acxxel.h
53 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
//===--- acxxel.h - The Acxxel API ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \mainpage Welcome to Acxxel
///
/// \section Introduction
///
/// \b Acxxel is a library providing a modern C++ interface for managing
/// accelerator devices such as GPUs. Acxxel handles operations such as
/// allocating device memory, copying data to and from device memory, creating
/// and managing device events, and creating and managing device streams.
///
/// \subsection ExampleUsage Example Usage
///
/// Below is some example code to show you the basics of Acxxel.
///
/// \snippet examples/simple_example.cu Example simple saxpy
///
/// The above code could be compiled with either `clang` or `nvcc`. Compare this
/// with the standard CUDA runtime library code to perform these same
/// operations:
///
/// \snippet examples/simple_example.cu Example CUDA simple saxpy
///
/// Notice that the CUDA runtime calls are not type safe. For example, if you
/// change the type of the inputs from `float` to `double`, you have to remember
/// to change the size calculation. If you forget, you will get garbage output
/// data. In the Acxxel example, you would instead get a helpful compile-time
/// error that wouldn't let you forget to change the types inside the function.
///
/// The Acxxel example also automatically uses the right sizes for memory
/// copies, so you don't have to worry about computing the sizes yourself.
///
/// The CUDA runtime interface makes it easy to get the source and destination
/// mixed up in a call to `cudaMemcpy`. If you pass the pointers in the wrong
/// order or pass the wrong enum value for the direction parameter, you won't
/// find out until runtime (if you remembered to check the error return value of
/// `cudaMemcpy`). In Acxxel there is no verbose direction enum because the name
/// of the function says which way the copy goes, and mixing up the order of
/// source and destination is a compile-time error.
///
/// The CUDA runtime interface makes you clean up your device memory by calling
/// `cudaFree` for each call to `cudaMalloc`. In Acxxel, you don't have to worry
/// about that because the memory cleans itself up when it goes out of scope.
///
/// \subsection AcxxelFeatures Acxxel Features
///
/// Acxxel provides many nice features compared to the C-like interfaces, such
/// as the CUDA runtime API, which are normally used for the host code in
/// applications using accelerators.
///
/// \subsubsection TypeSafety Type safety
///
/// Most errors involving mixing up types, sources and destinations, or host and
/// device memory result in helpful compile-time errors.
///
/// \subsubsection NoCopySizes No need to specify sizes for memory copies
///
/// When the arguments to copy functions such as acxxel::Platform::copyHToD know
/// their sizes (e.g std::array, std::vector, and C-style arrays), there is no
/// need to specify the amount of memory to copy; Acxxel will just copy the
/// whole thing. Of course the copy functions also have overloads that accept an
/// element count for those times when you don't want to copy everything.
///
/// \subsubsection MemoryCleanup Automatic memory cleanup
///
/// Device memory allocated with acxxel::Platform::mallocD is automatically
/// freed when it goes out of scope.
///
/// \subsubsection NiceErrorHandling Error handling
///
/// Operations that would normally return values return acxxel::Expected obects
/// in Acxxel. These `Expected` objects contain either a value or an error
/// message explaining why the value is not present. This reminds the user to
/// check for errors, but also allows them to opt-out easily be calling the
/// acxxel::Expected::getValue or acxxel::Expected::takeValue methods. The
/// `getValue` method returns a reference to the value, leaving the `Expected`
/// instance as the value owner, whereas the `takeValue` method moves the value
/// out of the `Expected` object and transfers ownership to the caller.
///
/// \subsubsection PlatformIndependence Platform independence
///
/// Acxxel code works not only with CUDA, but also with any other platform that
/// can support its interface. For example, Acxxel supports OpenCL. The
/// acxxel::getCUDAPlatform and acxxel::getOpenCLPlatform functions are provided
/// to allow easy access to the built-in CUDA and OpenCL platforms. Other
/// platforms can be created by implementing the acxxel::Platform interface, and
/// instances of those classes can be created directly.
///
/// \subsubsection CUDAInterop Seamless interoperation with CUDA
///
/// Acxxel functions as a modern replacement for the standard CUDA runtime
/// library and interoperates seamlessly with kernel calls.
