a href="#Dln"        >ln</a></li>
      <li><a href="#Dlog"       >log</a></li>
      <li><a href="#Dlog2"      >log2</a></li>
      <li><a href="#Dlog10"     >log10</a></li>
      <li><a href="#Dmax"       >max</a></li>
      <li><a href="#Dmin"       >min</a></li>
      <li><a href="#Dmod"       >mod</a></li>
      <li><a href="#Dmul"       >mul</a></li>
      <li><a href="#DnoConflict">noConflict</a></li>
      <li><a href="#Dpow"       >pow</a></li>
      <li><a href="#Drandom"    >random</a></li>
      <li><a href="#Dround"     >round</a></li>
      <li><a href="#Dset"       >set</a></li>
      <li><a href="#Dsign"      >sign</a></li>
      <li><a href="#Dsin"       >sin</a></li>
      <li><a href="#Dsinh"      >sinh</a></li>
      <li><a href="#Dsqrt"      >sqrt</a></li>
      <li><a href="#Dsub"       >sub</a></li>
      <li><a href="#Dtan"       >tan</a></li>
      <li><a href="#Dtanh"      >tanh</a></li>
      <li><a href="#Dtrunc"     >trunc</a></li>
    </ul>

    <a href="#constructor-properties">Properties</a>
    <ul>
      <li><a href="#precision">precision</a></li>
      <li><a href="#rounding" >rounding</a></li>
      <li><a href="#minE"     >minE</a></li>
      <li><a href="#maxE"     >maxE</a></li>
      <li><a href="#toExpNeg" >toExpNeg</a></li>
      <li><a href="#toExpPos" >toExpPos</a></li>
      <li><a href="#modulo"   >modulo</a></li>
      <li><a href="#crypto"   >crypto</a></li>
      <li class='spacer'>&nbsp;</li>
      <li><a href="#modes">ROUND_UP</a></li>
      <li><a href="#modes">ROUND_DOWN</a></li>
      <li><a href="#modes">ROUND_CEIL</a></li>
      <li><a href="#modes">ROUND_FLOOR</a></li>
      <li><a href="#modes">ROUND_HALF_UP</a></li>
      <li><a href="#modes">ROUND_HALF_DOWN</a></li>
      <li><a href="#modes">ROUND_HALF_EVEN</a></li>
      <li><a href="#modes">ROUND_HALF_CEIL</a></li>
      <li><a href="#modes">ROUND_HALF_FLOOR</a></li>
      <li><a href="#modes">EUCLID</a></li>
    </ul>

    <b> INSTANCE </b>

    <a href="#prototype-methods">Methods</a>
    <ul>
      <li><a href="#abs"          >absoluteValue           </a><span>abs</span>     </li>
      <li><a href="#ceil"         >ceil                    </a>                     </li>
      <li><a href="#cmp"          >comparedTo              </a><span>cmp</span>     </li>
      <li><a href="#cos"          >cosine                  </a><span>cos</span>     </li>
      <li><a href="#cbrt"         >cubeRoot                </a><span>cbrt</span>    </li>
      <li><a href="#dp"           >decimalPlaces           </a><span>dp</span>      </li>
      <li><a href="#div"          >dividedBy               </a><span>div</span>     </li>
      <li><a href="#divToInt"     >dividedToIntegerBy      </a><span>divToInt</span></li>
      <li><a href="#eq"           >equals                  </a><span>eq</span>      </li>
      <li><a href="#floor"        >floor                   </a>                     </li>
      <li><a href="#gt"           >greaterThan             </a><span>gt</span>      </li>
      <li><a href="#gte"          >greaterThanOrEqualTo    </a><span>gte</span>     </li>
      <li><a href="#cosh"         >hyperbolicCosine        </a><span>cosh</span>    </li>
      <li><a href="#sinh"         >hyperbolicSine          </a><span>sinh</span>    </li>
      <li><a href="#tanh"         >hyperbolicTangent       </a><span>tanh</span>    </li>
      <li><a href="#acos"         >inverseCosine           </a><span>acos</span>    </li>
      <li><a href="#acosh"        >inverseHyperbolicCosine </a><span>acosh</span>   </li>
      <li><a href="#asinh"        >inverseHyperbolicSine   </a><span>asinh</span>   </li>
      <li><a href="#atanh"        >inverseHyperbolicTangent</a><span>atanh</span>   </li>
      <li><a href="#asin"         >inverseSine             </a><span>asin</span>    </li>
      <li><a href="#atan"         >inverseTangent          </a><span>atan</span>    </li>
      <li><a href="#isFinite"     >isFinite                </a>                     </li>
      <li><a href="#isInt"        >isInteger               </a><span>isInt</span>   </li>
      <li><a href="#isNaN"        >isNaN                   </a>                     </li>
      <li><a href="#isNeg"        >isNegative              </a><span>isNeg</span>   </li>
      <li><a href="#isPos"        >isPositive              </a><span>isPos</span>   </li>
      <li><a href="#isZero"       >isZero                  </a>                     </li>
      <li><a href="#lt"           >lessThan                </a><span>lt</span>      </li>
      <li><a href="#lte"          >lessThanOrEqualTo       </a><span>lte</span>     </li>
      <li><a href="#log"          >logarithm               </a><span>log</span>     </li>
      <li><a href="#sub"          >minus                   </a><span>sub</span>     </li>
      <li><a href="#mod"          >modulo                  </a><span>mod</span>     </li>
      <li><a href="#exp"          >naturalExponential      </a><span>exp</span>     </li>
      <li><a href="#ln"           >naturalLogarithm        </a><span>ln</span>      </li>
      <li><a href="#neg"          >negated                 </a><span>neg</span>     </li>
      <li><a href="#add"          >plus                    </a><span>add</span>     </li>
      <li><a href="#sd"           >precision               </a><span>sd</span>      </li>
      <li><a href="#round"        >round                   </a>                     </li>
      <li><a href="#sin"          >sine                    </a><span>sin</span>     </li>
      <li><a href="#sqrt"         >squareRoot              </a><span>sqrt</span>    </li>
      <li><a href="#tan"          >tangent                 </a><span>tan</span>     </li>
      <li><a href="#mul"          >times                   </a><span>mul</span>     </li>
      <li><a href="#toBinary"     >toBinary                </a>                     </li>
      <li><a href="#toDP"         >toDecimalPlaces         </a><span>toDP</span>    </li>
      <li><a href="#toExponential">toExponential           </a>                     </li>
      <li><a href="#toFixed"      >toFixed                 </a>                     </li>
      <li><a href="#toFraction"   >toFraction              </a>                     </li>
      <li><a href="#toHex"        >toHexadecimal           </a><span>toHex</span>   </li>
      <li><a href="#toJSON"       >toJSON                  </a>                     </li>
      <li><a href="#toNearest"    >toNearest               </a>                     </li>
      <li><a href="#toNumber"     >toNumber                </a>                     </li>
      <li><a href="#toOctal"      >toOctal                 </a>                     </li>
      <li><a href="#pow"          >toPower                 </a><span>pow</span>     </li>
      <li><a href="#toPrecision"  >toPrecision             </a>                     </li>
      <li><a href="#toSD"         >toSignificantDigits     </a><span>toSD</span>    </li>
      <li><a href="#toString"     >toString                </a>                     </li>
      <li><a href="#trunc"        >truncated               </a><span>trunc</span>   </li>
      <li><a href="#valueOf"      >valueOf                 </a>                     </li>
    </ul>

    <a href="#instance-properties">Properties</a>
    <ul>
      <li><a href="#digits"   >d</a><span>digits</span></li>
      <li><a href="#exponent" >e</a><span>exponent</span></li>
      <li><a href="#sign"     >s</a><span>sign</span></li>
    </ul>

    <a href="#zero-nan-infinity">Zero, NaN &amp; Infinity</a>
    <a href="#Errors">Errors</a>
    <a href="#Pi">Pi</a>
    <a class='end' href="#faq">FAQ</a>

  </div>

  <div class="container">

    <h1>decimal<span id='js'>.js</span></h1>

    <p>An arbitrary-precision Decimal type for JavaScript.</p>
    <p><a href='https://github.com/MikeMcl/decimal.js'>Hosted on GitHub</a>.</p>

    <h2>API</h2>

    <p>
      See the <a href='https://github.com/MikeMcl/decimal.js'>README</a> on GitHub for a quick-start
      introduction.
    </p>
    <p>
      In all examples below, <code>var</code> and semicolons are not shown, and if a commented-out
      value is in quotes it means <code>toString</code> has been called on the preceding expression.
    </p><br />
    <p>
      When the library is loaded, it defines a single function object,
      <a href='#decimal'><code>Decimal</code></a>, the constructor of Decimal instances.
    </p>
    <p>
      <i>
        If necessary, multiple Decimal constructors can be created, each with their own independent
        configuration, e.g. precision and range, which applies to all Decimal instances created from
        it.
      </i>
    </p>
    <p>
      <i>
        A new Decimal constructor is created by calling the <code><a href='#Dclone'>clone</a></code>
        method of an already existing Decimal constructor.
      </i>
    </p>



    <h3 class='end'>CONSTRUCTOR</h3>

    <h5 id="decimal">
      Decimal<code class='inset'>Decimal(value) <i>&rArr; Decimal</i></code>
    </h5>
    <dl>
      <dt><code>value</code>: <i>number|string|Decimal</i></dt>
      <dd>
        A legitimate <code>value</code> is an integer or float, including <code>&plusmn;0</code>, or
        is <code>&plusmn;Infinity</code>, or <code>NaN</code>.
      </dd>
      <dd>
        The number of digits of <code>value</code> is not limited, except by JavaScript's maximum
        array size and, in practice, the processing time required.
      </dd>
      <dd>
        The allowable range of <code>value</code> is defined in terms of a maximum exponent, see
        <a href='#maxE'>maxE</a>, and a minimum exponent, see <a href='#minE'>minE</a>.
      </dd>
      <dd>
        As well as in decimal, a string <code>value</code> may be expressed in binary, hexadecimal
        or octal, if the appropriate prefix is included: <code>0x</code> or <code>0X</code> for
        hexadecimal, <code>0b</code> or <code>0B</code> for binary, and <code>0o</code> or
        <code>0O</code> for octal.
      </dd>
      <dd>
        Both decimal and non-decimal string values may use exponential (floating-point), as well as
        normal (fixed-point) notation.
      </dd>
      <dd>
        In exponential notation, <code>e</code> or <code>E</code> defines a power-of-ten exponent
        for decimal values, and <code>p</code> or <code>P</code> defines a power-of-two exponent for
        non-decimal values, i.e. binary, hexadecimal or octal.
      </dd>
    </dl>
    <p>Returns a new Decimal object instance.</p>
    <p>Throws on an invalid <code>value</code>.</p>
    <pre>
x = new Decimal(9)                       // '9'
y = new Decimal(x)                       // '9'

new Decimal('5032485723458348569331745.33434346346912144534543')
new Decimal('4.321e+4')                  // '43210'
new Decimal('-735.0918e-430')            // '-7.350918e-428'
new Decimal('5.6700000')                 // '5.67'
new Decimal(Infinity)                    // 'Infinity'
new Decimal(NaN)                         // 'NaN'
new Decimal('.5')                        // '0.5'
new Decimal('-0b10110100.1')             // '-180.5'
new Decimal('0xff.8')                    // '255.5'

new Decimal(0.046875)                    // '0.046875'
new Decimal('0.046875000000')            // '0.046875'

new Decimal(4.6875e-2)                   // '0.046875'
new Decimal('468.75e-4')                 // '0.046875'

new Decimal('0b0.000011')                // '0.046875'
new Decimal('0o0.03')                    // '0.046875'
new Decimal('0x0.0c')                    // '0.046875'

new Decimal('0b1.1p-5')                  // '0.046875'
new Decimal('0o1.4p-5')                  // '0.046875'
new Decimal('0x1.8p-5')                  // '0.046875'</pre>



