train.py 28.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary for training Tensorflow models on the YouTube-8M dataset."""

import json
import os
import time

import eval_util
import export_model
import losses
import frame_level_models
import video_level_models
import readers
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.python.lib.io import file_io
from tensorflow import app
from tensorflow import flags
from tensorflow import gfile
from tensorflow import logging
from tensorflow.python.client import device_lib
import utils

FLAGS = flags.FLAGS

if __name__ == "__main__":
  # Dataset flags.
  flags.DEFINE_string("train_dir", "F:/yt8mDataset/savedModel",
                      "The directory to save the model files in.")
  flags.DEFINE_string(
      "train_data_pattern", "",
      "File glob for the training dataset. If the files refer to Frame Level "
      "features (i.e. tensorflow.SequenceExample), then set --reader_type "
      "format. The (Sequence)Examples are expected to have 'rgb' byte array "
      "sequence feature as well as a 'labels' int64 context feature.")
  flags.DEFINE_string("feature_names", "mean_rgb", "Name of the feature "
                      "to use for training.")
  flags.DEFINE_string("feature_sizes", "1024", "Length of the feature vectors.")

  # Model flags.
  flags.DEFINE_bool(
      "frame_features", False,
      "If set, then --train_data_pattern must be frame-level features. "
      "Otherwise, --train_data_pattern must be aggregated video-level "
      "features. The model must also be set appropriately (i.e. to read 3D "
      "batches VS 4D batches.")
  flags.DEFINE_bool(
      "segment_labels", False,
      "If set, then --train_data_pattern must be frame-level features (but with"
      " segment_labels). Otherwise, --train_data_pattern must be aggregated "
      "video-level features. The model must also be set appropriately (i.e. to "
      "read 3D batches VS 4D batches.")
  flags.DEFINE_string(
      "model", "LogisticModel",
      "Which architecture to use for the model. Models are defined "
      "in models.py.")
  flags.DEFINE_bool(
      "start_new_model", False,
      "If set, this will not resume from a checkpoint and will instead create a"
      " new model instance.")

  # Training flags.
  flags.DEFINE_integer(
      "num_gpu", 1, "The maximum number of GPU devices to use for training. "
      "Flag only applies if GPUs are installed")
  flags.DEFINE_integer("batch_size", 16,
                       "How many examples to process per batch for training.")
  flags.DEFINE_string("label_loss", "CrossEntropyLoss",
                      "Which loss function to use for training the model.")
  flags.DEFINE_float(
      "regularization_penalty", 1.0,
      "How much weight to give to the regularization loss (the label loss has "
      "a weight of 1).")
  flags.DEFINE_float("base_learning_rate", 0.002,
                     "Which learning rate to start with.")
  flags.DEFINE_float(
      "learning_rate_decay", 0.8,
      "Learning rate decay factor to be applied every "
      "learning_rate_decay_examples.")
  flags.DEFINE_float(
      "learning_rate_decay_examples", 70,
      "Multiply current learning rate by learning_rate_decay "
      "every learning_rate_decay_examples.")
  flags.DEFINE_integer(
      "num_epochs", 100, "How many passes to make over the dataset before "
      "halting training.")
  flags.DEFINE_integer(
      "max_steps", 100,
      "The maximum number of iterations of the training loop.")
  flags.DEFINE_integer(
      "export_model_steps", 10,
      "The period, in number of steps, with which the model "
      "is exported for batch prediction.")

  # Other flags.
  flags.DEFINE_integer("num_readers", 8,
                       "How many threads to use for reading input files.")
  flags.DEFINE_string("optimizer", "AdamOptimizer",
                      "What optimizer class to use.")
  flags.DEFINE_float("clip_gradient_norm", 1.0, "Norm to clip gradients to.")
  flags.DEFINE_bool(
      "log_device_placement", False,
      "Whether to write the device on which every op will run into the "
      "logs on startup.")


def validate_class_name(flag_value, category, modules, expected_superclass):
  """Checks that the given string matches a class of the expected type.