#ifndef ACXXEL_ACXXEL_H
#define ACXXEL_ACXXEL_H
#include "span.h"
#include "status.h"
#include <functional>
#include <memory>
#include <string>
#include <type_traits>
#if defined(__clang__) || defined(__GNUC__)
#define ACXXEL_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
#else
#define ACXXEL_WARN_UNUSED_RESULT
#endif
/// This type is declared here to provide smooth interoperability with the CUDA
/// triple-chevron kernel launch syntax.
///
/// A acxxel::Stream instance will be implicitly convertible to a CUstream_st*,
/// which is the type expected for the stream argument in the triple-chevron
/// CUDA kernel launch. This means that a acxxel::Stream can be passed without
/// explicit casting as the fourth argument to a triple-chevron CUDA kernel
/// launch.
struct CUstream_st; // NOLINT
namespace acxxel {
class Event;
class Platform;
class Stream;
template <typename T> class DeviceMemory;
template <typename T> class DeviceMemorySpan;
template <typename T> class AsyncHostMemory;
template <typename T> class AsyncHostMemorySpan;
template <typename T> class OwnedAsyncHostMemory;
/// Function type used to destroy opaque handles given out by the platform.
using HandleDestructor = void (*)(void *);
/// Functor type for enqueuing host callbacks on a stream.
using StreamCallback = std::function<void(Stream &, const Status &)>;
struct KernelLaunchDimensions {
// Intentionally implicit
KernelLaunchDimensions(unsigned int BlockX = 1, unsigned int BlockY = 1,
unsigned int BlockZ = 1, unsigned int GridX = 1,
unsigned int GridY = 1, unsigned int GridZ = 1)
: BlockX(BlockX), BlockY(BlockY), BlockZ(BlockZ), GridX(GridX),
GridY(GridY), GridZ(GridZ) {}
unsigned int BlockX;
unsigned int BlockY;
unsigned int BlockZ;
unsigned int GridX;
unsigned int GridY;
unsigned int GridZ;
};
/// Logs a warning message.
void logWarning(const std::string &Message);
/// Gets a pointer to the standard CUDA platform.
Expected<Platform *> getCUDAPlatform();
/// Gets a pointer to the standard OpenCL platform.
Expected<Platform *> getOpenCLPlatform();
/// A function that can be executed on the device.
///
/// A Kernel is created from a Program by calling Program::createKernel, and a
/// kernel is enqueued into a Stream by calling Stream::asyncKernelLaunch.
class Kernel {
public:
Kernel(const Kernel &) = delete;
Kernel &operator=(const Kernel &) = delete;
Kernel(Kernel &&) noexcept;
Kernel &operator=(Kernel &&That) noexcept;
~Kernel() = default;
private:
// Only a Program can make a kernel.
friend class Program;
Kernel(Platform *APlatform, void *AHandle, HandleDestructor Destructor)
: ThePlatform(APlatform), TheHandle(AHandle, Destructor) {}
// Let stream get raw handle for kernel launches.
friend class Stream;
Platform *ThePlatform;
std::unique_ptr<void, HandleDestructor> TheHandle;
};
/// A program loaded on a device.
///
/// A program can be created by calling Platform::createProgramFromSource, and a
/// Kernel can be created from a program by running Program::createKernel.
///
/// A program can contain any number of kernels, and a program only needs to be
/// loaded once in order to use all its kernels.
class Program {
public:
Program(const Program &) = delete;
Program &operator=(const Program &) = delete;
Program(Program &&) noexcept;
Program &operator=(Program &&That) noexcept;
~Program() = default;
Expected<Kernel> createKernel(const std::string &Name);
private:
// Only a platform can make a program.
friend class Platform;
Program(Platform *APlatform, void *AHandle, HandleDestructor Destructor)
: ThePlatform(APlatform), TheHandle(AHandle, Destructor) {}
Platform *ThePlatform;
std::unique_ptr<void, HandleDestructor> TheHandle;
};
/// A stream of computation.
///
/// All operations enqueued on a Stream are serialized, but operations enqueued
/// on different Streams may run concurrently.
///
/// Each Stream is associated with a specific, fixed device.
class Stream {
public:
Stream(const Stream &) = delete;
Stream &operator=(const Stream &) = delete;
Stream(Stream &&) noexcept;
Stream &operator=(Stream &&) noexcept;
~Stream() = default;
/// Gets the index of the device on which this Stream operates.
int getDeviceIndex() { return TheDeviceIndex; }
/// Blocks the host until the Stream is done executing all previously enqueued
/// work.