    <h4 id="methods">Methods</h4>
    <p>The methods of a Decimal constructor.</p>



    <h5 id="Dabs">abs<code class='inset'>.abs(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#abs'>absoluteValue</a></code>.</p>
    <pre>a = Decimal.abs(x)
b = new Decimal(x).abs()
a.equals(b)                    // true</pre>



    <h5 id="Dacos">acos<code class='inset'>.acos(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#acos'>inverseCosine</a></code>.</p>
    <pre>a = Decimal.acos(x)
b = new Decimal(x).acos()
a.equals(b)                    // true</pre>



    <h5 id="Dacosh">acosh<code class='inset'>.acosh(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#acos'>inverseHyperbolicCosine</a></code>.</p>
    <pre>a = Decimal.acosh(x)
b = new Decimal(x).acosh()
a.equals(b)                    // true</pre>



    <h5 id="Dadd">add<code class='inset'>.add(x, y) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>See <code><a href='#add'>plus</a></code>.</p>
    <pre>a = Decimal.add(x, y)
b = new Decimal(x).plus(y)
a.equals(b)                    // true</pre>



    <h5 id="Dasin">asin<code class='inset'>.asin(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#asin'>inverseSine</a></code>.</p>
    <pre>a = Decimal.asin(x)
b = new Decimal(x).asin()
a.equals(b)                    // true</pre>



    <h5 id="Dasinh">asinh<code class='inset'>.asinh(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#asin'>inverseHyperbolicSine</a></code>.</p>
    <pre>a = Decimal.asinh(x)
b = new Decimal(x).asinh()
a.equals(b)                    // true</pre>



    <h5 id="Datan">atan<code class='inset'>.atan(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#atan'>inverseTangent</a></code>.</p>
    <pre>a = Decimal.atan(x)
b = new Decimal(x).atan()
a.equals(b)                    // true</pre>



    <h5 id="Datanh">atanh<code class='inset'>.atanh(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#atan'>inverseHyperbolicTangent</a></code>.</p>
    <pre>a = Decimal.atanh(x)
b = new Decimal(x).atanh()
a.equals(b)                    // true</pre>



    <h5 id="Datan2">atan2<code class='inset'>.atan2(y, x) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>y</code>: <i>number|string|Decimal</i><br />
      <code>x</code>: <i>number|string|Decimal</i>
    </p>
    <p>
      Returns a new Decimal whose value is the inverse tangent in radians of the quotient of
      <code>y</code> and <code>x</code>, rounded to <a href='#precision'><code>precision</code></a>
      significant digits using rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      The signs of <code>y</code> and <code>x</code> are used to determine the quadrant of the
      result.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-pi, pi</code>]
    </p>
    <p>
      See <a href='#Pi'><code>Pi</code></a> and
      <a href='https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/atan2'><code>Math.atan2()</code>.</a>
    </p>
    <pre>r = Decimal.atan2(y, x)</pre>



    <h5 id="Dcbrt">cbrt<code class='inset'>.cbrt(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#cbrt'>cubeRoot</a></code>.</p>
    <pre>a = Decimal.cbrt(x)
b = new Decimal(x).cbrt()
a.equals(b)                    // true</pre>



    <h5 id="Dceil">ceil<code class='inset'>.ceil(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#ceil'>ceil</a></code>.</p>
    <pre>a = Decimal.ceil(x)
b = new Decimal(x).ceil()
a.equals(b)                    // true</pre>



    <h5 id="Dclone">
      clone
      <code class='inset'>.clone([object]) <i>&rArr; Decimal constructor</i></code>
    </h5>
    <p><code>object</code>: <i>object</i></p>
    <p>
      Returns a new independent Decimal constructor with configuration settings as described by
      <code>object</code> (see <a href='#Dset'><code>set</code></a>), or with the same
      settings as <code>this</code> Decimal constructor if <code>object</code> is omitted.
    </p>
    <pre>Decimal.set({ precision: 5 })
Decimal9 = Decimal.clone({ precision: 9 })

a = new Decimal(1)
b = new Decimal9(1)

a.div(3)                           // 0.33333
b.div(3)                           // 0.333333333

// Decimal9 = Decimal.clone({ precision: 9 }) is equivalent to:
Decimal9 = Decimal.clone()
Decimal9.set({ precision: 9 })</pre>
    <p>
      If <code>object</code> has a <code>'defaults'</code> property with value <code>true</code>
      then the new constructor will use the default configuration.
    </p>
    <pre>
D1 = Decimal.clone({ defaults: true })

// Use the defaults except for precision
D2 = Decimal.clone({ defaults: true, precision: 50 })</pre>
    <p>
      It is not inefficient in terms of memory usage to use multiple Decimal constructors as
      functions are shared between them.
    </p>


    <h5 id="Dcos">cos<code class='inset'>.cos(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#cos'>cosine</a></code>.</p>
    <pre>a = Decimal.cos(x)
b = new Decimal(x).cos()
a.equals(b)                    // true</pre>



    <h5 id="Dcosh">cosh<code class='inset'>.cosh(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#cos'>hyperbolicCosine</a></code>.</p>
    <pre>a = Decimal.cosh(x)
b = new Decimal(x).cosh()
a.equals(b)                    // true</pre>



    <h5 id="Ddiv">div<code class='inset'>.div(x, y) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>See <code><a href='#div'>dividedBy</a></code>.</p>
    <pre>a = Decimal.div(x, y)
b = new Decimal(x).div(y)
a.equals(b)                    // true</pre>



    <h5 id="Dexp">exp<code class='inset'>.exp(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#exp'>naturalExponential</a></code>.</p>
    <pre>a = Decimal.exp(x)
b = new Decimal(x).exp()
a.equals(b)                    // true</pre>



    <h5 id="Dfloor">floor<code class='inset'>.floor(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#floor'>floor</a></code>.</p>
    <pre>a = Decimal.floor(x)
b = new Decimal(x).floor()
a.equals(b)                    // true</pre>



    <h5 id="Dhypot">
      hypot<code class='inset'>.hypot([x [, y, ...]]) <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>
      Returns a new Decimal whose value is the square root of the sum of the squares of the
      arguments, rounded to <a href='#precision'><code>precision</code></a> significant digits using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>r = Decimal.hypot(x, y)</pre>



    <h5 id="Dln">ln<code class='inset'>.ln(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#ln'>naturalLogarithm</a></code>.</p>
    <pre>a = Decimal.ln(x)
b = new Decimal(x).ln()
a.equals(b)                    // true</pre>



    <h5 id="DisDecimal">
      isDecimal<code class='inset'>.isDecimal(object) <i>&rArr; boolean</i></code>
    </h5>
    <p><code>object</code>: <i>any</i></p>
    <p>
      Returns <code>true</code> if <code>object</code> is a Decimal instance (where Decimal is any
      Decimal constructor), or <code>false</code> if it is not.
    </p>
    <pre>a = new Decimal(1)
b = {}
a instanceof Decimal           // true
Decimal.isDecimal(a)           // true
Decimal.isDecimal(b)           // false</pre>



    <h5 id="Dlog">log<code class='inset'>.log(x [, base]) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>base</code>: <i>number|string|Decimal</i>
    </p>
    <p>See <code><a href='#log'>logarithm</a></code>.</p>
    <p>
      The default base is <code>10</code>, which is not the same as JavaScript's
      <code>Math.log()</code>, which returns the natural logarithm (base <code>e</code>).
    </p>
    <pre>a = Decimal.log(x, y)
b = new Decimal(x).log(y)
a.equals(b)                    // true</pre>



    <h5 id="Dlog2">log2<code class='inset'>.log2(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the base <code>2</code> logarithm of <code>x</code>,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>r = Decimal.log2(x)</pre>



    <h5 id="Dlog10">log10<code class='inset'>.log10(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the base <code>10</code> logarithm of <code>x</code>,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>r = Decimal.log10(x)</pre>



    <h5 id="Dmax">
      max<code class='inset'>.max([x [, y, ...]]) <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>Returns a new Decimal whose value is the maximum of the <code>arguments</code>.</p>
    <pre>r = Decimal.max(x, y, z)</pre>



    <h5 id="Dmin">
      min<code class='inset'>.min([x [, y, ...]]) <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>Returns a new Decimal whose value is the minimum of the <code>arguments</code>.</p>
    <pre>r = Decimal.min(x, y, z)</pre>



    <h5 id="Dmod">mod<code class='inset'>.mod(x, y) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>See <code><a href='#mod'>modulo</a></code>.</p>
    <pre>a = Decimal.mod(x, y)
b = new Decimal(x).mod(y)
a.equals(b)                    // true</pre>



    <h5 id="Dmul">mul<code class='inset'>.mul(x, y) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>See <code><a href='#mul'>times</a></code>.</p>
    <pre>a = Decimal.mul(x, y)
b = new Decimal(x).mul(y)
a.equals(b)                    // true</pre>



    <h5 id="DnoConflict">
      noConflict<code class='inset'>.noConflict() <i>&rArr; Decimal constructor</i></code>
    </h5>
    <p><i>Browsers only.</i></p>
    <p>
      Reverts the <code>Decimal</code> variable to the value it had before this library was loaded
      and returns a reference to the original Decimal constructor so it can be assigned to a
      variable with a different name.
    </p>
    <pre>
&lt;script&gt; Decimal = 1 &lt;/script&gt;
&lt;script src='/path/to/decimal.js'&gt;&lt;/script&gt;
&lt;script&gt;
  a = new Decimal(2)      // '2'
  D = Decimal.noConflict()
  Decimal                 // 1
  b = new D(3)            // '3'
&lt;/script&gt;</pre>



    <h5 id="Dpow">pow<code class='inset'>.pow(base, exponent) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>base</code>: <i>number|string|Decimal</i><br />
      <code>exponent</code>: <i>number|string|Decimal</i>
    </p>
    <p>See <code><a href="#pow">toPower</a></code>.</p>
    <pre>a = Decimal.pow(x, y)
b = new Decimal(x).pow(y)
a.equals(b)                    // true</pre>