  Args:
    flag_value: A string naming the class to instantiate.
    category: A string used further describe the class in error messages (e.g.
      'model', 'reader', 'loss').
    modules: A list of modules to search for the given class.
    expected_superclass: A class that the given class should inherit from.

  Raises:
    FlagsError: If the given class could not be found or if the first class
    found with that name doesn't inherit from the expected superclass.

  Returns:
    True if a class was found that matches the given constraints.
  """
  candidates = [getattr(module, flag_value, None) for module in modules]
  for candidate in candidates:
    if not candidate:
      continue
    if not issubclass(candidate, expected_superclass):
      raise flags.FlagsError(
          "%s '%s' doesn't inherit from %s." %
          (category, flag_value, expected_superclass.__name__))
    return True
  raise flags.FlagsError("Unable to find %s '%s'." % (category, flag_value))


def get_input_data_tensors(reader,
                           data_pattern,
                           batch_size=1000,
                           num_epochs=None,
                           num_readers=1):
  """Creates the section of the graph which reads the training data.

  Args:
    reader: A class which parses the training data.
    data_pattern: A 'glob' style path to the data files.
    batch_size: How many examples to process at a time.
    num_epochs: How many passes to make over the training data. Set to 'None' to
      run indefinitely.
    num_readers: How many I/O threads to use.

  Returns:
    A tuple containing the features tensor, labels tensor, and optionally a
    tensor containing the number of frames per video. The exact dimensions
    depend on the reader being used.

  Raises:
    IOError: If no files matching the given pattern were found.
  """
  logging.info("Using batch size of " + str(batch_size) + " for training.")
  with tf.name_scope("train_input"):
    files = gfile.Glob(data_pattern)
    if not files:
      raise IOError("Unable to find training files. data_pattern='" +
                    data_pattern + "'.")
    logging.info("Number of training files: %s.", str(len(files)))
    filename_queue = tf.train.string_input_producer(files,
                                                    num_epochs=num_epochs,
                                                    shuffle=True)
    training_data = [
        reader.prepare_reader(filename_queue) for _ in range(num_readers)
    ]

    return tf.train.shuffle_batch_join(training_data,
                                       batch_size=batch_size,
                                       capacity=batch_size * 5,
                                       min_after_dequeue=batch_size,
                                       allow_smaller_final_batch=True,
                                       enqueue_many=True)


def find_class_by_name(name, modules):
  """Searches the provided modules for the named class and returns it."""
  modules = [getattr(module, name, None) for module in modules]
  return next(a for a in modules if a)


def build_graph(reader,
                model,
                train_data_pattern,
                label_loss_fn=losses.CrossEntropyLoss(),
                batch_size=1000,
                base_learning_rate=0.01,
                learning_rate_decay_examples=1000000,
                learning_rate_decay=0.95,
                optimizer_class=tf.train.AdamOptimizer,
                clip_gradient_norm=1.0,
                regularization_penalty=1,
                num_readers=1,
                num_epochs=None):
  """Creates the Tensorflow graph.

  This will only be called once in the life of
  a training model, because after the graph is created the model will be
  restored from a meta graph file rather than being recreated.

  Args:
    reader: The data file reader. It should inherit from BaseReader.
    model: The core model (e.g. logistic or neural net). It should inherit from
      BaseModel.
    train_data_pattern: glob path to the training data files.
    label_loss_fn: What kind of loss to apply to the model. It should inherit
      from BaseLoss.
    batch_size: How many examples to process at a time.
    base_learning_rate: What learning rate to initialize the optimizer with.
    optimizer_class: Which optimization algorithm to use.
    clip_gradient_norm: Magnitude of the gradient to clip to.
    regularization_penalty: How much weight to give the regularization loss
      compared to the label loss.
    num_readers: How many threads to use for I/O operations.
    num_epochs: How many passes to make over the data. 'None' means an unlimited
      number of passes.
  """

  global_step = tf.Variable(0, trainable=False, name="global_step")