///
/// Returns a Status for any errors emitted by the asynchronous work on the
/// Stream, or by any error in the synchronization process itself. Clears the
/// Status state of the stream.
Status sync() ACXXEL_WARN_UNUSED_RESULT;
/// Makes all future work submitted to this stream wait until the event
/// reports completion.
///
/// This is useful because the event argument may be recorded on a different
/// stream, so this method allows for synchronization between streams without
/// synchronizing all streams.
///
/// Returns a Status for any errors emitted by the asynchronous work on the
/// Stream, or by any error in the synchronization process itself. Clears the
/// Status state of the stream.
Status waitOnEvent(Event &Event) ACXXEL_WARN_UNUSED_RESULT;
/// Adds a host callback function to the stream.
///
/// The callback will be called on the host after all previously enqueued work
/// on the stream is complete, and no work enqueued after the callback will
/// begin until after the callback has finished.
Stream &addCallback(std::function<void(Stream &, const Status &)> Callback);
/// \name Asynchronous device memory copies.
///
/// These functions enqueue asynchronous memory copy operations into the
/// stream. Only async host memory is allowed for host arguments to these
/// functions. Async host memory can be created from normal host memory by
/// registering it with Platform::registerHostMem. AsyncHostMemory can also be
/// allocated directly by calling Platform::newAsyncHostMem.
///
/// For all these functions, DeviceSrcTy must be convertible to
/// DeviceMemorySpan<const T>, DeviceDstTy must be convertible to
/// DeviceMemorySpan<T>, HostSrcTy must be convertible to
/// AsyncHostMemorySpan<const T> and HostDstTy must be convertible to
/// AsyncHostMemorySpan<T>. Additionally, the T types must match for the
/// destination and source.
/// \{
/// Copies from device memory to device memory.
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &asyncCopyDToD(DeviceSrcTy &&DeviceSrc, DeviceDstTy &&DeviceDst);
/// Copies from device memory to device memory with a given element count.
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &asyncCopyDToD(DeviceSrcTy &&DeviceSrc, DeviceDstTy &&DeviceDst,
ptrdiff_t ElementCount);
/// Copies from device memory to host memory.
template <typename DeviceSrcTy, typename HostDstTy>
Stream &asyncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst);
/// Copies from device memory to host memory with a given element count.
template <typename DeviceSrcTy, typename HostDstTy>
Stream &asyncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst,
ptrdiff_t ElementCount);
/// Copies from host memory to device memory.
template <typename HostSrcTy, typename DeviceDstTy>
Stream &asyncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &&DeviceDst);
/// Copies from host memory to device memory with a given element count.
template <typename HostSrcTy, typename DeviceDstTy>
Stream &asyncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &DeviceDst,
ptrdiff_t ElementCount);
/// \}
/// \name Stream-synchronous device memory copies
///
/// These functions block the host until the copy and all previously-enqueued
/// work on the stream has completed.
///
/// For all these functions, DeviceSrcTy must be convertible to
/// DeviceMemorySpan<const T>, DeviceDstTy must be convertible to
/// DeviceMemorySpan<T>, HostSrcTy must be convertible to Span<const T> and
/// HostDstTy must be convertible to Span<T>. Additionally, the T types must
/// match for the destination and source.
/// \{
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &syncCopyDToD(DeviceSrcTy &&DeviceSrc, DeviceDstTy &&DeviceDst);
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &syncCopyDToD(DeviceSrcTy &&DeviceSrc, DeviceDstTy &&DeviceDst,
ptrdiff_t ElementCount);
template <typename DeviceSrcTy, typename HostDstTy>
Stream &syncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst);
template <typename DeviceSrcTy, typename HostDstTy>
Stream &syncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst,
ptrdiff_t ElementCount);
template <typename HostSrcTy, typename DeviceDstTy>
Stream &syncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &&DeviceDst);
template <typename HostSrcTy, typename DeviceDstTy>
Stream &syncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &DeviceDst,
ptrdiff_t ElementCount);
/// \}
/// Enqueues an operation in the stream to set the bytes of a given device
/// memory region to a given value.