    <h5 id="Drandom">
      random<code class='inset'>.random([dp]) <i>&rArr; Decimal</i></code>
    </h5>
    <p><code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive</p>
    <p>
      Returns a new Decimal with a pseudo-random value equal to or greater than <code>0</code> and
      less than <code>1</code>.
    </p>
    <p>
      The return value will have <code>dp</code> decimal places (or less if trailing zeros are
      produced). If <code>dp</code> is omitted then the number of decimal places will
      default to the current <a href='#precision'><code>precision</code></a> setting.
    </p>
    <p>
      If the value of <code>this</code> Decimal constructor's
      <a href='#crypto'><code>crypto</code></a> property is <code>true</code>, and the
      <code>crypto</code> object is available globally in the host environment, the random digits of
      the return value are generated by either <code>crypto.getRandomValues</code> (Web Cryptography
      API in modern browsers) or <code>crypto.randomBytes</code> (Node.js), otherwise, if the the
      value of the property is <code>false</code> the return value is generated by
      <code>Math.random</code> (fastest).
    </p>
    <p>To make the <code>crypto</code> object available globally in Node.js use</p>
    <pre>global.crypto = require('crypto')</pre>
    <p>
      If the value of <code>this</code> Decimal constructor's
      <a href='#crypto'><code>crypto</code></a> property is set <code>true</code> and the
      <code>crypto</code> object and associated method are not available, an exception will be
      thrown.
    </p>
    <p>
      If one of the <code>crypto</code> methods is used, the value of the returned Decimal should be
      cryptographically-secure and statistically indistinguishable from a random value.
    </p>
    <pre>Decimal.set({ precision: 10 })
Decimal.random()                    // '0.4117936847'
Decimal.random(20)                  // '0.78193327636914089009'</pre>


    <h5 id="Dround">round<code class='inset'>.round(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#round'>round</a></code>.</p>
    <pre>a = Decimal.round(x)
b = new Decimal(x).round()
a.equals(b)                    // true</pre>



    <h5 id="Dset">set<code class='inset'>.set(object) <i>&rArr; Decimal constructor</i></code></h5>
    <p><code>object</code>: <i>object</i></p>
    <p>
      Configures the 'global' settings for <code>this</code> particular Decimal constructor, i.e.
      the settings which apply to operations performed on the Decimal instances created by it.
    </p>
    <p>Returns <code>this</code> Decimal constructor.</p>
    <p>
      The configuration object, <code>object</code>, can contain some or all of the properties
      described in detail at <a href="#constructor-properties">Properties</a> and shown in the
      example below.
    </p>
    <p>
      The values of the configuration object properties are checked for validity and then stored as
      equivalently-named properties of <code>this</code> Decimal constructor.
    </p>
    <p>
      If <code>object</code> has a <code>'defaults'</code> property with value <code>true</code>
      then any unspecified properties will be reset to their default values.
    </p>
    <p>Throws on an invalid <code>object</code> or configuration property value.</p>
    <pre>
// Defaults
Decimal.set({
    precision: 20,
    rounding: 4,
    toExpNeg: -7,
    toExpPos: 21,
    maxE: 9e15,
    minE: -9e15,
    modulo: 1,
    crypto: false
})

// Reset all properties to their default values
Decimal.set({ defaults: true })

// Set precision to 50 and all other properties to their default values
Decimal.set({ precision: 50, defaults: true })</pre>
    <p>
      The properties of a Decimal constructor can also be set by direct assignment, but that will
      by-pass the validity checking that this method performs - this is not a problem if the user
      knows that the assignment is valid.
    </p>
    <pre>Decimal.precision = 40</pre>



    <h5 id="Dsign">sign<code class='inset'>.sign(x) <i>&rArr; number</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <table>
      <tr><th>Returns</th><th>&nbsp;</th></tr>
      <tr>
        <td class='centre'><code>1</code></td>
        <td>if the value of <code>x</code> is non-zero and its sign is positive</td>
      </tr>
      <tr>
        <td class='centre'><code>-1</code></td>
        <td>if the value of <code>x</code> is non-zero and its sign is negative</td>
      </tr>
      <tr>
        <td class='centre'><code>0</code></td>
        <td>if the value of <code>x</code> is positive zero</td>
      </tr>
      <tr>
        <td class='centre'><code>-0</code></td>
        <td>if the value of <code>x</code> is negative zero</td>
      </tr>
      <tr>
        <td class='centre'><code>NaN</code></td>
        <td>if the value of <code>x</code> is <code>NaN</code></td>
      </tr>
    </table>
    <pre>r = Decimal.sign(x)</pre>



    <h5 id="Dsin">sin<code class='inset'>.sin(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#sin'>sine</a></code>.</p>
    <pre>a = Decimal.sin(x)
b = new Decimal(x).sin()
a.equals(b)                    // true</pre>



    <h5 id="Dsinh">sinh<code class='inset'>.sinh(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#sin'>hyperbolicSine</a></code>.</p>
    <pre>a = Decimal.sinh(x)
b = new Decimal(x).sinh()
a.equals(b)                    // true</pre>



    <h5 id="Dsqrt">sqrt<code class='inset'>.sqrt(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <a href='#sqrt'>squareRoot</a>.</p>
    <pre>a = Decimal.sqrt(x)
b = new Decimal(x).sqrt()
a.equals(b)                    // true</pre>



      <h5 id="Dsub">sub<code class='inset'>.sub(x, y) <i>&rArr; Decimal</i></code></h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>y</code>: <i>number|string|Decimal</i>
    </p>
    <p>See <code><a href='#sub'>minus</a></code>.</p>
    <pre>a = Decimal.sub(x, y)
b = new Decimal(x).sub(y)
a.equals(b)                    // true</pre>



     <h5 id="Dtan">tan<code class='inset'>.tan(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#tan'>tangent</a></code>.</p>
    <pre>a = Decimal.tan(x)
b = new Decimal(x).tan()
a.equals(b)                    // true</pre>



    <h5 id="Dtanh">tanh<code class='inset'>.tanh(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#tan'>hyperbolicTangent</a></code>.</p>
    <pre>a = Decimal.tanh(x)
b = new Decimal(x).tanh()
a.equals(b)                    // true</pre>



    <h5 id="Dtrunc">trunc<code class='inset'>.trunc(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>See <code><a href='#trunc'>truncated</a></code>.</p>
    <pre>a = Decimal.trunc(x)
b = new Decimal(x).trunc()
a.equals(b)                    // true</pre>




    <h4 id="constructor-properties">Properties</h4>
    <p>The properties of a Decimal constructor.</p>



    <h6 id='configProps'>Configuration properties</h6>
    <p>
      The values of the configuration properties <a href='#precision'><code>precision</code></a>,
      <a href='#rounding'><code>rounding</code></a>, <a href='#minE'><code>minE</code></a>,
      <a href='#maxE'><code>maxE</code></a>, <a href='#toExpNeg'><code>toExpNeg</code></a>,
      <a href='#toExpPos'><code>toExpPos</code></a>, <a href='#modulo'><code>modulo</code></a>, and
      <a href='#crypto'><code>crypto</code></a> are set using the
      <a href='#Dset'><code>set</code></a> method.
    </p>
    <p>
      As simple object properties they can be set directly without using
      <a href='#Dset'><code>set</code></a>, and it is fine to do so, but the values assigned
      will not then be checked for validity. For example:
    </p>
    <pre>Decimal.set({ precision: 0 })
// '[DecimalError] Invalid argument: precision: 0'

Decimal.precision = 0
// No error is thrown and the results of calculations are unreliable</pre>



    <h5 id="precision">precision</h5>
    <p>
      <i>number</i>: integer, <code>1</code> to <code>1e+9</code> inclusive<br />
      Default value: <code>20</code>
    </p>
    <p>The <i>maximum</i> number of significant digits of the result of an operation.</p>
    <p>
      All functions which return a Decimal will round the return value to <code>precision</code>
      significant digits except <a href='#decimal'><code>Decimal</code></a>,
      <a href='#abs'><code>absoluteValue</code></a>,
      <a href='#ceil'><code>ceil</code></a>, <a href='#floor'><code>floor</code></a>,
      <a href='#neg'><code>negated</code></a>, <a href='#round'><code>round</code></a>,
      <a href='#toDP'><code>toDecimalPlaces</code></a>,
      <a href='#toNearest'><code>toNearest</code></a> and
      <a href='#trunc'><code>truncated</code></a>.
    </p>
    <p>
      See <code><a href='#Pi'>Pi</a></code> for the precision limit of the trigonometric methods.
    </p>
    <pre>Decimal.set({ precision: 5 })
Decimal.precision                  // 5</pre>



    <h5 id="rounding">rounding</h5>
    <p>
      <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive<br />
      Default value: <code>4</code> <a href="#modes">(<code>ROUND_HALF_UP</code>)</a>
    </p>
    <p>
      The default rounding mode used when rounding the result of an operation to
      <code><a href='#precision'>precision</a></code> significant digits, and when rounding the
      return value of the <a href='#round'><code>round</code></a>,
      <a href='#toBinary'><code>toBinary</code></a>,
      <a href='#toDP'><code>toDecimalPlaces</code></a>,
      <a href='#toExponential'><code>toExponential</code></a>,
      <a href='#toFixed'><code>toFixed</code></a>,
      <a href='#toHexadecimal'><code>toHexadecimal</code></a>,
      <a href='#toNearest'><code>toNearest</code></a>,
      <a href='#toOctal'><code>toOctal</code></a>,
      <a href='#toPrecision'><code>toPrecision</code></a> and
      <a href='#toSD'><code>toSignificantDigits</code></a> methods.
    </p>
    <p>
      The <a href='#modes'>rounding modes</a> are available as enumerated properties of the
      constructor.
    </p>
    <pre>Decimal.set({ rounding: Decimal.ROUND_UP })
Decimal.set({ rounding: 0 })       // equivalent
Decimal.rounding                   // 0</pre>



    <h5 id="minE">minE</h5>
    <p>
      <i>number</i>: integer, <code>-9e15</code> to <code>0</code> inclusive<br />
      Default value: <code>-9e15</code>
    </p>
    <p>
      The negative exponent limit, i.e. the exponent value below which underflow to zero occurs.
    </p>
    <p>
      If the <code>Decimal</code> to be returned by a calculation would have an exponent lower than
      <code>minE</code> then the value of that <code>Decimal</code> becomes zero.
    <p>
      JavaScript numbers underflow to zero for exponents below <code>-324</code>.
    </p>
    <pre>Decimal.set({ minE: -500 })
Decimal.minE                       // -500
new Decimal('1e-500')              // '1e-500'
new Decimal('9.9e-501')            // '0'

Decimal.set({ minE: -3 })
new Decimal(0.001)                 // '0.01'       e is -3
new Decimal(0.0001)                // '0'          e is -4</pre>
    <p>
      The smallest possible magnitude of a non-zero Decimal is <code>1e-9000000000000000</code>
    </p>



