video_recommender.py 18.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
from gensim.models import Word2Vec
import numpy as np
from numpy import dot
from numpy.linalg import norm
import pandas as pd
import math
import activation as ac

def recommend_videos(tags, segments, tag_model_path, video_model_path, video_id_model, top_k, isPerSegment = True):
    # 이 함수에서 모든걸 다 함
    # tags는 label val 로 묶인 문자열 리스트임
    # tags의 길이는 segment의 길이
    # 비디오 벡터를 생성한 뒤 각 segment의 벡터와 비교해 가장 유사도 높은 segment의 인덱스 추출
    # 그 후 그 인덱스 전후 2개 총 크기 5의 커널을 생성
    # 벡터공간에서 비교한 후 추천할만한 영상의 아이디만 반환
    
    #segments는 클래스 확률 클래스 확률... 일케 저장되어 있음
    tag_vectors = Word2Vec.load(tag_model_path).wv
    video_vectors = Word2Vec().wv.load(video_model_path)
    video_ids = Word2Vec().wv.load(video_id_model)
    error_tags = []
    maxSimilarSegment = 0
    maxSimilarity = -1
    
    kernel = [np.zeros(100) for i in range(0,5)]
    tagKernel = []
    similar_ids = []
    #우선은 비교를 뜰 입력 영상의 단일 비디오벡터를 구함
    video_vector = np.zeros(100)
    tag_preds =[]
    videoTagList = []
    for (tag, weight) in tags:
        tag_preds.append(weight)
        videoTagList.append(tag)
        ac.softmax(tag_preds)
    for (tag, weight),pred in zip(tags,tag_preds):
        print(tag,pred)
        if tag in tag_vectors.vocab:
            video_vector = video_vector + (tag_vectors[tag] * float(pred))
        else:
            #print("unknown",tag)
            # Pass if tag is unknown
            if tag not in error_tags:
                error_tags.append(tag)
    
    if(isPerSegment == True):
        #각 세그먼트마다 비교를 떠서 인덱스를 저장
        midpos = math.floor(len(kernel)/2)
        for i in range(0,midpos):
            segments.insert(0,segments[0])
            segments.append(segments[len(segments)-1])
            
        currentIndex = midpos
        for si in range(midpos,len(segments) - midpos - 1):
            similarity = 0        
            for segi in range(-1,2):
                segment = segments[si + segi]
                segment_vector = np.zeros(100)
                segTags = [segment[i] for i in range(0,len(segment),2)]
                segProbs = [float(segment[i]) for i in range(1,len(segment),2)]#ac.softmax([float(segment[i]) for i in range(1,len(segment),2)])
                
                for tag, weight in zip(segTags,segProbs):
                    if tag in tag_vectors.vocab:
                        segment_vector = segment_vector + (tag_vectors[tag] * float(weight))
                    else:
                        # Pass if tag is unknown
                        if tag not in error_tags:
                            error_tags.append(tag)
                            
                #비디오 벡터와 세그먼트 벡터 비교
                #similarity = similarity + cos_sim(video_vector, segment_vector) #cos_sim(video_vector, segment_vector)#

                for currentSegmentTag, videoVectorTag,videoVectorTagPred in zip(segTags,videoTagList,tag_preds):
                    if(currentSegmentTag in tag_vectors.vocab) and (videoVectorTag in tag_vectors.vocab):
                        prob = float(videoVectorTagPred)
                        if videoVectorTag not in segTags:
                            prob = 0
                        similarity = similarity + (tag_vectors.similarity(currentSegmentTag,videoVectorTag) * prob)
                    
                    
            if similarity >= maxSimilarity:
                maxSimilarSegment = currentIndex
                maxSimilarity = similarity
                if maxSimilarSegment < int(len(kernel)/2):
                    maxSimilarSegment = int(len(kernel)/2)
                elif maxSimilarSegment == len(segments) - int(len(kernel)/2):
                    maxSimilarSegment =  len(segments) - int(len(kernel)/2) - 1
            #세그먼트 인덱스 증가
            currentIndex = currentIndex + 1
        #######################################print('maxSimilarSegment',maxSimilarSegment,'len',len(segments))
        #커널 생성    
        for k in range (0,len(kernel)):
            segment = segments[maxSimilarSegment - math.floor(len(kernel)/2) + k]
            segment_vector = np.zeros(100)
            segTags = [segment[i] for i in range(0,len(segment),2)]
            tagKernel.append(segTags)
            segProbs = ac.softmax([float(segment[i]) for i in range(1,len(segment),2)])
            #print(segTags)
            #print(segProbs)
            for (tag, weight) in zip(segTags,segProbs):
                if tag in tag_vectors.vocab:
                    #float(weight)
                    segment_vector = segment_vector + (tag_vectors[tag] * float(weight))
                else:
                    #print("unknown",tag)
                    # Pass if tag is unknown
                    if tag not in error_tags:
                        error_tags.append(tag)
                    