///
/// DeviceDstTy must be convertible to DeviceMemorySpan<T> for non-const T.
template <typename DeviceDstTy>
Stream &asyncMemsetD(DeviceDstTy &&DeviceDst, char ByteValue);
/// Enqueues a kernel launch operation on this stream.
Stream &asyncKernelLaunch(const Kernel &TheKernel,
KernelLaunchDimensions LaunchDimensions,
Span<void *> Arguments, Span<size_t> ArgumentSizes,
size_t SharedMemoryBytes = 0);
/// Enqueues an event in the stream.
Stream &enqueueEvent(Event &E);
// Allows implicit conversion to (CUstream_st *). This makes triple-chevron
// kernel calls look nicer because you can just pass a acxxel::Stream
// directly.
operator CUstream_st *() {
return static_cast<CUstream_st *>(TheHandle.get());
}
/// Gets the current status for the Stream and clears the Stream's status.
Status takeStatus() ACXXEL_WARN_UNUSED_RESULT {
Status OldStatus = TheStatus;
TheStatus = Status();
return OldStatus;
}
private:
// Only a platform can make a stream.
friend class Platform;
Stream(Platform *APlatform, int DeviceIndex, void *AHandle,
HandleDestructor Destructor)
: ThePlatform(APlatform), TheDeviceIndex(DeviceIndex),
TheHandle(AHandle, Destructor) {}
const Status &setStatus(const Status &S) {
if (S.isError() && !TheStatus.isError()) {
TheStatus = S;
}
return S;
}
Status takeStatusOr(const Status &S) {
if (TheStatus.isError()) {
Status OldStatus = TheStatus;
TheStatus = Status();
return OldStatus;
}
return S;
}
// The platform that created the stream.
Platform *ThePlatform;
// The index of the device on which the stream operates.
int TheDeviceIndex;
// A handle to the platform-specific handle implementation.
std::unique_ptr<void, HandleDestructor> TheHandle;
Status TheStatus;
};
/// A user-created event on a device.
///
/// This is useful for setting synchronization points in a Stream. The host can
/// synchronize with a Stream without using events, but that requires all the
/// work in the Stream to be finished in order for the host to be notified.
/// Events provide more flexibility by allowing the host to be notified when a
/// single Event in the Stream is finished, rather than all the work in the
/// Stream.
class Event {
public:
Event(const Event &) = delete;
Event &operator=(const Event &) = delete;
Event(Event &&) noexcept;
Event &operator=(Event &&That) noexcept;
~Event() = default;
/// Checks to see if the event is done running.
bool isDone();
/// Blocks the host until the event is done.
Status sync();
/// Gets the time elapsed between the previous event's execution and this
/// event's execution.
Expected<float> getSecondsSince(const Event &Previous);
private:
// Only a platform can make an event.
friend class Platform;
Event(Platform *APlatform, int DeviceIndex, void *AHandle,
HandleDestructor Destructor)
: ThePlatform(APlatform), TheDeviceIndex(DeviceIndex),
TheHandle(AHandle, Destructor) {}
Platform *ThePlatform;
// The index of the device on which the event can be enqueued.
int TheDeviceIndex;
std::unique_ptr<void, HandleDestructor> TheHandle;
};
/// An accelerator platform.
///
/// This is the base class for all platforms such as CUDA and OpenCL. It
/// contains many virtual methods that must be overridden by each platform
/// implementation.
///
/// It also has some template wrapper functions that take care of type checking
/// and then forward their arguments on to raw virtual functions that are
/// implemented by each specific platform.
class Platform {
public:
virtual ~Platform(){};
/// Gets the number of devices for this platform in this system.
virtual Expected<int> getDeviceCount() = 0;
/// Creates a stream on the given device for the platform.
virtual Expected<Stream> createStream(int DeviceIndex = 0) = 0;
/// Creates an event on the given device for the platform.
virtual Expected<Event> createEvent(int DeviceIndex = 0) = 0;
/// Allocates owned device memory.
///
/// \warning This function only allocates space in device memory, it does not
/// call the constructor of T.
template <typename T>
Expected<DeviceMemory<T>> mallocD(ptrdiff_t ElementCount,
int DeviceIndex = 0) {
Expected<void *> MaybePointer =
rawMallocD(ElementCount * sizeof(T), DeviceIndex);
if (MaybePointer.isError())
return MaybePointer.getError();
return DeviceMemory<T>(this, MaybePointer.getValue(), ElementCount,
this->getDeviceMemoryHandleDestructor());
}
/// Creates a DeviceMemorySpan for a device symbol.