    <h5 id="maxE">maxE</h5>
    <p>
      <i>number</i>: integer, <code>0</code> to <code>9e15</code> inclusive<br />
      Default value: <code>9e15</code>
    </p>
    <p>
      The positive exponent limit, i.e. the exponent value above which overflow to
      <code>Infinity</code> occurs.
    </p>
    <p>
      If the <code>Decimal</code> to be returned by a calculation would have an exponent higher than
      <code>maxE</code> then the value of that <code>Decimal</code> becomes <code>Infinity</code>.
    <p>
      JavaScript numbers overflow to <code>Infinity</code> for exponents above <code>308</code>.
    </p>
    <pre>Decimal.set({ maxE: 500 })
Decimal.maxE                       // 500
new Decimal('9.999e500')           // '9.999e+500'
new Decimal('1e501')               // 'Infinity'

Decimal.set({ maxE: 4 })
new Decimal(99999)                 // '99999'      e is 4
new Decimal(100000)                // 'Infinity'</pre>
    <p>
      The largest possible magnitude of a finite Decimal is <code>9.999...e+9000000000000000</code>
    </p>



    <h5 id="toExpNeg">toExpNeg</h5>
    <p>
      <i>number</i>: integer, <code>-9e15</code> to <code>0</code> inclusive<br />
      Default value: <code>-7</code>
    </p>
    <p>
      The negative exponent value at and below which <a href='#toString'><code>toString</code></a>
      returns exponential notation.
    </p>
    <pre>Decimal.set({ toExpNeg: -7 })
Decimal.toExpNeg                   // -7
new Decimal(0.00000123)            // '0.00000123'       e is -6
new Decimal(0.000000123)           // '1.23e-7'

// Always return exponential notation:
Decimal.set({ toExpNeg: 0 })</pre>
    <p>
      JavaScript numbers use exponential notation for negative exponents of <code>-7</code> and
      below.
    </p>
    <p>
      Regardless of the value of <code>toExpNeg</code>, the
      <a href='#toFixed'><code>toFixed</code></a> method will always return a value in normal
      notation and the <a href='#toExponential'><code>toExponential</code></a> method will always
      return a value in exponential form.
    </p>



    <h5 id="toExpPos">toExpPos</h5>
    <p>
      <i>number</i>: integer, <code>0</code> to <code>9e15</code> inclusive<br />
      Default value: <code>20</code>
    </p>
    <p>
      The positive exponent value at and above which <a href='#toString'><code>toString</code></a>
      returns exponential notation.
    </p>
    <pre>Decimal.set({ toExpPos: 2 })
Decimal.toExpPos                   // 2
new Decimal(12.3)                  // '12.3'        e is 1
new Decimal(123)                   // '1.23e+2'

// Always return exponential notation:
Decimal.set({ toExpPos: 0 })</pre>
    <p>
      JavaScript numbers use exponential notation for positive exponents of <code>20</code> and
      above.
    </p>
    <p>
      Regardless of the value of <code>toExpPos</code>, the
      <a href='#toFixed'><code>toFixed</code></a> method will always return a value in normal
      notation and the <a href='#toExponential'><code>toExponential</code></a> method will always
      return a value in exponential form.
    </p>



    <h5 id="modulo">modulo</h5>
    <p>
      <i>number</i>: integer, <code>0</code> to <code>9</code> inclusive<br />
      Default value: <code>1</code> (<code>ROUND_DOWN</code>)
    </p>
    <p>The modulo mode used when calculating the modulus: <code>a mod n</code>.</p>
    <p>
      The quotient, <code>q = a / n</code>, is calculated according to the
      <a href='#rounding'><code>rounding</code></a> mode that corresponds to the chosen
      <code>modulo</code> mode.
    </p>
    <p>The remainder, <code>r</code>, is calculated as: <code>r = a - n * q</code>.</p>
    <p>
      The modes that are most commonly used for the modulus/remainder operation are shown in the
      following table. Although the other <a href='#rounding'><code>rounding</code></a> modes can
      be used, they may not give useful results.
    </p>
    <table>
      <tr><th>Property</th><th>Value</th><th>Description</th></tr>
      <tr>
        <td>ROUND_UP</td><td class='centre'>0</td>
        <td>The remainder is positive if the dividend is negative, else is negative</td>
      </tr>
      <tr>
        <td>ROUND_DOWN</td><td class='centre'>1</td>
        <td>
          The remainder has the same sign as the dividend.<br />
          This uses truncating division and matches the behaviour of JavaScript's remainder
          operator <code>%</code>.
        </td>
      </tr>
      <tr>
        <td>ROUND_FLOOR</td><td class='centre'>3</td>
        <td>
          The remainder has the same sign as the divisor.<br />
          (This matches Python's <code>%</code> operator)
        </td>
      </tr>
      <tr>
        <td>ROUND_HALF_EVEN</td><td class='centre'>6</td>
        <td>The <i>IEEE 754</i> remainder function</td>
      </tr>
       <tr>
         <td>EUCLID</td><td class='centre'>9</td>
         <td>
           The remainder is always positive.<br />
           Euclidian division: <code>q = sign(x) * floor(a / abs(x))</code>.
         </td>
       </tr>
    </table>
    <p>
      The rounding/modulo modes are available as enumerated properties of the Decimal constructor.
    </p>
    <pre>Decimal.set({ modulo: Decimal.EUCLID })
Decimal.set({ modulo: 9 })         // equivalent
Decimal.modulo                     // 9</pre>



    <h5 id="crypto">crypto</h5>
    <p>
      <i>boolean</i>: <code>true/false</code><br /> Default value: <code>false</code>
    </p>
    <p>
      The value that determines whether cryptographically-secure pseudo-random number generation is
      used.
    </p>
    <p>See <a href='#Drandom'><code>random</code></a>.</p>
    <pre>
// Node.js
global.crypto = require('crypto')

Decimal.crypto                     // false
Decimal.set({ crypto: true })
Decimal.crypto                     // true</pre>



    <h6 id="modes">Rounding modes</h6>
    <p>
      The library's enumerated rounding modes are stored as properties of the Decimal constructor.
      <br />They are not referenced internally by the library itself.
    </p>
    <p>Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.</p>
    <table>
      <tr><th>Property</th><th>Value</th><th>Description</th></tr>
      <tr><td><b>ROUND_UP</b></td><td class='centre'>0</td><td>Rounds away from zero</td></tr>
      <tr><td><b>ROUND_DOWN</b></td><td class='centre'>1</td><td>Rounds towards zero</td></tr>
      <tr><td><b>ROUND_CEIL</b></td><td class='centre'>2</td><td>Rounds towards Infinity</td></tr>
      <tr><td><b>ROUND_FLOOR</b></td><td class='centre'>3</td><td>Rounds towards -Infinity</td></tr>
      <tr>
        <td><b>ROUND_HALF_UP</b></td><td class='centre'>4</td>
        <td>Rounds towards nearest neighbour.<br />If equidistant, rounds away from zero</td>
      </tr>
      <tr>
        <td><b>ROUND_HALF_DOWN</b></td><td class='centre'>5</td>
        <td>Rounds towards nearest neighbour.<br />If equidistant, rounds towards zero</td>
      </tr>
      <tr>
        <td><b>ROUND_HALF_EVEN</b></td><td class='centre'>6</td>
        <td>
          Rounds towards nearest neighbour.<br />If equidistant, rounds towards even neighbour
        </td>
      </tr>
      <tr>
        <td><b>ROUND_HALF_CEIL</b></td><td class='centre'>7</td>
        <td>Rounds towards nearest neighbour.<br />If equidistant, rounds towards Infinity</td>
      </tr>
      <tr>
        <td><b>ROUND_HALF_FLOOR</b></td><td class='centre'>8</td>
        <td>Rounds towards nearest neighbour.<br />If equidistant, rounds towards -Infinity</td>
      </tr>
       <tr>
         <td><b>EUCLID</b></td><td class='centre'>9</td>
         <td>Not a rounding mode, see <a href='#modulo'>modulo</a></td>
       </tr>
    </table>
    <pre>Decimal.set({ rounding: Decimal.ROUND_CEIL })
Decimal.set({ rounding: 2 })       // equivalent
Decimal.rounding                   // 2</pre>




    <h3>INSTANCE</h3>

    <h4 id="prototype-methods">Methods</h4>
    <p>The methods inherited by a Decimal instance from its constructor's prototype object.</p>
    <p>A Decimal instance is immutable in the sense that it is not changed by its methods.</p>
    <p>Methods that return a Decimal can be chained:</p>
    <pre>x = new Decimal(2).times('999.999999999999999').dividedBy(4).ceil()</pre>
    <p>Methods do not round their arguments before execution.</p>
    <p>
      The treatment of <code>&plusmn;0</code>, <code>&plusmn;Infinity</code> and <code>NaN</code>
      is consistent with how JavaScript treats these values.
    </p>
    <p>
      Many method names have a shorter alias. (Internally, the library always uses the shorter
      method names.)
    </p>



    <h5 id="abs">absoluteValue<code class='inset'>.abs() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the absolute value, i.e. the magnitude, of the value of
      this Decimal.
    </p>
    <p>
      The return value is not affected by the value of the
      <a href='#precision'><code>precision</code></a> setting.
    </p>
    <pre>
x = new Decimal(-0.8)
y = x.absoluteValue()         // '0.8'
z = y.abs()                   // '0.8'</pre>



    <h5 id="ceil">ceil<code class='inset'>.ceil() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in
      the direction of positive <code>Infinity</code>.
    </p>
    <p>
      The return value is not affected by the value of the
      <a href='#precision'><code>precision</code></a> setting.
    </p>
    <pre>
x = new Decimal(1.3)
x.ceil()                      // '2'
y = new Decimal(-1.8)
y.ceil()                      // '-1'</pre>



    <h5 id="cmp">comparedTo<code class='inset'>.cmp(x) <i>&rArr; number</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <table>
      <tr><th>Returns</th><th>&nbsp;</th></tr>
      <tr>
        <td class='centre'><code>1</code></td>
        <td>if the value of this Decimal is greater than the value of <code>x</code></td>
      </tr>
      <tr>
        <td class='centre'><code>-1</code></td>
        <td>if the value of this Decimal is less than the value of <code>x</code></td>
      </tr>
      <tr>
        <td class='centre'><code>0</code></td>
        <td>if this Decimal and <code>x</code> have the same value</td>
      </tr>
      <tr>
        <td class='centre'><code>NaN</code></td>
        <td>if the value of either this Decimal or <code>x</code> is <code>NaN</code> </td>
      </tr>
    </table>
    <pre>
x = new Decimal(Infinity)
y = new Decimal(5)
x.comparedTo(y)                // 1
x.comparedTo(x.minus(1))       // 0
y.cmp(NaN)                     // NaN</pre>



    <h5 id="cos">cosine<code class='inset'>.cos() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the cosine of the value in radians of this Decimal,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-1, 1</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(0.25)
x.cosine()                      // '0.96891242171064478414'
y = new Decimal(-0.25)
y.cos()                         // '0.96891242171064478414'</pre>