  local_device_protos = device_lib.list_local_devices()
  gpus = [x.name for x in local_device_protos if x.device_type == "GPU"]
  gpus = gpus[:FLAGS.num_gpu]
  num_gpus = len(gpus)

  if num_gpus > 0:
    logging.info("Using the following GPUs to train: " + str(gpus))
    num_towers = num_gpus
    device_string = "/gpu:%d"
  else:
    logging.info("No GPUs found. Training on CPU.")
    num_towers = 1
    device_string = "/cpu:%d"

  learning_rate = tf.train.exponential_decay(base_learning_rate,
                                             global_step * batch_size *
                                             num_towers,
                                             learning_rate_decay_examples,
                                             learning_rate_decay,
                                             staircase=True)
  tf.summary.scalar("learning_rate", learning_rate)

  optimizer = optimizer_class(learning_rate)
  input_data_dict = (get_input_data_tensors(reader,
                                            train_data_pattern,
                                            batch_size=batch_size * num_towers,
                                            num_readers=num_readers,
                                            num_epochs=num_epochs))
  model_input_raw = input_data_dict["video_matrix"]
  labels_batch = input_data_dict["labels"]
  num_frames = input_data_dict["num_frames"]
  print("model_input_shape, ", model_input_raw.shape)
  tf.summary.histogram("model/input_raw", model_input_raw)

  feature_dim = len(model_input_raw.get_shape()) - 1

  model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

  tower_inputs = tf.split(model_input, num_towers)
  tower_labels = tf.split(labels_batch, num_towers)
  tower_num_frames = tf.split(num_frames, num_towers)
  tower_gradients = []
  tower_predictions = []
  tower_label_losses = []
  tower_reg_losses = []
  for i in range(num_towers):
    # For some reason these 'with' statements can't be combined onto the same
    # line. They have to be nested.
    with tf.device(device_string % i):
      with (tf.variable_scope(("tower"), reuse=True if i > 0 else None)):
        with (slim.arg_scope([slim.model_variable, slim.variable],
                             device="/cpu:0" if num_gpus != 1 else "/gpu:0")):
          result = model.create_model(tower_inputs[i],
                                      num_frames=tower_num_frames[i],
                                      vocab_size=reader.num_classes,
                                      labels=tower_labels[i])
          for variable in slim.get_model_variables():
            tf.summary.histogram(variable.op.name, variable)

          predictions = result["predictions"]
          tower_predictions.append(predictions)

          if "loss" in result.keys():
            label_loss = result["loss"]
          else:
            label_loss = label_loss_fn.calculate_loss(predictions,
                                                      tower_labels[i])

          if "regularization_loss" in result.keys():
            reg_loss = result["regularization_loss"]
          else:
            reg_loss = tf.constant(0.0)

          reg_losses = tf.losses.get_regularization_losses()
          if reg_losses:
            reg_loss += tf.add_n(reg_losses)

          tower_reg_losses.append(reg_loss)

          # Adds update_ops (e.g., moving average updates in batch normalization) as
          # a dependency to the train_op.
          update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
          if "update_ops" in result.keys():
            update_ops += result["update_ops"]
          if update_ops:
            with tf.control_dependencies(update_ops):
              barrier = tf.no_op(name="gradient_barrier")
              with tf.control_dependencies([barrier]):
                label_loss = tf.identity(label_loss)

          tower_label_losses.append(label_loss)

          # Incorporate the L2 weight penalties etc.
          final_loss = regularization_penalty * reg_loss + label_loss
          gradients = optimizer.compute_gradients(
              final_loss, colocate_gradients_with_ops=False)
          tower_gradients.append(gradients)
  label_loss = tf.reduce_mean(tf.stack(tower_label_losses))
  tf.summary.scalar("label_loss", label_loss)
  if regularization_penalty != 0:
    reg_loss = tf.reduce_mean(tf.stack(tower_reg_losses))
    tf.summary.scalar("reg_loss", reg_loss)
  merged_gradients = utils.combine_gradients(tower_gradients)