///
/// This function is present to support __device__ variables in CUDA. Given a
/// pointer to a __device__ variable, this function returns a DeviceMemorySpan
/// referencing the device memory that stores that __device__ variable.
template <typename ElementType>
Expected<DeviceMemorySpan<ElementType>> getSymbolMemory(ElementType *Symbol,
int DeviceIndex = 0) {
Expected<void *> MaybeAddress =
rawGetDeviceSymbolAddress(Symbol, DeviceIndex);
if (MaybeAddress.isError())
return MaybeAddress.getError();
ElementType *Address = static_cast<ElementType *>(MaybeAddress.getValue());
Expected<ptrdiff_t> MaybeSize = rawGetDeviceSymbolSize(Symbol, DeviceIndex);
if (MaybeSize.isError())
return MaybeSize.getError();
ptrdiff_t Size = MaybeSize.getValue();
return DeviceMemorySpan<ElementType>(this, Address,
Size / sizeof(ElementType), 0);
}
/// \name Host memory registration functions.
/// \{
template <typename T>
Expected<AsyncHostMemory<const T>> registerHostMem(Span<const T> Memory) {
Status S = rawRegisterHostMem(Memory.data(), Memory.size() * sizeof(T));
if (S.isError())
return S;
return AsyncHostMemory<const T>(
Memory.data(), Memory.size(),
this->getUnregisterHostMemoryHandleDestructor());
}
template <typename T>
Expected<AsyncHostMemory<T>> registerHostMem(Span<T> Memory) {
Status S = rawRegisterHostMem(Memory.data(), Memory.size() * sizeof(T));
if (S.isError())
return S;
return AsyncHostMemory<T>(Memory.data(), Memory.size(),
this->getUnregisterHostMemoryHandleDestructor());
}
template <typename T, size_t N>
Expected<AsyncHostMemory<T>> registerHostMem(T (&Array)[N]) {
Span<T> Span(Array);
Status S = rawRegisterHostMem(Span.data(), Span.size() * sizeof(T));
if (S.isError())
return S;
return AsyncHostMemory<T>(Span.data(), Span.size(),
this->getUnregisterHostMemoryHandleDestructor());
}
/// Registers memory stored in a container with a data() member function and
/// which can be converted to a Span<T*>.
template <typename Container>
auto registerHostMem(Container &Cont) -> Expected<AsyncHostMemory<
typename std::remove_reference<decltype(*Cont.data())>::type>> {
using ValueType =
typename std::remove_reference<decltype(*Cont.data())>::type;
Span<ValueType> Span(Cont);
Status S = rawRegisterHostMem(Span.data(), Span.size() * sizeof(ValueType));
if (S.isError())
return S;
return AsyncHostMemory<ValueType>(
Span.data(), Span.size(),
this->getUnregisterHostMemoryHandleDestructor());
}
/// Allocates an owned, registered array of objects on the host.
///
/// Default constructs each element in the resulting array.
template <typename T>
Expected<OwnedAsyncHostMemory<T>> newAsyncHostMem(ptrdiff_t ElementCount) {
Expected<void *> MaybeMemory =
rawMallocRegisteredH(ElementCount * sizeof(T));
if (MaybeMemory.isError())
return MaybeMemory.getError();
T *Memory = static_cast<T *>(MaybeMemory.getValue());
for (ptrdiff_t I = 0; I < ElementCount; ++I)
new (Memory + I) T;
return OwnedAsyncHostMemory<T>(Memory, ElementCount,
this->getFreeHostMemoryHandleDestructor());
}
/// \}
virtual Expected<Program> createProgramFromSource(Span<const char> Source,
int DeviceIndex = 0) = 0;
protected:
friend class Stream;
friend class Event;
friend class Program;
template <typename T> friend class DeviceMemorySpan;
void *getStreamHandle(Stream &Stream) { return Stream.TheHandle.get(); }
void *getEventHandle(Event &Event) { return Event.TheHandle.get(); }
// Pass along access to Stream constructor to subclasses.