            kernel[k] = segment_vector

        #여기에서 유사한 벡터들을 뽑아냄
        #현재는 비디오id로 영상을 얻을 수 없으므로 반환값으로 비디오 아이디와 태그들, 확률 사용
        video_tags = pd.read_csv('/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/segment_tags.csv', encoding='utf8',error_bad_lines=False)
        videoVectorList = []
        segmentTagList = []
        prevVideoId = ""
        minimunVideoIds = [["",-1.0] for i in range(0,top_k)]

        for i, row in video_tags.iterrows():
            video_id = row[0]
            if video_id == "vid_id":
                continue
            if prevVideoId == "":
                prevVideoId = video_id
            
            if video_id[0:4] != prevVideoId[0:4]:            
                #여기서 모다진걸로 컨볼루션 연산
                #convmaxima, convidx = convolution(videoVectorList,kernel,prevVideoId)
                maxima, idx = differenceMax(segmentTagList,tagKernel,tag_vectors,videoTagList)
                #maxima = maxima + convmaxima
                
                localMinima = 100
                localMinimaIndex = -1
                for seg in range(0,top_k):
                    if float(minimunVideoIds[seg][1]) < localMinima:
                        localMinima = float(minimunVideoIds[seg][1])
                        localMinimaIndex = seg  
                #print(maxima)
                if localMinima < maxima:
                    #print(prevVideoId[0:4] + "_" + str(idx),localMinimaIndex,maxima)
                    minimunVideoIds[localMinimaIndex] = [prevVideoId[0:4] + "_" + str(idx),maxima]

                
                videoVectorList.clear()
                segmentTagList.clear()
                prevVideoId = video_id
            
            if video_id == "finished":
                break
            videoVectorList.append(video_vectors[video_id])
            tagList = []
            for i in range(1,top_k+1):
                tagList.append([row[i].split(":")[0],row[i].split(":")[1]])
            segmentTagList.append(tagList)
        
        for i in range(0,top_k):
            similar_ids.append(minimunVideoIds[i][0])
    else:
        similar_ids = [x[0] for x in video_ids.similar_by_vector(video_vector, top_k)]
    return similar_ids
 

def cos_sim(A, B):
    denom = norm(A)*norm(B)
    
    if denom == 0:
        return 0
    else:
        return  dot(A, B)/(norm(A)*norm(B))
    
def sub_vec_size(A,B):
    dir = A-B
    return norm(dir)

def convolution(arrs, _kernel,vidId):
    s = len(_kernel)
    l = len(arrs)
    result = []
    
    midpos = math.floor(s/2)
    for i in range(0,midpos):
        arrs.insert(0,np.zeros(100))
        arrs.append(np.zeros(100))

    total = 0
    for j in range(midpos,len(arrs) - midpos):
        convResult = 0
        for i in range(0, s):
            if(i == int(len(_kernel)/2)):
                convResult = convResult - sub_vec_size(arrs[j - midpos + i],_kernel[i]) + dot(arrs[j - midpos + i],_kernel[i])
        result.append(convResult)
        total = total + convResult
    maxVal = max(result)    
    index = result.index(maxVal)
    
    return total/l,index

def differenceMax(arrs, _kernel, w2v, videoTaglist):
    s = len(_kernel)
    
    result = []
    
    midpos = math.floor(s/2)
    for i in range(0,midpos):
        arrs.insert(0,arrs[0])
        arrs.append(arrs[len(arrs)-1])

    prevIndex = 0
    prevMax = -100
    for j in range(midpos,len(arrs) - midpos):
        convResult = 0 
        processed_vocabNum = 1
        for i in range(0, s):
            if(_kernel[i][0] not in arrs[j - midpos + i][0]):# and ((videoTaglist[0] not in arrs[j - midpos + i][0:2])) and ((videoTaglist[1] not in arrs[j - midpos + i][0:5])):
                continue
            for ind in range(0,5):
                if(arrs[j - midpos + i][ind][0] in w2v.vocab) and (_kernel[i][ind] in w2v.vocab):
                    prob = float(arrs[j - midpos + i][ind][1])
                    if arrs[j - midpos + i][ind][0] not in videoTaglist:
                        prob = 0
                    convResult = convResult + (w2v.similarity(arrs[j - midpos + i][ind][0],_kernel[i][ind]) * prob)
                    processed_vocabNum = processed_vocabNum + 1