    <h5 id="cbrt">cubeRoot<code class='inset'>.cbrt() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the cube root of this Decimal, rounded to
      <a href='#precision'><code>precision</code></a> significant digits using rounding mode
      <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      The return value will be correctly rounded, i.e. rounded as if the result was first calculated
      to an infinite number of correct digits before rounding.
    </p>
    <pre>
x = new Decimal(125)
x.cubeRoot()                    // '5'
y = new Decimal(3)
y.cbrt()                        // '1.4422495703074083823'</pre>



    <h5 id="dp">decimalPlaces<code class='inset'>.dp() <i>&rArr; number</i></code></h5>
    <p>
      Returns the number of decimal places, i.e. the number of digits after the decimal point, of
      the value of this Decimal.
    </p>
    <pre>
x = new Decimal(1.234)
x.decimalPlaces()              // '3'
y = new Decimal(987.654321)
y.dp()                         // '6'</pre>



    <h5 id="div">dividedBy<code class='inset'>.div(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal divided by <code>x</code>,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>
x = new Decimal(355)
y = new Decimal(113)
x.dividedBy(y)             // '3.14159292035398230088'
x.div(5)                   // '71'</pre>



    <h5 id="divToInt">
      dividedToIntegerBy<code class='inset'>.divToInt(x) <i>&rArr; Decimal</i></code>
    </h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Return a new Decimal whose value is the integer part of dividing this Decimal by
      <code>x</code>, rounded to <code><a href='#precision'>precision</a></code> significant digits
      using rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>
x = new Decimal(5)
y = new Decimal(3)
x.dividedToIntegerBy(y)     // '1'
x.divToInt(0.7)             // '7'</pre>



    <h5 id="eq">equals<code class='inset'>.eq(x) <i>&rArr; boolean</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns <code>true</code> if the value of this Decimal equals the value of <code>x</code>,
      otherwise returns <code>false</code>.<br /> As with JavaScript, <code>NaN</code> does not
      equal <code>NaN</code>.
    </p>
    <p>Note: This method uses the <code>cmp</code> method internally.</p>
    <pre>
0 === 1e-324                     // true
x = new Decimal(0)
x.equals('1e-324')               // false
new Decimal(-0).eq(x)            // true  ( -0 === 0 )

y = new Decimal(NaN)
y.equals(NaN)                    // false</pre>



    <h5 id="floor">floor<code class='inset'>.floor() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in
      the direction of negative <code>Infinity</code>.
    </p>
    <p>
      The return value is not affected by the value of the
      <a href='#precision'><code>precision</code></a> setting.
    </p>
    <pre>
x = new Decimal(1.8)
x.floor()                   // '1'
y = new Decimal(-1.3)
y.floor()                   // '-2'</pre>



    <h5 id="gt">greaterThan<code class='inset'>.gt(x) <i>&rArr; boolean</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns <code>true</code> if the value of this Decimal is greater than the value of
      <code>x</code>, otherwise returns <code>false</code>.
    </p>
    <p>Note: This method uses the <code>cmp</code> method internally.</p>
    <pre>
0.1 &gt; (0.3 - 0.2)                            // true
x = new Decimal(0.1)
x.greaterThan(Decimal(0.3).minus(0.2))       // false
new Decimal(0).gt(x)                         // false</pre>



    <h5 id="gte">
      greaterThanOrEqualTo<code class='inset'>.gte(x) <i>&rArr; boolean</i></code>
    </h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns <code>true</code> if the value of this Decimal is greater than or equal to the value
      of <code>x</code>, otherwise returns <code>false</code>.
    </p>
    <p>Note: This method uses the <code>cmp</code> method internally.</p>
    <pre>
(0.3 - 0.2) &gt;= 0.1                       // false
x = new Decimal(0.3).minus(0.2)
x.greaterThanOrEqualTo(0.1)              // true
new Decimal(1).gte(x)                    // true</pre>



    <h5 id="cosh">hyperbolicCosine<code class='inset'>.cosh() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the hyperbolic cosine of the value in radians of this
      Decimal, rounded to <a href='#precision'><code>precision</code></a> significant digits using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>1, Infinity</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(1)
x.hyperbolicCosine()                     // '1.5430806348152437785'
y = new Decimal(0.5)
y.cosh()                                 // '1.1276259652063807852'</pre>



    <h5 id="sinh">hyperbolicSine<code class='inset'>.sinh() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the hyperbolic sine of the value in radians of this
      Decimal, rounded to <a href='#precision'><code>precision</code></a> significant digits using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-Infinity, Infinity</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(1)
x.hyperbolicSine()                       // '1.1752011936438014569'
y = new Decimal(0.5)
y.sinh()                                 // '0.52109530549374736162'</pre>



    <h5 id="tanh">hyperbolicTangent<code class='inset'>.tanh() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the hyperbolic tangent of the value in radians of this
      Decimal, rounded to <a href='#precision'><code>precision</code></a> significant digits using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-1, 1</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(1)
x.hyperbolicTangent()                    // '0.76159415595576488812'
y = new Decimal(0.5)
y.tanh()                                 // '0.4621171572600097585'</pre>



    <h5 id="acos">inverseCosine<code class='inset'>.acos() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the inverse cosine in radians of the value of this
      Decimal, rounded to <a href='#precision'><code>precision</code></a> significant digits using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-1, 1</code>]<br />
      Range: [<code>0, pi</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(0)
x.inverseCosine()                        // '1.5707963267948966192'
y = new Decimal(0.5)
y.acos()                                 // '1.0471975511965977462'</pre>



    <h5 id="acosh">
      inverseHyperbolicCosine<code class='inset'>.acosh() <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      Returns a new Decimal whose value is the inverse hyperbolic cosine in radians of the value of
      this Decimal, rounded to <a href='#precision'><code>precision</code></a> significant
      digits using rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>1, Infinity</code>]<br />
      Range: [<code>0, Infinity</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(5)
x.inverseHyperbolicCosine()              // '2.2924316695611776878'
y = new Decimal(50)
y.acosh()                                // '4.6050701709847571595'</pre>



    <h5 id="asinh">
      inverseHyperbolicSine<code class='inset'>.asinh() <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      Returns a new Decimal whose value is the inverse hyperbolic sine in radians of the value of
      this Decimal, rounded to <a href='#precision'><code>precision</code></a> significant digits
      using rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-Infinity, Infinity</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(5)
x.inverseHyperbolicSine()                // '2.3124383412727526203'
y = new Decimal(50)
y.asinh()                                // '4.6052701709914238266'</pre>



    <h5 id="atanh">
      inverseHyperbolicTangent<code class='inset'>.atanh() <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      Returns a new Decimal whose value is the inverse hyperbolic tangent in radians of the value of
      this Decimal, rounded to <a href='#precision'><code>precision</code></a> significant
      digits using rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-1, 1</code>]<br />
      Range: [<code>-Infinity, Infinity</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(0.5)
x.inverseHyperbolicTangent()             // '0.5493061443340548457'
y = new Decimal(0.75)
y.atanh()                                // '0.97295507452765665255'</pre>



    <h5 id="asin">inverseSine<code class='inset'>.asin() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the inverse sine in radians of the value of this Decimal,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-1, 1</code>]<br />
      Range: [<code>-pi/2, pi/2</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(0.5)
x.inverseSine()                          // '0.52359877559829887308'
y = new Decimal(0.75)
y.asin()                                 // '0.84806207898148100805'</pre>



    <h5 id="atan">inverseTangent<code class='inset'>.atan() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the inverse tangent in radians of the value of this
      Decimal, rounded to <a href='#precision'><code>precision</code></a> significant digits using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-pi/2, pi/2</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(0.5)
x.inverseTangent()                       // '0.46364760900080611621'
y = new Decimal(0.75)
y.atan()                                 // '0.6435011087932843868'</pre>



    <h5 id="isFinite">isFinite<code class='inset'>.isFinite() <i>&rArr; boolean</i></code></h5>
    <p>
      Returns <code>true</code> if the value of this Decimal is a finite number, otherwise returns
      <code>false</code>.<br />
      The only possible non-finite values of a Decimal are <code>NaN</code>, <code>Infinity</code>
      and <code>-Infinity</code>.
    </p>
    <pre>
x = new Decimal(1)
x.isFinite()                             // true
y = new Decimal(Infinity)
y.isFinite()                             // false</pre>
    <p>
      Note: The native method <code>isFinite()</code> can be used if
      <code>n &lt;= Number.MAX_VALUE</code>.
    </p>



    <h5 id="isInt">isInteger<code class='inset'>.isInt() <i>&rArr; boolean</i></code></h5>
    <p>
      Returns <code>true</code> if the value of this Decimal is a whole number, otherwise returns
      <code>false</code>.
    </p>
    <pre>
x = new Decimal(1)
x.isInteger()                            // true
y = new Decimal(123.456)
y.isInt()                                // false</pre>



    <h5 id="isNaN">isNaN<code class='inset'>.isNaN() <i>&rArr; boolean</i></code></h5>
    <p>
      Returns <code>true</code> if the value of this Decimal is <code>NaN</code>, otherwise returns
      <code>false</code>.
    </p>
    <pre>
x = new Decimal(NaN)
x.isNaN()                                // true
y = new Decimal('Infinity')
y.isNaN()                                // false</pre>
    <p>Note: The native method <code>isNaN()</code> can also be used.</p>



    <h5 id="isNeg">isNegative<code class='inset'>.isNeg() <i>&rArr; boolean</i></code></h5>
    <p>
      Returns <code>true</code> if the value of this Decimal is negative, otherwise returns
      <code>false</code>.
    </p>
    <pre>
x = new Decimal(-0)
x.isNegative()                           // true
y = new Decimal(2)
y.isNeg                                  // false</pre>
    <p>Note: <code>n &lt; 0</code> can be used if <code>n &lt;= -Number.MIN_VALUE</code>.</p>

    <p>Also note that signed zeroes are implemented, following the IEEE Standard
      for Floating-Point Arithmetic (IEEE 754).</p>

    <pre>
Decimal(0).valueOf()                 // '0'
Decimal(0).isNegative()              // false
Decimal(0).negated().valueOf()       // '-0'
Decimal(0).negated().isNegative()    // true
    </pre>

     <h5 id="isPos">isPositive<code class='inset'>.isPos() <i>&rArr; boolean</i></code></h5>
    <p>
      Returns <code>true</code> if the value of this Decimal is positive, otherwise returns
      <code>false</code>.
    </p>
    <pre>
x = new Decimal(0)
x.isPositive()                           // true
y = new Decimal(-2)
y.isPos                                  // false</pre>
    <p>Note: <code>n &lt; 0</code> can be used if <code>n &lt;= -Number.MIN_VALUE</code>.</p>



    <h5 id="isZero">isZero<code class='inset'>.isZero() <i>&rArr; boolean</i></code></h5>
    <p>
      Returns <code>true</code> if the value of this Decimal is zero or minus zero, otherwise
      returns <code>false</code>.
    </p>
    <pre>
x = new Decimal(-0)
x.isZero() && x.isNeg()                  // true
y = new Decimal(Infinity)
y.isZero()                               // false</pre>
    <p>Note: <code>n == 0</code> can be used if <code>n &gt;= Number.MIN_VALUE</code>.</p>