Stream constructStream(Platform *APlatform, int DeviceIndex, void *AHandle,
HandleDestructor Destructor) {
return Stream(APlatform, DeviceIndex, AHandle, Destructor);
}
// Pass along access to Event constructor to subclasses.
Event constructEvent(Platform *APlatform, int DeviceIndex, void *AHandle,
HandleDestructor Destructor) {
return Event(APlatform, DeviceIndex, AHandle, Destructor);
}
// Pass along access to Program constructor to subclasses.
Program constructProgram(Platform *APlatform, void *AHandle,
HandleDestructor Destructor) {
return Program(APlatform, AHandle, Destructor);
}
virtual Status streamSync(void *Stream) = 0;
virtual Status streamWaitOnEvent(void *Stream, void *Event) = 0;
virtual Status enqueueEvent(void *Event, void *Stream) = 0;
virtual bool eventIsDone(void *Event) = 0;
virtual Status eventSync(void *Event) = 0;
virtual Expected<float> getSecondsBetweenEvents(void *StartEvent,
void *EndEvent) = 0;
virtual Expected<void *> rawMallocD(ptrdiff_t ByteCount, int DeviceIndex) = 0;
virtual HandleDestructor getDeviceMemoryHandleDestructor() = 0;
virtual void *getDeviceMemorySpanHandle(void *BaseHandle, size_t ByteSize,
size_t ByteOffset) = 0;
virtual void rawDestroyDeviceMemorySpanHandle(void *Handle) = 0;
virtual Expected<void *> rawGetDeviceSymbolAddress(const void *Symbol,
int DeviceIndex) = 0;
virtual Expected<ptrdiff_t> rawGetDeviceSymbolSize(const void *Symbol,
int DeviceIndex) = 0;
virtual Status rawRegisterHostMem(const void *Memory,
ptrdiff_t ByteCount) = 0;
virtual HandleDestructor getUnregisterHostMemoryHandleDestructor() = 0;
virtual Expected<void *> rawMallocRegisteredH(ptrdiff_t ByteCount) = 0;
virtual HandleDestructor getFreeHostMemoryHandleDestructor() = 0;
virtual Status asyncCopyDToD(const void *DeviceSrc,
ptrdiff_t DeviceSrcByteOffset, void *DeviceDst,
ptrdiff_t DeviceDstByteOffset,
ptrdiff_t ByteCount, void *Stream) = 0;
virtual Status asyncCopyDToH(const void *DeviceSrc,
ptrdiff_t DeviceSrcByteOffset, void *HostDst,
ptrdiff_t ByteCount, void *Stream) = 0;
virtual Status asyncCopyHToD(const void *HostSrc, void *DeviceDst,
ptrdiff_t DeviceDstByteOffset,
ptrdiff_t ByteCount, void *Stream) = 0;
virtual Status asyncMemsetD(void *DeviceDst, ptrdiff_t ByteOffset,
ptrdiff_t ByteCount, char ByteValue,
void *Stream) = 0;
virtual Status addStreamCallback(Stream &Stream, StreamCallback Callback) = 0;
virtual Expected<void *> rawCreateKernel(void *Program,
const std::string &Name) = 0;
virtual HandleDestructor getKernelHandleDestructor() = 0;
virtual Status rawEnqueueKernelLaunch(void *Stream, void *Kernel,
KernelLaunchDimensions LaunchDimensions,
Span<void *> Arguments,
Span<size_t> ArgumentSizes,
size_t SharedMemoryBytes) = 0;
};
// Implementation of templated Stream functions.