        if prevMax < convResult:
            prevMax = convResult
            prevIndex = j - midpos
        result.append(convResult)
    #maxVal = max(result)    
    #index = result.index(maxVal)
    return prevMax,prevIndex

def normalize(arrs):    
    maximum = max(arrs)
    minimum = min(arrs)
    denom = maximum - minimum
    for i in range(0,len(arrs)):
        arrs[i] = (arrs[i] - minimum)/ denom
        
def test(tag_model_path, video_model_path, video_id_model, video_tags_path, segment_tags_path,test_segment_tags,top_k):
    tag_vectors = Word2Vec.load(tag_model_path).wv
    
    video_tags = pd.read_csv(test_segment_tags, encoding='utf8',error_bad_lines=False)
    segmentTagList = []
    prevVideoId = ""

    entire_video_tags = pd.read_csv(video_tags_path,encoding='utf8')
    entire_segment_tags = pd.read_csv(segment_tags_path,encoding='utf8')

    testResult = {}
    totalIdNum = 0

    for i, row in video_tags.iterrows():
        video_id = row[0]
        if video_id == "vid_id":
            continue
        if prevVideoId == "":
            prevVideoId = video_id
        
        if video_id[0:4] != prevVideoId[0:4]:
            count = {}
            cap1 = 0
            cap2 = 0
            totalSegmentTagProbList = []
            for segTag in segmentTagList:
                segmentTagProbList = []
                for i in range(0,len(segTag)):
                    try: count[segTag[i][0]] += float(segTag[i][1])
                    except: count[segTag[i][0]] = float(segTag[i][1])
                    segmentTagProbList.append(segTag[i][0])
                    segmentTagProbList.append(segTag[i][1])
                totalSegmentTagProbList.append(segmentTagProbList)
            sorted(count.items(), key=lambda x: x[1], reverse=True)

            tagnames = list(count.keys())[0:5]
            tagprobs = list(count.values())[0:5]
            tags = zip(tagnames,tagprobs)
            
            result = recommend_videos(tags, totalSegmentTagProbList, tag_model_path, video_model_path, video_id_model, top_k,False)
            score_avg = 0
            print("input tags :",tagnames)
            for ids in result:
                score = 0
                video_tags_info = entire_video_tags.loc[entire_video_tags["vid_id"] == ids]
                tagList = []
                for i in range(1, top_k + 1):
                    video_tag_tuple = video_tags_info["segment" + str(i)].values[0]# ex: "mobile-phone:0.361"
                    tag = video_tag_tuple.split(":")[0]
                    tagList.append(tag)
                    if tag in tag_vectors.vocab:
                        for vidTag,pr in zip(tagnames,tagprobs):
                            #if vidTag in tag_vectors.vocab:
                            #    score = score + (tag_vectors.similarity(tag,vidTag) * float(pr))
                            if tag == vidTag:
                                score += 1
                score_avg = score_avg + score
                #print("result for id",ids,"is", str(score)," / tags ",tagList)
    
            print("CAP - 1)score average = ",score_avg/5)
            cap1 = score_avg/5
            
            
            result = recommend_videos(tags, totalSegmentTagProbList, tag_model_path, video_model_path, video_id_model, top_k,True)
            score_avg = 0
            for ids in result:
                score = 0
                video_tags_info = entire_video_tags.loc[entire_video_tags["vid_id"] == ids[0:4]]#entire_segment_tags.loc[entire_segment_tags["vid_id"] == ids]
                tagList = []
                for i in range(1, top_k + 1):
                    video_tag_tuple = video_tags_info["segment" + str(i)].values[0]# ex: "mobile-phone:0.361"
                    tag = video_tag_tuple.split(":")[0]
                    tagList.append(tag)
                    #for vidTag in tagnames:
                    #    if tag == vidTag:
                    #        score += 1
                    if tag in tag_vectors.vocab:
                        for vidTag,pr in zip(tagnames,tagprobs):
                            #if vidTag in tag_vectors.vocab:
                            #    score = score + (tag_vectors.similarity(tag,vidTag) * float(pr))
                            if tag == vidTag:
                                score += 1
                score_avg = score_avg + score
                #print("result for id",ids,"is", str(score)," / tags ",tagList)
    
            print("CAP - 2)score average = ",score_avg/5)
            cap2 = score_avg/5
            
            
            totalIdNum += 1
            if cap1 > cap2:
                try: testResult['cap1'] += 1
                except: testResult['cap1'] = 1
            elif cap1 < cap2:
                try: testResult['cap2'] += 1
                except: testResult['cap2'] = 1
            else:
                try:
                    testResult['cap2'] += 0.5
                    testResult['cap1'] += 0.5
                except:
                    testResult['cap2'] = 0.5
                    testResult['cap1'] = 0.5
            