    <h5 id="lt">lessThan<code class='inset'>.lt(x) <i>&rArr; boolean</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns <code>true</code> if the value of this Decimal is less than the value of
      <code>x</code>, otherwise returns <code>false</code>.
    </p>
    <p>Note: This method uses the <code>cmp</code> method internally.</p>
    <pre>
(0.3 - 0.2) &lt; 0.1                        // true
x = new Decimal(0.3).minus(0.2)
x.lessThan(0.1)                          // false
new Decimal(0).lt(x)                     // true</pre>



    <h5 id="lte">lessThanOrEqualTo<code class='inset'>.lte(x) <i>&rArr; boolean</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns <code>true</code> if the value of this Decimal is less than or equal to the value of
      <code>x</code>, otherwise returns <code>false</code>.
    </p>
    <p>Note: This method uses the <code>cmp</code> method internally.</p>
    <pre>
0.1 &lt;= (0.3 - 0.2)                              // false
x = new Decimal(0.1)
x.lessThanOrEqualTo(Decimal(0.3).minus(0.2))    // true
new Decimal(-1).lte(x)                          // true</pre>



    <h5 id="log">logarithm<code class='inset'>.log(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the base <code>x</code> logarithm of the value of this
      Decimal, rounded to <a href='#precision'><code>precision</code></a> significant digits using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      If <code>x</code> is omitted, the base 10 logarithm of the value of this Decimal will be
      returned.
    </p>
    <pre>
x = new Decimal(1000)
x.logarithm()                            // '3'
y = new Decimal(256)
y.log(2)                                 // '8'</pre>
    <p>
      The return value will <i>almost always</i> be correctly rounded, i.e. rounded as if the result
      was first calculated to an infinite number of correct digits before rounding. If a result is
      incorrectly rounded the maximum error will be <code>1</code> <i>ulp</i> (unit in the last
      place).
    </p>
    <p>Logarithms to base <code>2</code> or <code>10</code> will always be correctly rounded.</p>
    <p>
      See <a href='#pow'><code>toPower</code></a> for the circumstances in which this method may
      return an incorrectly rounded result, and see <a href='#ln'><code>naturalLogarithm</code></a>
      for the precision limit.
    </p>
    <p>The performance of this method degrades exponentially with increasing digits.</p>



    <h5 id="sub">minus<code class='inset'>.minus(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal minus <code>x</code>, rounded
      to <a href='#precision'><code>precision</code></a> significant digits using rounding mode
      <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>
0.3 - 0.1                                // 0.19999999999999998
x = new Decimal(0.3)
x.minus(0.1)                             // '0.2'</pre>



    <h5 id="mod">modulo<code class='inset'>.mod(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal modulo <code>x</code>,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      The value returned, and in particular its sign, is dependent on the value of the
      <a href='#modulo'><code>modulo</code></a> property of this Decimal's constructor. If it is
      <code>1</code> (default value), the result will have the same sign as this Decimal, and it
      will match that of Javascript's <code>%</code> operator (within the limits of double
      precision) and BigDecimal's <code>remainder</code> method.
    </p>
    <p>
      See <a href='#modulo'><code>modulo</code></a> for a description of the other modulo modes.
    </p>
    <pre>
1 % 0.9                                  // 0.09999999999999998
x = new Decimal(1)
x.modulo(0.9)                            // '0.1'

y = new Decimal(8)
z = new Decimal(-3)
Decimal.modulo = 1
y.mod(z)                                 // '2'
Decimal.modulo = 3
y.mod(z)                                 // '-1'</pre>



    <h5 id="exp">naturalExponential<code class='inset'>.exp() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the base <code>e</code> (Euler's number, the base of the
      natural logarithm) exponential of the value of this Decimal, rounded to
      <a href='#precision'><code>precision</code></a> significant digits using rounding mode
      <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      The <code><a href='#ln'>naturalLogarithm</a></code> function is the inverse of this function.
    </p>
    <pre>
x = new Decimal(1)
x.naturalExponential()                   // '2.7182818284590452354'
y = new Decimal(2)
y.exp()                                  // '7.3890560989306502272'</pre>
     <p>
      The return value will be correctly rounded, i.e. rounded as if the result was first calculated
      to an infinite number of correct digits before rounding. (The mathematical result of the
      exponential function is non-terminating, unless its argument is <code>0</code>).
    </p>
    <p>The performance of this method degrades exponentially with increasing digits.</p>



    <h5 id="ln">naturalLogarithm<code class='inset'>.ln() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the natural logarithm of the value of this Decimal,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      The natural logarithm is the inverse of the <code><a href='#exp'>naturalExponential</a></code>
      function.
    </p>
    <pre>
x = new Decimal(10)
x.naturalLogarithm()                     // '2.3026'
y = new Decimal('1.23e+30')
y.ln()                                   // '69.28'</pre>
    <p>
      The return value will be correctly rounded, i.e. rounded as if the result was first calculated
      to an infinite number of correct digits before rounding. (The mathematical result of the
      natural logarithm function is non-terminating, unless its argument is <code>1</code>).
    </p>
    <p>
      Internally, this method is dependent on a constant whose value is the natural logarithm of
      <code>10</code>. This <code>LN10</code> variable in the source code currently has a precision
      of <code>1025</code> digits, meaning that this method can accurately calculate up to
      <code>1000</code> digits.
    </p>
    <p>
      If more than <code>1000</code> digits is required then the precision of <code>LN10</code>
      will need to be increased to <code>25</code> digits more than is required - though, as the
      time-taken by this method increases exponentially with increasing digits, it is unlikely to be
      viable to calculate over <code>1000</code> digits anyway.
    </p>



    <h5 id="neg">negated<code class='inset'>.neg() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the value of this Decimal negated, i.e. multiplied by
      <code>-1</code>.
    </p>
    <p>
      The return value is not affected by the value of the
      <a href='#precision'><code>precision</code></a> setting.
    </p>
    <pre>
x = new Decimal(1.8)
x.negated()                              // '-1.8'
y = new Decimal(-1.3)
y.neg()                                  // '1.3'</pre>



    <h5 id="add">plus<code class='inset'>.plus(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal plus <code>x</code>, rounded to
      <a href='#precision'><code>precision</code></a> significant digits using rounding mode
      <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>
0.1 + 0.2                                // 0.30000000000000004
x = new Decimal(0.1)
y = x.plus(0.2)                          // '0.3'
new Decimal(0.7).plus(x).plus(y)         // '1.1'</pre>



    <h5 id="sd">precision<code class='inset'>.sd([include_zeros]) <i>&rArr; number</i></code></h5>
    <p>Returns the number of significant digits of the value of this Decimal.</p>
    <p>
      If <code>include_zeros</code> is <code>true</code> or <code>1</code> then any trailing zeros
      of the integer part of a number are counted as significant digits, otherwise they are not.
    </p>
    <pre>
x = new Decimal(1.234)
x.precision()                            // '4'
y = new Decimal(987000)
y.sd()                                   // '3'
y.sd(true)                               // '6'</pre>



    <h5 id="round">round<code class='inset'>.round() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the value of this Decimal rounded to a whole number using
      rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      To emulate <code>Math.round</code>, set <a href='#rounding'><code>rounding</code></a> to
      <code>7</code>, i.e. <a href='#modes'><code>ROUND_HALF_CEIL</code></a>.
    </p>
    <pre>
Decimal.set({ rounding: 4 })
x = 1234.5
x.round()                                // '1235'

Decimal.rounding = Decimal.ROUND_DOWN
x.round()                                // '1234'
x                                        // '1234.5'</pre>



    <h5 id="sin">sine<code class='inset'>.sin() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the sine of the value in radians of this Decimal,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-1, 1</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(0.5)
x.sine()                                 // '0.47942553860420300027'
y = new Decimal(0.75)
y.sin()                                  // '0.68163876002333416673'</pre>



    <h5 id="sqrt">squareRoot<code class='inset'>.sqrt() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the square root of this Decimal, rounded to
      <a href='#precision'><code>precision</code></a> significant digits using rounding mode
      <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      The return value will be correctly rounded, i.e. rounded as if the result was first calculated
      to an infinite number of correct digits before rounding.
    </p>
    <p>
      This method is much faster than using the <a href='#pow'><code>toPower</code></a> method with
      an exponent of <code>0.5</code>.
    </p>
    <pre>
x = new Decimal(16)
x.squareRoot()                           // '4'
y = new Decimal(3)
y.sqrt()                                 // '1.73205080756887729353'
y.sqrt().eq( y.pow(0.5) )                // true</pre>



    <h5 id="tan">tangent<code class='inset'>.tan() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the tangent of the value in radians of this Decimal,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      Domain: [<code>-Infinity, Infinity</code>]<br />
      Range: [<code>-Infinity, Infinity</code>]
    </p>
    <p>See <a href='#Pi'><code>Pi</code></a> for the precision limit of this method.</p>
    <pre>
x = new Decimal(0.5)
x.tangent()                              // '0.54630248984379051326'
y = new Decimal(0.75)
y.tan()                                  // '0.93159645994407246117'</pre>



    <h5 id="mul">times<code class='inset'>.times(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i></p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal times <code>x</code>,
      rounded to <a href='#precision'><code>precision</code></a> significant digits using rounding
      mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <pre>
0.6 * 3                                  // 1.7999999999999998
x = new Decimal(0.6)
y = x.times(3)                           // '1.8'
new Decimal('7e+500').times(y)           // '1.26e+501'</pre>



    <h5 id="toBinary">
      toBinary<code class='inset'>.toBinary([sd [, rm]]) <i>&rArr; string</i></code>
    </h5>
    <p>
      <code>sd</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
    </p>
    <p>
      Returns a string representing the value of this Decimal in binary, rounded to <code>sd</code>
      significant digits using rounding mode <code>rm</code>.
    </p>
    <p>
      If <code>sd</code> is defined, the return value will use binary exponential notation.
    </p>
    <p>
      If <code>sd</code> is omitted, the return value will be rounded to
      <a href='#precision'><code>precision</code></a> significant digits.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a>
      will be used.
    </p>
    <p>Throws on an invalid <code>sd</code> or <code>rm</code> value.</p>
    <pre>
x = new Decimal(256)
x.toBinary()                             // '0b100000000'
x.toBinary(1)                            // '0b1p+8'</pre>



    <h5 id="toDP">
      toDecimalPlaces<code class='inset'>.toDP([dp [, rm]]) <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      <code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive.
    </p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal rounded to <code>dp</code>
      decimal places using rounding mode <code>rm</code>.
    </p>
    <p>
      If <code>dp</code> is omitted, the return value will have the same value as this Decimal.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a>
      is used.
    </p>
    <p>Throws on an invalid <code>dp</code> or <code>rm</code> value.</p>
    <pre>
x = new Decimal(12.34567)
x.toDecimalPlaces(0)                      // '12'
x.toDecimalPlaces(1, Decimal.ROUND_UP)    // '12.4'

y = new Decimal(9876.54321)
y.toDP(3)                           // '9876.543'
y.toDP(1, 0)                        // '9876.6'
y.toDP(1, Decimal.ROUND_DOWN)       // '9876.5'</pre>