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &Stream::asyncCopyDToD(DeviceSrcTy &&DeviceSrc,
DeviceDstTy &&DeviceDst) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
static_assert(std::is_same<SrcElementTy, DstElementTy>::value,
"asyncCopyDToD cannot copy between arrays of different types");
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (DeviceSrcSpan.size() != DeviceDstSpan.size()) {
setStatus(Status("asyncCopyDToD source element count " +
std::to_string(DeviceSrcSpan.size()) +
" does not equal destination element count " +
std::to_string(DeviceDstSpan.size())));
return *this;
}
setStatus(ThePlatform->asyncCopyDToD(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
DeviceDstSpan.baseHandle(), DeviceDstSpan.byte_offset(),
DeviceSrcSpan.byte_size(), TheHandle.get()));
return *this;
}
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &Stream::asyncCopyDToD(DeviceSrcTy &&DeviceSrc, DeviceDstTy &&DeviceDst,
ptrdiff_t ElementCount) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
static_assert(std::is_same<SrcElementTy, DstElementTy>::value,
"asyncCopyDToD cannot copy between arrays of different types");
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (DeviceSrcSpan.size() < ElementCount) {
setStatus(Status("asyncCopyDToD source element count " +
std::to_string(DeviceSrcSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (DeviceDstSpan.size() < ElementCount) {
setStatus(Status("asyncCopyDToD destination element count " +
std::to_string(DeviceDst.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
setStatus(ThePlatform->asyncCopyDToD(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
DeviceDstSpan.baseHandle(), DeviceDstSpan.byte_offset(),
ElementCount * sizeof(SrcElementTy), TheHandle.get()));
return *this;
}
template <typename DeviceSrcTy, typename HostDstTy>
Stream &Stream::asyncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
AsyncHostMemorySpan<SrcElementTy> HostDstSpan(HostDst);
if (DeviceSrcSpan.size() != HostDstSpan.size()) {
setStatus(Status("asyncCopyDToH source element count " +
std::to_string(DeviceSrcSpan.size()) +
" does not equal destination element count " +
std::to_string(HostDstSpan.size())));
return *this;
}
setStatus(ThePlatform->asyncCopyDToH(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
HostDstSpan.data(), DeviceSrcSpan.byte_size(), TheHandle.get()));
return *this;
}
template <typename DeviceSrcTy, typename HostDstTy>
Stream &Stream::asyncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst,
ptrdiff_t ElementCount) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
AsyncHostMemorySpan<SrcElementTy> HostDstSpan(HostDst);
if (DeviceSrcSpan.size() < ElementCount) {
setStatus(Status("asyncCopyDToH source element count " +
std::to_string(DeviceSrcSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (HostDstSpan.size() < ElementCount) {
setStatus(Status("asyncCopyDToH destination element count " +
std::to_string(HostDstSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
setStatus(ThePlatform->asyncCopyDToH(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
HostDstSpan.data(), ElementCount * sizeof(SrcElementTy),
TheHandle.get()));
return *this;
}
template <typename HostSrcTy, typename DeviceDstTy>
Stream &Stream::asyncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &&DeviceDst) {
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
AsyncHostMemorySpan<const DstElementTy> HostSrcSpan(HostSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (HostSrcSpan.size() != DeviceDstSpan.size()) {
setStatus(Status("asyncCopyHToD source element count " +
std::to_string(HostSrcSpan.size()) +
" does not equal destination element count " +
std::to_string(DeviceDstSpan.size())));
return *this;
}
setStatus(ThePlatform->asyncCopyHToD(
HostSrcSpan.data(), DeviceDstSpan.baseHandle(),
DeviceDstSpan.byte_offset(), HostSrcSpan.byte_size(), TheHandle.get()));
return *this;
}
template <typename HostSrcTy, typename DeviceDstTy>
Stream &Stream::asyncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &DeviceDst,
ptrdiff_t ElementCount) {
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
AsyncHostMemorySpan<const DstElementTy> HostSrcSpan(HostSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (HostSrcSpan.size() < ElementCount) {
setStatus(Status("copyHToD source element count " +
std::to_string(HostSrcSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (DeviceDstSpan.size() < ElementCount) {
setStatus(Status("copyHToD destination element count " +
std::to_string(DeviceDstSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
setStatus(ThePlatform->asyncCopyHToD(
HostSrcSpan.data(), DeviceDstSpan.baseHandle(),
DeviceDstSpan.byte_offset(), ElementCount * sizeof(DstElementTy),