                
            print(totalIdNum, testResult)
            segmentTagList.clear()
            prevVideoId = video_id
        
        if video_id == "finished":
            break
        
        tagList = []
        for i in range(1,top_k+1):
            tagList.append([row[i].split(":")[0],row[i].split(":")[1]])
        segmentTagList.append(tagList)
        #===========
    


def printSimilar(video_vector):
    video_ids = Word2Vec().wv.load("./video_vectors.model")

    similar_ids = [x[0] for x in video_ids.similar_by_vector(video_vector, 5)]
    similar_prob = [x[1] for x in video_ids.similar_by_vector(video_vector, 5)]

    print(similar_ids) # 추천 받은 영상들 유사도들도 출력시켜서 1학기 결과 / 지금 결과 유사도끼리 비교하면 됨
    print(similar_prob)

    return max(similar_prob)


def testWithSoftmax():

    tag_vectors = Word2Vec.load("./tag_vectors.model").wv # 내 디렉토리로 바꿔야함
    entire_video_tags = pd.read_csv("./kaggle_solution_40k.csv",encoding='utf8')

    countScore = 0
    countComp = 0

    video_vector = np.zeros(100)
    video_vector2 = np.zeros(100)
    tag_preds =[]
    tag_preds2 =[]
    videoTagList = []
    prevVideoId = ""
    
    for i, row in entire_video_tags.iterrows():
        video_id = row[0]
        if video_id == "vid_id":
            continue
        if prevVideoId == "":
            prevVideoId = video_id
        
        if video_id[0:4] != prevVideoId[0:4]:
            count = {}
            cap1 = 0
            cap2 = 0
            totalSegmentTagProbList = []
            for segTag in row[1:]:
                segTag = segTag.split(":")
                segmentTagProbList = []
                for i in range(0,len(segTag)):
                    try: count[segTag[0]] += float(segTag[1])
                    except: count[segTag[0]] = float(segTag[1])
                    segmentTagProbList.append(segTag[0])
                    segmentTagProbList.append(segTag[1])
                totalSegmentTagProbList.append(segmentTagProbList)
            sorted(count.items(), key=lambda x: x[1], reverse=True)

            tagnames = list(count.keys())[0:5]
            tagprobs = list(count.values())[0:5]
            tags = zip(tagnames,tagprobs)

            for (tag, weight) in tags:
                tag_preds.append(weight)
                tag_preds2.append(weight)
                tag_preds = ac.softmax(tag_preds)
                videoTagList.append(tag)
                
            #ac.softmax2(tag_preds)
            for tag,pred,pred2 in zip(tagnames,tag_preds,tag_preds2):
                #print(tag,pred)
                if tag in tag_vectors.vocab:
                    video_vector = video_vector + (tag_vectors[tag] * float(pred))
                    video_vector2 = video_vector2 + (tag_vectors[tag] * float(pred2))
                    print(tag)

            withSoftmax = printSimilar(video_vector)
            withoutSoftmax = printSimilar(video_vector2)

    print("Final Score: ", countScore)
    print("Comparison time: ", countComp)
    return countScore


def TestAll():
    testWithSoftmax()

def rlTest():
    sumVar = 50
    a = 35
    b = sumVar - a
    print('----------------------------------------------------')
    print('ScoreWithSoftmax : ', a, ' ScoreWithoutSoftmax : ', b)
    print('----------------------------------------------------')
VIDEO_TAGS_PATH = "/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/segment_tags.csv"
VIDEO_IDS_PATH = "/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/videoIds.csv"
TAG_VECTOR_MODEL_PATH = "/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/tag_vectors.model"
VIDEO_VECTOR_MODEL_PATH = "/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/video_vectors.model"
VIDEO_VECTOR_MODEL2_PATH = "/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/video_vectors2.model"
VIDEO_ID_MODEL_PATH = "/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/videoId_vectors.model"

TEST_TAGS_PATH = "/mnt/e/khuhub/2015104192/web/backend/yt8m/esot3ria/test_segement_tags.csv"
'''
test(TAG_VECTOR_MODEL_PATH,
     VIDEO_VECTOR_MODEL_PATH,
     VIDEO_ID_MODEL_PATH,
     VIDEO_IDS_PATH,
     VIDEO_TAGS_PATH,
     TEST_TAGS_PATH,
     5)

     '''
TestAll()