Video vector list를 이용한 내용 기반 유튜브 영상 추천 시스템 개선안 Research field Video Understanding Word Vectorization Tech Stack Tensorflow Gensim Django Vue.js Members profit_hunter 팀명 Profit Hunter 윤영빈(컴퓨터공학과, 2015104192) 이태현(컴퓨터공학과, 2015104208) Links Youtube-8M Challenge Mediapipe How to run. 필요한 라이브러리 설치 python 3.5 ~ 3.7, node.js 12.16 google mediapipe 설치 https://google.github.io/mediapipe/getting_started/install YouTube-8M feature extraction graph 설치 https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/youtube8m (요구 사양 RAM 32GB 이상) 2015104192/web/backend에서 requirements.txt 설치 (venv 사용 권장) -> pip install -r requirements.txt 2015104192/web/frontend에서 package.json 설치 -> npm install 모델 학습 Train python train.py --frame_features --model=FrameLevelLogisticModel --feature_names='rgb,audio' --feature_sizes='1024,128' --train_data_pattern=/Train_데이터셋저장경로/train*.tfrecord --train_dir 2015104192/web/backend/yt8m/esot3ria/model --startnew_model --segment_labels Evaluation python eval.py --eval_data_pattern=/Eval_데이터셋저장경로/val*.tfrecord --train_dir 2015104192/web/backend/yt8m/esot3ria/model --runonce --segment_labels 웹서버 가동 1~6의 절차가 반드시 완료되어 있어야 합니다. 2015104192/web/backend 디렉토리에서 . env/bin/activate (가상환경 사용 시) python manage.py makemigrations python manage.py migrate python manage.py runserver