  if clip_gradient_norm > 0:
    with tf.name_scope("clip_grads"):
      merged_gradients = utils.clip_gradient_norms(merged_gradients,
                                                   clip_gradient_norm)

  train_op = optimizer.apply_gradients(merged_gradients,
                                       global_step=global_step)

  tf.add_to_collection("global_step", global_step)
  tf.add_to_collection("loss", label_loss)
  tf.add_to_collection("predictions", tf.concat(tower_predictions, 0))
  tf.add_to_collection("input_batch_raw", model_input_raw)
  tf.add_to_collection("input_batch", model_input)
  tf.add_to_collection("num_frames", num_frames)
  tf.add_to_collection("labels", tf.cast(labels_batch, tf.float32))
  tf.add_to_collection("train_op", train_op)


class Trainer(object):
  """A Trainer to train a Tensorflow graph."""

  def __init__(self,
               cluster,
               task,
               train_dir,
               model,
               reader,
               model_exporter,
               log_device_placement=True,
               max_steps=None,
               export_model_steps=1000):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed. None
        otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    self.config = tf.ConfigProto(allow_soft_placement=True,
                                 log_device_placement=log_device_placement)
    self.config.gpu_options.allow_growth = True
    self.model = model
    self.reader = reader
    self.model_exporter = model_exporter
    self.max_steps = max_steps
    self.max_steps_reached = False
    self.export_model_steps = export_model_steps
    self.last_model_export_step = 0


#     if self.is_master and self.task.index > 0:
#       raise StandardError("%s: Only one replica of master expected",
#                           task_as_string(self.task))

  def run(self, start_new_model=False):
    """Performs training on the currently defined Tensorflow graph.

    Returns:
      A tuple of the training Hit@1 and the training PERR.
    """

    print("=========================")
    print("start now!!!!!")

    if self.is_master and start_new_model:
      self.remove_training_directory(self.train_dir)

    if not os.path.exists(self.train_dir):
      os.makedirs(self.train_dir)

    model_flags_dict = {
        "model": FLAGS.model,
        "feature_sizes": FLAGS.feature_sizes,
        "feature_names": FLAGS.feature_names,
        "frame_features": FLAGS.frame_features,
        "label_loss": FLAGS.label_loss,
    }
    flags_json_path = os.path.join(FLAGS.train_dir, "model_flags.json")
    if file_io.file_exists(flags_json_path):
      existing_flags = json.load(file_io.FileIO(flags_json_path, mode="r"))
      if existing_flags != model_flags_dict:
        logging.error(
            "Model flags do not match existing file %s. Please "
            "delete the file, change --train_dir, or pass flag "
            "--start_new_model", flags_json_path)
        logging.error("Ran model with flags: %s", str(model_flags_dict))
        logging.error("Previously ran with flags: %s", str(existing_flags))
        exit(1)
    else:
      # Write the file.
      with file_io.FileIO(flags_json_path, mode="w") as fout:
        fout.write(json.dumps(model_flags_dict))

    target, device_fn = self.start_server_if_distributed()

    meta_filename = self.get_meta_filename(start_new_model, self.train_dir)

    with tf.Graph().as_default() as graph:
      if meta_filename:
        saver = self.recover_model(meta_filename)

      with tf.device(device_fn):
        if not meta_filename:
          saver = self.build_model(self.model, self.reader)

        global_step = tf.get_collection("global_step")[0]
        loss = tf.get_collection("loss")[0]
        predictions = tf.get_collection("predictions")[0]
        labels = tf.get_collection("labels")[0]
        train_op = tf.get_collection("train_op")[0]
        init_op = tf.global_variables_initializer()

    sv = tf.train.Supervisor(graph,
                             logdir=self.train_dir,
                             init_op=init_op,
                             is_chief=self.is_master,
                             global_step=global_step,
                             save_model_secs=15 * 60,
                             save_summaries_secs=120,
                             saver=saver)

