frame_level_models.py
12.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright 2017 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains a collection of models which operate on variable-length sequences.
"""
import math
import models
import video_level_models
import tensorflow as tf
import model_utils as utils
import tensorflow.contrib.slim as slim
from tensorflow import flags
import tensorflow as tf
import scipy.io as sio
import numpy as np
import weights_rwa
FLAGS = flags.FLAGS
flags.DEFINE_integer("iterations", 30, "Number of frames per batch for DBoF.")
flags.DEFINE_bool("dbof_add_batch_norm", True,
"Adds batch normalization to the DBoF model.")
flags.DEFINE_bool(
"sample_random_frames", True,
"If true samples random frames (for frame level models). If false, a random"
"sequence of frames is sampled instead.")
flags.DEFINE_integer("dbof_cluster_size", 8192,
"Number of units in the DBoF cluster layer.")
flags.DEFINE_integer("dbof_hidden_size", 1024,
"Number of units in the DBoF hidden layer.")
flags.DEFINE_string(
"dbof_pooling_method", "max",
"The pooling method used in the DBoF cluster layer. "
"Choices are 'average' and 'max'.")
flags.DEFINE_string(
"dbof_activation", "sigmoid",
"The nonlinear activation method for cluster and hidden dense layer, e.g., "
"sigmoid, relu6, etc.")
flags.DEFINE_string(
"video_level_classifier_model", "MoeModel",
"Some Frame-Level models can be decomposed into a "
"generalized pooling operation followed by a "
"classifier layer")
flags.DEFINE_integer("lstm_cells", 512, "Number of LSTM cells.")
flags.DEFINE_integer("lstm_layers", 4, "Number of LSTM layers.")
flags.DEFINE_integer("input_type", 3,
"input type.")
flags.DEFINE_integer("conv_length", 3, "Receptive field of cnn.")
flags.DEFINE_integer("conv_hidden", 256, "Number of cnn hidden.")
flags.DEFINE_integer("conv_hidden1", 1024, "Number of cnn hidden.")
flags.DEFINE_integer("conv_hidden2", 1024, "Number of cnn hidden.")
flags.DEFINE_integer("conv_hidden3", 1024, "Number of cnn hidden.")
flags.DEFINE_integer("stride", 10, "Number of stride for short rnn.")
class FrameLevelLogisticModel(models.BaseModel):
def create_model(self, model_input, vocab_size, num_frames, **unused_params):
num_frames = tf.cast(tf.expand_dims(num_frames, 1), tf.float32)
feature_size = model_input.get_shape().as_list()[2]
denominators = tf.reshape(tf.tile(num_frames, [1, feature_size]),
[-1, feature_size])
avg_pooled = tf.reduce_sum(model_input, axis=[1]) / denominators
output = slim.fully_connected(avg_pooled,
vocab_size,
activation_fn=tf.nn.sigmoid,
weights_regularizer=slim.l2_regularizer(1e-8))
return {"predictions": output}
class NetVLAD_NonLocal_types():
def __init__(self, feature_size,max_frames,cluster_size, add_batch_norm, is_training):
self.feature_size = feature_size
self.max_frames = max_frames
self.is_training = is_training
self.add_batch_norm = add_batch_norm
self.cluster_size = cluster_size
def forward(self,reshaped_input):
cluster_weights = tf.get_variable("cluster_weights",
[int(self.feature_size), int(self.cluster_size)],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(self.feature_size)))
tf.summary.histogram("cluster_weights", cluster_weights)
activation = tf.matmul(reshaped_input, cluster_weights)
if self.add_batch_norm:
activation = slim.batch_norm(
activation,
center=True,
scale=True,
is_training=self.is_training,
scope="cluster_bn")
else:
cluster_biases = tf.get_variable("cluster_biases",
[cluster_size],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(self.feature_size)))
tf.summary.histogram("cluster_biases", cluster_biases)
activation += cluster_biases
activation = tf.nn.softmax(activation)
tf.summary.histogram("cluster_output", activation)
activation = tf.reshape(activation, [-1, int(self.max_frames), int(self.cluster_size)])
a_sum = tf.reduce_sum(activation,-2,keep_dims=True)
cluster_weights2 = tf.get_variable("cluster_weights2",
[1,int(self.feature_size), int(self.cluster_size)],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(self.feature_size)))
a = tf.multiply(a_sum,cluster_weights2)
activation = tf.transpose(activation,perm=[0,2,1])
reshaped_input = tf.reshape(reshaped_input,[-1,self.max_frames,self.feature_size])
vlad = tf.matmul(activation,reshaped_input)
vlad = tf.transpose(vlad,perm=[0,2,1])
vlad = tf.subtract(vlad,a)
vlad = tf.transpose(vlad,perm=[0,2,1])
vlad = tf.reshape(vlad, [-1, self.feature_size])
vlad_softmax = self.embedgaussian_relation(vlad, 1/float(64))
nonlocal_g = tf.get_variable("nonlocal_g",
[int(self.feature_size), int(self.cluster_size)],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(self.feature_size)))
nonlocal_out = tf.get_variable("nonlocal_out",
[int(self.cluster_size), int(self.feature_size)],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(self.cluster_size)))
vlad_g = tf.matmul(vlad, nonlocal_g)
vlad_g = tf.reshape(vlad_g, [-1, int(self.cluster_size),int(self.cluster_size)])
