윤영빈

면담보고서, model parameter adjusted

......@@ -407,7 +407,7 @@ class NetVLADModelLF(models.BaseModel):
random_frames = True
cluster_size = 64
hidden1_size = 1024
relu = False
relu = True
dimred = -1
gating = True
remove_diag = False
......
......@@ -75,7 +75,7 @@ if __name__ == "__main__":
flags.DEFINE_integer(
"num_gpu", 1, "The maximum number of GPU devices to use for training. "
"Flag only applies if GPUs are installed")
flags.DEFINE_integer("batch_size", 256,
flags.DEFINE_integer("batch_size", 128,
"How many examples to process per batch for training.")
flags.DEFINE_string("label_loss", "CrossEntropyLoss",
"Which loss function to use for training the model.")
......@@ -83,24 +83,24 @@ if __name__ == "__main__":
"regularization_penalty", 1.0,
"How much weight to give to the regularization loss (the label loss has "
"a weight of 1).")
flags.DEFINE_float("base_learning_rate", 0.01,
flags.DEFINE_float("base_learning_rate", 0.0006,
"Which learning rate to start with.")
flags.DEFINE_float(
"learning_rate_decay", 0.95,
"learning_rate_decay", 0.8,
"Learning rate decay factor to be applied every "
"learning_rate_decay_examples.")
flags.DEFINE_float(
"learning_rate_decay_examples", 4000000,
"learning_rate_decay_examples", 100,
"Multiply current learning rate by learning_rate_decay "
"every learning_rate_decay_examples.")
flags.DEFINE_integer(
"num_epochs", 100, "How many passes to make over the dataset before "
"num_epochs", 5, "How many passes to make over the dataset before "
"halting training.")
flags.DEFINE_integer(
"max_steps", None,
"The maximum number of iterations of the training loop.")
flags.DEFINE_integer(
"export_model_steps", 1,
"export_model_steps", 100,
"The period, in number of steps, with which the model "
"is exported for batch prediction.")
......