    <h5 id="toExponential">
      toExponential<code class='inset'>.toExponential([dp [, rm]]) <i>&rArr; string</i></code>
    </h5>
    <p>
      <code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
    </p>
    <p>
      Returns a string representing the value of this Decimal in exponential notation rounded
      using rounding mode <code>rm</code> to <code>dp</code> decimal places, i.e with one digit
      before the decimal point and <code>dp</code> digits after it.
    </p>
    <p>
      If the value of this Decimal in exponential notation has fewer than <code>dp</code> fraction
      digits, the return value will be appended with zeros accordingly.
    </p>
    <p>
      If <code>dp</code> is omitted, the number of digits after the decimal point defaults to the
      minimum number of digits necessary to represent the value exactly.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a> is
      used.
    </p>
    <p>Throws on an invalid <code>dp</code> or <code>rm</code> value.</p>
    <pre>
x = 45.6
y = new Decimal(x)
x.toExponential()                        // '4.56e+1'
y.toExponential()                        // '4.56e+1'
x.toExponential(0)                       // '5e+1'
y.toExponential(0)                       // '5e+1'
x.toExponential(1)                       // '4.6e+1'
y.toExponential(1)                       // '4.6e+1'
y.toExponential(1, Decimal.ROUND_DOWN)   // '4.5e+1'
x.toExponential(3)                       // '4.560e+1'
y.toExponential(3)                       // '4.560e+1'</pre>



    <h5 id="toFixed">
      toFixed<code class='inset'>.toFixed([dp [, rm]]) <i>&rArr; string</i></code>
    </h5>
    <p>
      <code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
    </p>
    <p>
      Returns a string representing the value of this Decimal in normal (fixed-point) notation
      rounded to <code>dp</code> decimal places using rounding mode <code>rm</code>.
    </p>
    <p>
      If the value of this Decimal in normal notation has fewer than <code>dp</code> fraction
      digits, the return value will be appended with zeros accordingly.
    </p>
    <p>
      Unlike <code>Number.prototype.toFixed</code>, which returns exponential notation if a number
      is greater or equal to <code>10<sup>21</sup></code>, this method will always return normal
      notation.
    </p>
    <p>
      If <code>dp</code> is omitted, the return value will be unrounded and in normal notation. This
      is unlike <code>Number.prototype.toFixed</code>, which returns the value to zero decimal
      places, but is useful when because of the current
      <a href="#toExpNeg"><code>toExpNeg</code></a> or
      <a href="#toExpPos"><code>toExpNeg</code></a> values,
      <code><a href='#toString'>toString</a></code> returns exponential notation.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a> is
      used.
    </p>
    <p>Throws on an invalid <code>dp</code> or <code>rm</code> value.</p>
    <pre>
x = 3.456
y = new Decimal(x)
x.toFixed()                       // '3'
y.toFixed()                       // '3.456'
y.toFixed(0)                      // '3'
x.toFixed(2)                      // '3.46'
y.toFixed(2)                      // '3.46'
y.toFixed(2, Decimal.ROUND_DOWN)  // '3.45'
x.toFixed(5)                      // '3.45600'
y.toFixed(5)                      // '3.45600'</pre>



    <h5 id="toFraction">
      toFraction
      <code class='inset'>.toFraction([max_denominator]) <i>&rArr; [Decimal, Decimal]</i></code>
    </h5>
    <p>
      <code>max_denominator</code>: <i>number|string|Decimal</i>: <code>1</code> &gt;= integer &lt;
      <code>Infinity</code>
    </p>
    <p>
      Returns an array of two Decimals representing the value of this Decimal as a simple fraction
      with an integer numerator and an integer denominator. The denominator will be a positive
      non-zero value less than or equal to <code>max_denominator</code>.
    </p>
    <p>
      If a maximum denominator is omitted, the denominator will be the lowest value necessary to
      represent the number exactly.
    </p>
    <p>Throws on an invalid <code>max_denominator</code> value.</p>
    <pre>
x = new Decimal(1.75)
x.toFraction()                       // '7, 4'

pi = new Decimal('3.14159265358')
pi.toFraction()                      // '157079632679,50000000000'
pi.toFraction(100000)                // '312689, 99532'
pi.toFraction(10000)                 // '355, 113'
pi.toFraction(100)                   // '311, 99'
pi.toFraction(10)                    // '22, 7'
pi.toFraction(1)                     // '3, 1'</pre>



    <h5 id="toHex">
      toHexadecimal<code class='inset'>.toHex([sd [, rm]]) <i>&rArr; string</i></code>
    </h5>
    <p>
      <code>sd</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
    </p>
    <p>
      Returns a string representing the value of this Decimal in hexadecimal, rounded to
      <code>sd</code> significant digits using rounding mode <code>rm</code>.
    </p>
    <p>
      If <code>sd</code> is defined, the return value will use binary exponential notation.
    </p>
    <p>
      If <code>sd</code> is omitted, the return value will be rounded to
      <a href='#precision'><code>precision</code></a> significant digits.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a>
      will be used.
    </p>
    <p>Throws on an invalid <code>sd</code> or <code>rm</code> value.</p>
    <pre>
x = new Decimal(256)
x.toHexadecimal()                        // '0x100'
x.toHex(1)                               // '0x1p+8'</pre>



    <h5 id="toJSON">toJSON<code class='inset'>.toJSON() <i>&rArr; string</i></code></h5>
    <p>As <a href='#valueOf'><code>valueOf</code></a>.</p>



    <h5 id="toNearest">
      toNearest<code class='inset'>.toNearest(x [, rm]) <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      <code>x</code>: <i>number|string|Decimal</i><br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
    </p>
    <p>
      Returns a new Decimal whose value is the nearest multiple of <code>x</code> in the direction
      of rounding mode <code>rm</code>, or <a href='#rounding'><code>rounding</code></a> if
      <code>rm</code> is omitted, to the value of this Decimal.
    </p>
    <p>
      The return value will always have the same sign as this Decimal, unless either this Decimal
      or <code>x</code> is <code>NaN</code>, in which case the return value will be also be
      <code>NaN</code>.
    </p>
    <p>
      The return value is not affected by the value of the
      <a href='#precision'><code>precision</code></a> setting.
    </p>
    <pre>
x = new Decimal(1.39)
x.toNearest(0.25)                        // '1.5'

y = new Decimal(9.499)
y.toNearest(0.5, Decimal.ROUND_UP)       // '9.5'
y.toNearest(0.5, Decimal.ROUND_DOWN)     // '9'</pre>



    <h5 id="toNumber">toNumber<code class='inset'>.toNumber() <i>&rArr; number</i></code></h5>
    <p>Returns the value of this Decimal converted to a primitive number.</p>
    <p>
      Type coercion with, for example, JavaScript's unary plus operator will also work, except that
      a Decimal with the value minus zero will convert to positive zero.
    </p>
    <pre>
x = new Decimal(456.789)
x.toNumber()                   // 456.789
+x                             // 456.789

y = new Decimal('45987349857634085409857349856430985')
y.toNumber()                   // 4.598734985763409e+34

z = new Decimal(-0)
1 / +z                         // Infinity
1 / z.toNumber()               // -Infinity</pre>



     <h5 id="toOctal">
      toOctal<code class='inset'>.toOctal([sd [, rm]]) <i>&rArr; string</i></code>
    </h5>
    <p>
      <code>sd</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
    </p>
    <p>
      Returns a string representing the value of this Decimal in octal, rounded to <code>sd</code>
      significant digits using rounding mode <code>rm</code>.
    </p>
    <p>
      If <code>sd</code> is defined, the return value will use binary exponential notation.
    </p>
    <p>
      If <code>sd</code> is omitted, the return value will be rounded to
      <a href='#precision'><code>precision</code></a> significant digits.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a>
      will be used.
    </p>
    <p>Throws on an invalid <code>sd</code> or <code>rm</code> value.</p>
    <pre>
x = new Decimal(256)
x.toOctal()                              // '0o400'
x.toOctal(1)                             // '0o1p+8'</pre>



    <h5 id="pow">toPower<code class='inset'>.pow(x) <i>&rArr; Decimal</i></code></h5>
    <p><code>x</code>: <i>number|string|Decimal</i>: integer or non-integer</p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal raised to the power
      <code>x</code>, rounded to <a href='#precision'><code>precision</code></a> significant digits
      using rounding mode <a href='#rounding'><code>rounding</code></a>.
    </p>
    <p>
      The performance of this method degrades exponentially with increasing digits. For
      non-integer exponents in particular, the performance of this method may not be adequate.
    </p>
    <pre>
Math.pow(0.7, 2)               // 0.48999999999999994
x = new Decimal(0.7)
x.toPower(2)                   // '0.49'
new Decimal(3).pow(-2)         // '0.11111111111111111111'

new Decimal(1217652.23).pow('98765.489305603941')
// '4.8227010515242461181e+601039'</pre>
    <p><i>Is the pow function guaranteed to be correctly rounded?</i></p>
    <p>
      The return value will <i>almost always</i> be correctly rounded, i.e. rounded as if the result
      was first calculated to an infinite number of correct digits before rounding. If a result is
      incorrectly rounded the maximum error will be <code>1</code> <i>ulp</i> (unit in the last
      place).
    </p>
    <p>For non-integer and larger exponents this method uses the formula</p>
    <blockquote><code>x<sup>y</sup> = exp(y*ln(x))</code></blockquote>
    <p>
      As the mathematical return values of the <a href='#exp'><code>exp</code></a> and
      <a href='#ln'><code>ln</code></a> functions are both non-terminating (excluding arguments of
      <code>0</code> or <code>1</code>), the values of the Decimals returned by the functions as
      implemented by this library will necessarily be rounded approximations, which means that there
      can be no guarantee of correct rounding when they are combined in the above formula.
    </p>
    <p>
      The return value may, depending on the rounding mode, be incorrectly rounded only if the first
      <code>15</code> rounding digits are <code>15</code> zeros (and there are non-zero digits
      following at some point), or <code>15</code> nines, or a <code>5</code> or <code>4</code>
      followed by <code>14</code> nines.
    </p>
    <p>
      Therefore, assuming the first <code>15</code> rounding digits are each equally likely to be
      any digit, <code>0-9</code>, the probability of an incorrectly rounded result is less than
      <code>1</code> in <code>250,000,000,000,000</code>.
    </p>
    <p>
      An example of incorrect rounding:
    </p>
    <pre>
Decimal.set({ precision: 20, rounding: 1 })
new Decimal(28).pow('6.166675020000903537297764507632802193308677149')
// 839756321.64088511</pre>
    <p>As the exact mathematical result begins</p>
    <pre>839756321.6408851099999999999999999999999999998969466049426031167...</pre>
    <p>
      and the rounding mode is set to <code><a href='#modes'>ROUND_DOWN</a></code>, the correct
      return value should be
    </p>
    <pre>839756321.64088510999</pre>