    
    logging.info("%s: Starting managed session.", task_as_string(self.task))
    with sv.managed_session(target, config=self.config) as sess:
      try:
        logging.info("%s: Entering training loop.", task_as_string(self.task))
        while (not sv.should_stop()) and (not self.max_steps_reached):
          batch_start_time = time.time()
          _, global_step_val, loss_val, predictions_val, labels_val = sess.run(
              [train_op, global_step, loss, predictions, labels])
          seconds_per_batch = time.time() - batch_start_time
          examples_per_second = labels_val.shape[0] / seconds_per_batch          
          print("CURRENT STEP IS " + str(global_step_val))
          if self.max_steps and self.max_steps <= global_step_val:
            self.max_steps_reached = True

          if self.is_master and global_step_val % 10 == 0 and self.train_dir:
            eval_start_time = time.time()
            hit_at_one = eval_util.calculate_hit_at_one(predictions_val,
                                                        labels_val)
            perr = eval_util.calculate_precision_at_equal_recall_rate(
                predictions_val, labels_val)
            gap = eval_util.calculate_gap(predictions_val, labels_val)
            eval_end_time = time.time()
            eval_time = eval_end_time - eval_start_time

            logging.info("training step " + str(global_step_val) + " | Loss: " +
                         ("%.2f" % loss_val) + " Examples/sec: " +
                         ("%.2f" % examples_per_second) + " | Hit@1: " +
                         ("%.2f" % hit_at_one) + " PERR: " + ("%.2f" % perr) +
                         " GAP: " + ("%.2f" % gap))

            sv.summary_writer.add_summary(
                utils.MakeSummary("model/Training_Hit@1", hit_at_one),
                global_step_val)
            sv.summary_writer.add_summary(
                utils.MakeSummary("model/Training_Perr", perr), global_step_val)
            sv.summary_writer.add_summary(
                utils.MakeSummary("model/Training_GAP", gap), global_step_val)
            sv.summary_writer.add_summary(
                utils.MakeSummary("global_step/Examples/Second",
                                  examples_per_second), global_step_val)
            sv.summary_writer.flush()

            # Exporting the model every x steps
            time_to_export = ((self.last_model_export_step == 0) or
                              (global_step_val - self.last_model_export_step >=
                               self.export_model_steps))

            if self.is_master and time_to_export:
              self.export_model(global_step_val, sv.saver, sv.save_path, sess)
              self.last_model_export_step = global_step_val
          else:
            logging.info("training step " + str(global_step_val) + " | Loss: " +
                         ("%.2f" % loss_val) + " Examples/sec: " +
                         ("%.2f" % examples_per_second))
      except tf.errors.OutOfRangeError:
        logging.info("%s: Done training -- epoch limit reached.",
                     task_as_string(self.task))

    logging.info("%s: Exited training loop.", task_as_string(self.task))
    sv.Stop()

  def export_model(self, global_step_val, saver, save_path, session):

    # If the model has already been exported at this step, return.
    if global_step_val == self.last_model_export_step:
      return

    saver.save(session, save_path, global_step_val)

  def start_server_if_distributed(self):
    """Starts a server if the execution is distributed."""

    if self.cluster:
      logging.info("%s: Starting trainer within cluster %s.",
                   task_as_string(self.task), self.cluster.as_dict())
      server = start_server(self.cluster, self.task)
      target = server.target
      device_fn = tf.train.replica_device_setter(
          ps_device="/job:ps",
          worker_device="/job:%s/task:%d" % (self.task.type, self.task.index),
          cluster=self.cluster)
    else:
      target = ""
      device_fn = ""
    return (target, device_fn)

  def remove_training_directory(self, train_dir):
    """Removes the training directory."""
    try:
      logging.info("%s: Removing existing train directory.",
                   task_as_string(self.task))
      gfile.DeleteRecursively(train_dir)
    except:
      logging.error(
          "%s: Failed to delete directory " + train_dir +
          " when starting a new model. Please delete it manually and" +
          " try again.", task_as_string(self.task))

  def get_meta_filename(self, start_new_model, train_dir):
    if start_new_model:
      logging.info("%s: Flag 'start_new_model' is set. Building a new model.",
                   task_as_string(self.task))
      return None