vlad_g = tf.matmul(vlad_softmax, vlad_g)
vlad_g = tf.reshape(vlad_g, [-1, int(self.cluster_size)])
vlad_g = tf.matmul(vlad_g, nonlocal_out)
vlad_g = tf.reshape(vlad_g, [-1, int(self.cluster_size), int(self.feature_size)])
vlad = tf.reshape(vlad, [-1, int(self.cluster_size), int(self.feature_size)])
vlad = vlad + vlad_g
vlad = tf.transpose(vlad,perm=[0,2,1])
vlad = tf.nn.l2_normalize(vlad,1) # [b,f,c]
vlad = tf.reshape(vlad,[-1,int(int(self.cluster_size*self.feature_size))])
vlad = tf.nn.l2_normalize(vlad,1)
return vlad
def embedgaussian_relation(self, input_, temp=1/float(32)):
nonlocal_theta = tf.get_variable("nonlocal_theta",
[int(self.feature_size), int(self.cluster_size)],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(self.feature_size)))
nonlocal_phi = tf.get_variable("nonlocal_phi",
[int(self.feature_size), int(self.cluster_size)],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(self.feature_size)))
vlad_theta = tf.matmul(input_, nonlocal_theta)
vlad_phi = tf.matmul(input_, nonlocal_phi)
vlad_theta = tf.reshape(vlad_theta, [-1, int(self.cluster_size), int(self.cluster_size)])
vlad_phi = tf.reshape(vlad_phi, [-1, int(self.cluster_size), int(self.cluster_size)])
vlad_softmax = tf.nn.softmax(temp * tf.matmul(vlad_theta, tf.transpose(vlad_phi,perm=[0,2,1])))
return vlad_softmax
class NetVLADModelLF(models.BaseModel):
def create_model(self,
model_input,
vocab_size,
num_frames,
iterations=None,
add_batch_norm=None,
sample_random_frames=None,
cluster_size=None,
hidden_size=None,
is_training=True,
**unused_params):
iterations = 300
add_batch_norm = True
random_frames = True
cluster_size = 64
hidden1_size = 1024
relu = True
dimred = -1
gating = True
remove_diag = False
num_frames = tf.cast(tf.expand_dims(num_frames, 1), tf.float32)
if random_frames:
model_input = utils.SampleRandomFrames(model_input, num_frames,
iterations)
else:
model_input = utils.SampleRandomSequence(model_input, num_frames,
iterations)
max_frames = model_input.get_shape().as_list()[1]
feature_size = model_input.get_shape().as_list()[2]
reshaped_input = tf.reshape(model_input, [-1, feature_size])
video_NetVLAD = NetVLAD_NonLocal_types(1024,max_frames,cluster_size, add_batch_norm, is_training)
audio_NetVLAD = NetVLAD_NonLocal_types(128,max_frames,cluster_size/2, add_batch_norm, is_training)
if add_batch_norm:# and not lightvlad:
reshaped_input = slim.batch_norm(
reshaped_input,
center=True,
scale=True,
is_training=is_training,
scope="input_bn")
with tf.variable_scope("video_VLAD"):
vlad_video = video_NetVLAD.forward(reshaped_input[:,0:1024])
with tf.variable_scope("audio_VLAD"):
vlad_audio = audio_NetVLAD.forward(reshaped_input[:,1024:])
vlad = tf.concat([vlad_video, vlad_audio],1)
vlad_dim = vlad.get_shape().as_list()[1]
hidden1_weights = tf.get_variable("hidden1_weights",
[vlad_dim, hidden1_size],
initializer=tf.random_normal_initializer(stddev=1 / math.sqrt(cluster_size)))
activation = tf.matmul(vlad, hidden1_weights)
if add_batch_norm and relu:
activation = slim.batch_norm(
activation,
center=True,
scale=True,
is_training=is_training,
scope="hidden1_bn")
else:
hidden1_biases = tf.get_variable("hidden1_biases",
[hidden1_size],
initializer = tf.random_normal_initializer(stddev=0.01))
tf.summary.histogram("hidden1_biases", hidden1_biases)
activation += hidden1_biases
if relu:
activation = tf.nn.relu6(activation)
if gating:
gating_weights = tf.get_variable("gating_weights_2",
[hidden1_size, hidden1_size],
initializer = tf.random_normal_initializer(stddev=1 / math.sqrt(hidden1_size)))
gates = tf.matmul(activation, gating_weights)
if remove_diag:
#removes diagonals coefficients
diagonals = tf.matrix_diag_part(gating_weights)
gates = gates - tf.multiply(diagonals,activation)
if add_batch_norm:
gates = slim.batch_norm(
gates,
center=True,
scale=True,
is_training=is_training,
scope="gating_bn")
else:
gating_biases = tf.get_variable("gating_biases",
[cluster_size],
initializer = tf.random_normal(stddev=1 / math.sqrt(feature_size)))
gates += gating_biases
gates = tf.sigmoid(gates)
activation = tf.multiply(activation,gates)
aggregated_model = getattr(video_level_models,
FLAGS.video_level_classifier_model)
return aggregated_model().create_model(
model_input=activation,
vocab_size=vocab_size,
is_training=is_training,
**unused_params)
class LstmModel(models.BaseModel):
def create_model(self, model_input, vocab_size, num_frames, **unused_params):
lstm_size = FLAGS.lstm_cells
number_of_layers = FLAGS.lstm_layers
stacked_lstm = tf.contrib.rnn.MultiRNNCell(
[
tf.contrib.rnn.BasicLSTMCell(
lstm_size, forget_bias=1.0)
for _ in range(number_of_layers)
])
loss = 0.0
outputs, state = tf.nn.dynamic_rnn(stacked_lstm, model_input,
sequence_length=num_frames,
dtype=tf.float32)
aggregated_model = getattr(video_level_models,
FLAGS.video_level_classifier_model)
return aggregated_model().create_model(
model_input=state[-1].h,
vocab_size=vocab_size,
**unused_params)