    <h5 id="toPrecision">
      toPrecision<code class='inset'>.toPrecision([sd [, rm]]) <i>&rArr; string</i></code>
    </h5>
    <p>
      <code>sd</code>: <i>number</i>: integer, <code>1</code> to <code>1e+9</code> inclusive<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
    </p>
    <p>
      Returns a string representing the value of this Decimal rounded to <code>sd</code> significant
      digits using rounding mode <code>rm</code>.
    </p>
    <p>
      If <code>sd</code> is less than the number of digits necessary to represent the integer part
      of the value in normal (fixed-point) notation, then exponential notation is used.
    </p>
    <p>
      If <code>sd</code> is omitted, the return value is the same as
      <code><a href='#toString'>toString</a></code>.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a> is
      used.
    </p>
    <p>Throws on an invalid <code>sd</code> or <code>rm</code> value.</p>
    <pre>
x = 45.6
y = new Decimal(x)
x.toPrecision()                          // '45.6'
y.toPrecision()                          // '45.6'
x.toPrecision(1)                         // '5e+1'
y.toPrecision(1)                         // '5e+1'
y.toPrecision(2, Decimal.ROUND_UP)       // '46'
y.toPrecision(2, Decimal.ROUND_DOWN)     // '45'
x.toPrecision(5)                         // '45.600'
y.toPrecision(5)                         // '45.600'</pre>



    <h5 id="toSD">
      toSignificantDigits<code class='inset'>.toSD([sd [, rm]]) <i>&rArr; Decimal</i></code>
    </h5>
    <p>
      <code>sd</code>: <i>number</i>: integer, <code>1</code> to <code>1e+9</code> inclusive.<br />
      <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive.
    </p>
    <p>
      Returns a new Decimal whose value is the value of this Decimal rounded to <code>sd</code>
      significant digits using rounding mode <code>rm</code>.
    </p>
    <p>
      If <code>sd</code> is omitted, the return value will be rounded to
      <a href='#precision'><code>precision</code></a> significant digits.
    </p>
    <p>
      If <code>rm</code> is omitted, rounding mode <a href='#rounding'><code>rounding</code></a>
      will be used.
    </p>
    <p>Throws on an invalid <code>sd</code> or <code>rm</code> value.</p>
    <pre>
Decimal.set({ precision: 5, rounding: 4 })
x = new Decimal(9876.54321)

x.toSignificantDigits()                          // '9876.5'
x.toSignificantDigits(6)                         // '9876.54'
x.toSignificantDigits(6, Decimal.ROUND_UP)       // '9876.55'
x.toSD(2)                                        // '9900'
x.toSD(2, 1)                                     // '9800'
x                                                // '9876.54321'</pre>



    <h5 id="toString">toString<code class='inset'>.toString() <i>&rArr; string</i></code></h5>
    <p>Returns a string representing the value of this Decimal.</p>
    <p>
      If this Decimal has a positive exponent that is equal to or greater than
      <a href="#toExpPos"><code>toExpPos</code></a>, or a negative exponent equal to or less than
      <a href="#toExpPos"><code>toExpNeg</code></a>, then exponential notation will be returned.
    </p>
    <pre>
x = new Decimal(750000)
x.toString()                             // '750000'
Decimal.set({ toExpPos: 5 })
x.toString()                             // '7.5e+5'

Decimal.set({ precision: 4 })
y = new Decimal('1.23456789')
y.toString()                             // '1.23456789'</pre>



    <h5 id="trunc">truncated<code class='inset'>.trunc() <i>&rArr; Decimal</i></code></h5>
    <p>
      Returns a new Decimal whose value is the value of this Decimal truncated to a whole number.
    </p>
    <p>
      The return value is not affected by the value of the
      <a href='#precision'><code>precision</code></a> setting.
    </p>
    <pre>
x = new Decimal(123.456)
x.truncated()                            // '123'
y = new Decimal(-12.3)
y.trunc()                                // '-12'</pre>



    <h5 id="valueOf">valueOf<code class='inset'>.valueOf() <i>&rArr; string</i></code></h5>
    <p>As <a href='#toString'><code>toString</code></a>, but zero is signed.</p>
    <pre>
x = new Decimal(-0)
x.valueOf()                              // '-0'</pre>






    <h4 id="instance-properties">Properties</h4>
    <p>
      The value of a Decimal is stored in a normalised base <code>10000000</code> floating point
      format.
    </p>
    <p>
      A Decimal instance is an object with three properties:
    </p>
    <table>
      <tr>
        <th>Property</th>
        <th>Description</th>
        <th>Type</th>
        <th>Value</th>
      </tr>
      <tr>
        <td class='centre' id='digits'><b>d</b></td>
        <td>digits</td>
        <td><i>number</i><code style='color:#000'>[]</code></td>
        <td> Array of integers, each <code>0</code> - <code>1e7</code>, or <code>null</code></td>
      </tr>
      <tr>
        <td class='centre' id='exponent'><b>e</b></td>
        <td>exponent</td>
        <td><i>number</i></td>
        <td>Integer, <code>-9e15</code> to <code>9e15</code> inclusive, or <code>NaN</code></td>
      </tr>
      <tr>
        <td class='centre' id='sign'><b>s</b></td>
        <td>sign</td>
        <td><i>number</i></td>
        <td><code>-1</code>, <code>1</code>, or <code>NaN</code></td>
      </tr>
    </table>
    <p>All the properties are best considered to be read-only.</p>
    <p>
      As with JavaScript numbers, the original exponent and fractional trailing zeros of a value
      are not preserved.
    </p>
    <pre>
x = new Decimal(0.123)                   // '0.123'
x.toExponential()                        // '1.23e-1'
x.d                                      // [ 1230000 ]
x.e                                      // -1
x.s                                      // 1

y = new Number(-123.4567000e+2)          // '-12345.67'
y.toExponential()                        // '-1.234567e+4'
z = new Decimal('-123.4567000e+2')       // '-12345.67'
z.toExponential()                        // '-1.234567e+4'
z.d                                      // [ 12345, 6700000 ]
z.e                                      // 4
z.s                                      // -1</pre>



    <h4 id="zero-nan-infinity">Zero, NaN and Infinity</h4>
    <p>
      The table below shows how <code>&plusmn;0</code>, <code>NaN</code> and
      <code>&plusmn;Infinity</code> are stored.
    </p>
       <table>
      <tr>
        <th> </th>
        <th>&plusmn;0</th>
        <th>NaN</th>
        <th>&plusmn;Infinity</th>
      </tr>
      <tr>
        <td><b>&nbsp;d&nbsp;</b></td>
        <td><code>[0]</code></td>
        <td><code>null</code></td>
        <td><code>null</code></td>
      </tr>
      <tr>
        <td><b>&nbsp;e&nbsp;</b></td>
        <td><code>0</code></td>
        <td><code>NaN</code></td>
        <td><code>NaN</code></td>
      </tr>
      <tr>
        <td><b>&nbsp;s&nbsp;</b></td>
        <td><code>&plusmn;1</code></td>
        <td><code>NaN</code></td>
        <td><code>&plusmn;1</code></td>
      </tr>
    </table>
    <pre>
x = new Number(-0)                       // 0
1 / x == -Infinity                       // true

y = new Decimal(-0)
y.d                                      // '0' ( [0].toString() )
y.e                                      //  0
y.s                                      // -1
y.toString()                             // '0'
y.valueOf()                              // '-0'</pre>



    <h4 id='Errors'>Errors</h4>
    <p>
      The errors that are thrown are generic <code>Error</code> objects whose <code>message</code>
      property begins with <code>"[DecimalError]"</code>.
    </p>
    <p>To determine if an exception is a Decimal Error:</p>
    <pre>
try {
    // ...
} catch (e) {
    if ( e instanceof Error && /DecimalError/.test(e.message) ) {
        // ...
    }
}</pre>



    <h4 id='Pi'>Pi</h4>
    <p>
      The maximum precision of the trigonometric methods is dependent on the internal value of the
      constant pi, which is defined as the string <code>PI</code> near the top of the source file.
    </p>
    <p>
      It has a precision of <code>1025</code> digits, meaning that the trigonometric methods
      can calculate up to just over <code>1000</code> digits, but the actual figure depends on the
      precision of the argument passed to them. To calculate the actual figure use:
    </p>
    <p><b>maximum_result_precision = 1000 - argument_precision</b></p>
      For example, the following both work fine:
    <pre>
Decimal.set({precision: 991}).tan(123456789)
Decimal.set({precision: 9}).tan(991_digit_number)</pre>
    <p>
      as, for each, the result precision plus the argument precision, i.e. <code>991 + 9</code> and
      <code>9 + 991</code>, is less than or equal to <code>1000</code>.
    </p>
    <p>
      If greater precision is required then the value of <code>PI</code> will need to be extended to
      about <code>25</code> digits more than the precision required. The time taken by the methods
      will then be the limiting factor.
    </p>
    <p>
      The value can also be shortened to reduce the size of the source file if such high precision
      is not required.
    </p>
    <p>To get the value of pi:</p>
    <pre>
pi = Decimal.acos(-1)</pre>



    <h2 id='faq'>FAQ</h2>
    <h6>Why are trailing fractional zeros removed from Decimals?</h6>
    <p>
      Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the
      precision of a value. This can be useful but the results of arithmetic operations can be
      misleading.
    </p>
    <pre>
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y)                      // 2.1000

x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y)                 // 4.1400000</pre>
    <p>
      To specify the precision of a value is to specify that the value lies
      within a certain range.
    </p>
    <p>
      In the first example, <code>x</code> has a value of <code>1.0</code>. The trailing zero shows
      the precision of the value, implying that it is in the range <code>0.95</code> to
      <code>1.05</code>. Similarly, the precision indicated by the trailing zeros of <code>y</code>
      indicates that the value is in the range <code>1.09995</code> to <code>1.10005</code>.
    </p>
    <p>
      If we  add the two lowest values in the ranges we have, <code>0.95 + 1.09995 = 2.04995</code>,
      and if we add the two highest values we have, <code>1.05 + 1.10005 = 2.15005</code>, so the
      range of the result of the addition implied by the precision of its operands is
      <code>2.04995</code> to <code>2.15005</code>.
    </p>
    <p>
      The result given by BigDecimal of <code>2.1000</code> however, indicates that the value is in
      the range <code>2.09995</code> to <code>2.10005</code> and therefore the precision implied by
      its trailing zeros may be misleading.
    </p>
    <p>
      In the second example, the true range is <code>4.122744</code> to <code>4.157256</code> yet
      the BigDecimal answer of <code>4.1400000</code> indicates a range of <code>4.13999995</code>
      to  <code>4.14000005</code>. Again, the precision implied by the trailing zeros may be
      misleading.
    </p>
    <p>
      This library, like binary floating point and most calculators, does not retain trailing
      fractional zeros. Instead, the <code>toExponential</code>, <code>toFixed</code> and
      <code>toPrecision</code> methods enable trailing zeros to be added if and when required.<br />
    </p>
  </div>

</body>
</html>