    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if not latest_checkpoint:
      logging.info("%s: No checkpoint file found. Building a new model.",
                   task_as_string(self.task))
      return None

    meta_filename = latest_checkpoint + ".meta"
    if not gfile.Exists(meta_filename):
      logging.info("%s: No meta graph file found. Building a new model.",
                   task_as_string(self.task))
      return None
    else:
      return meta_filename

  def recover_model(self, meta_filename):
    logging.info("%s: Restoring from meta graph file %s",
                 task_as_string(self.task), meta_filename)
    return tf.train.import_meta_graph(meta_filename)

  def build_model(self, model, reader):
    """Find the model and build the graph."""

    label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
    optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train])

    build_graph(reader=reader,
                model=model,
                optimizer_class=optimizer_class,
                clip_gradient_norm=FLAGS.clip_gradient_norm,
                train_data_pattern=FLAGS.train_data_pattern,
                label_loss_fn=label_loss_fn,
                base_learning_rate=FLAGS.base_learning_rate,
                learning_rate_decay=FLAGS.learning_rate_decay,
                learning_rate_decay_examples=FLAGS.learning_rate_decay_examples,
                regularization_penalty=FLAGS.regularization_penalty,
                num_readers=FLAGS.num_readers,
                batch_size=FLAGS.batch_size,
                num_epochs=FLAGS.num_epochs)

    return tf.train.Saver(max_to_keep=0, keep_checkpoint_every_n_hours=0.25)


def get_reader():
  # Convert feature_names and feature_sizes to lists of values.
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes,
                                            segment_labels=FLAGS.segment_labels)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  return reader


class ParameterServer(object):
  """A parameter server to serve variables in a distributed execution."""

  def __init__(self, cluster, task):
    """Creates a ParameterServer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed. None
        otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task

  def run(self):
    """Starts the parameter server."""
    print("start now=================")
    logging.info("%s: Starting parameter server within cluster %s.",
                 task_as_string(self.task), self.cluster.as_dict())
    server = start_server(self.cluster, self.task)
    server.join()


def start_server(cluster, task):
  """Creates a Server.

  Args:
    cluster: A tf.train.ClusterSpec if the execution is distributed. None
      otherwise.
    task: A TaskSpec describing the job type and the task index.
  """

  if not task.type:
    raise ValueError("%s: The task type must be specified." %
                     task_as_string(task))
  if task.index is None:
    raise ValueError("%s: The task index must be specified." %
                     task_as_string(task))

  # Create and start a server.
  return tf.train.Server(tf.train.ClusterSpec(cluster),
                         protocol="grpc",
                         job_name=task.type,
                         task_index=task.index)


def task_as_string(task):
  return "/job:%s/task:%s" % (task.type, task.index)


def main(unused_argv):
  # Load the environment.
  env = json.loads(os.environ.get("TF_CONFIG", "{}"))

  # Load the cluster data from the environment.
  cluster_data = env.get("cluster", None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None

  # Load the task data from the environment.
  task_data = env.get("task", None) or {"type": "master", "index": 0}
  task = type("TaskSpec", (object,), task_data)

  # Logging the version.
  logging.set_verbosity(tf.logging.INFO)
  logging.info("%s: Tensorflow version: %s.", task_as_string(task),
               tf.__version__)

  # Dispatch to a master, a worker, or a parameter server.
  if not cluster or task.type == "master" or task.type == "worker":
    model = find_class_by_name(FLAGS.model,
                               [frame_level_models, video_level_models])()

    reader = get_reader()

    model_exporter = export_model.ModelExporter(
        frame_features=FLAGS.frame_features, model=model, reader=reader)

    Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
            FLAGS.log_device_placement, FLAGS.max_steps,
            FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)

  elif task.type == "ps":
    ParameterServer(cluster, task).run()
  else:
    raise ValueError("%s: Invalid task_type: %s." %
                     (task_as_string(task), task.type))


if __name__ == "__main__":
  app.run()