TheHandle.get()));
return *this;
}
template <typename DeviceDstTy>
Stream &Stream::asyncMemsetD(DeviceDstTy &&DeviceDst, char ByteValue) {
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
setStatus(ThePlatform->asyncMemsetD(
DeviceDstSpan.baseHandle(), DeviceDstSpan.byte_offset(),
DeviceDstSpan.byte_size(), ByteValue, TheHandle.get()));
return *this;
}
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &Stream::syncCopyDToD(DeviceSrcTy &&DeviceSrc, DeviceDstTy &&DeviceDst) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
static_assert(std::is_same<SrcElementTy, DstElementTy>::value,
"copyDToD cannot copy between arrays of different types");
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (DeviceSrcSpan.size() != DeviceDstSpan.size()) {
setStatus(Status("copyDToD source element count " +
std::to_string(DeviceSrcSpan.size()) +
" does not equal destination element count " +
std::to_string(DeviceDstSpan.size())));
return *this;
}
if (setStatus(ThePlatform->asyncCopyDToD(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
DeviceDstSpan.baseHandle(), DeviceDstSpan.byte_offset(),
DeviceSrcSpan.byte_size(), TheHandle.get()))
.isError()) {
return *this;
}
setStatus(sync());
return *this;
}
template <typename DeviceSrcTy, typename DeviceDstTy>
Stream &Stream::syncCopyDToD(DeviceSrcTy &&DeviceSrc, DeviceDstTy &&DeviceDst,
ptrdiff_t ElementCount) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
static_assert(std::is_same<SrcElementTy, DstElementTy>::value,
"copyDToD cannot copy between arrays of different types");
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (DeviceSrcSpan.size() < ElementCount) {
setStatus(Status("copyDToD source element count " +
std::to_string(DeviceSrcSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (DeviceDstSpan.size() < ElementCount) {
setStatus(Status("copyDToD destination element count " +
std::to_string(DeviceDst.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (setStatus(ThePlatform->asyncCopyDToD(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
DeviceDstSpan.baseHandle(), DeviceDstSpan.byte_offset(),
ElementCount * sizeof(SrcElementTy), TheHandle.get()))
.isError()) {
return *this;
}
setStatus(sync());
return *this;
}
template <typename DeviceSrcTy, typename HostDstTy>
Stream &Stream::syncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
Span<SrcElementTy> HostDstSpan(HostDst);
if (DeviceSrcSpan.size() != HostDstSpan.size()) {
setStatus(Status("copyDToH source element count " +
std::to_string(DeviceSrcSpan.size()) +
" does not equal destination element count " +
std::to_string(HostDstSpan.size())));
return *this;
}
if (setStatus(ThePlatform->asyncCopyDToH(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
HostDstSpan.data(), DeviceSrcSpan.byte_size(),
TheHandle.get()))
.isError()) {
return *this;
}
setStatus(sync());
return *this;
}
template <typename DeviceSrcTy, typename HostDstTy>
Stream &Stream::syncCopyDToH(DeviceSrcTy &&DeviceSrc, HostDstTy &&HostDst,
ptrdiff_t ElementCount) {
using SrcElementTy =
typename std::remove_reference<DeviceSrcTy>::type::value_type;
DeviceMemorySpan<const SrcElementTy> DeviceSrcSpan(DeviceSrc);
Span<SrcElementTy> HostDstSpan(HostDst);
if (DeviceSrcSpan.size() < ElementCount) {
setStatus(Status("copyDToH source element count " +
std::to_string(DeviceSrcSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (HostDstSpan.size() < ElementCount) {
setStatus(Status("copyDToH destination element count " +
std::to_string(HostDstSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (setStatus(ThePlatform->asyncCopyDToH(
DeviceSrcSpan.baseHandle(), DeviceSrcSpan.byte_offset(),
HostDstSpan.data(), ElementCount * sizeof(SrcElementTy),
TheHandle.get()))
.isError()) {
return *this;
}
setStatus(sync());
return *this;
}
template <typename HostSrcTy, typename DeviceDstTy>
Stream &Stream::syncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &&DeviceDst) {
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
Span<const DstElementTy> HostSrcSpan(HostSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (HostSrcSpan.size() != DeviceDstSpan.size()) {
setStatus(Status("copyHToD source element count " +
std::to_string(HostSrcSpan.size()) +
" does not equal destination element count " +
std::to_string(DeviceDstSpan.size())));
return *this;
}
if (setStatus(ThePlatform->asyncCopyHToD(
HostSrcSpan.data(), DeviceDstSpan.baseHandle(),
DeviceDstSpan.byte_offset(), DeviceDstSpan.byte_size(),
TheHandle.get()))
.isError()) {
return *this;
}
setStatus(sync());
return *this;
}
template <typename HostSrcTy, typename DeviceDstTy>
Stream &Stream::syncCopyHToD(HostSrcTy &&HostSrc, DeviceDstTy &DeviceDst,
ptrdiff_t ElementCount) {
using DstElementTy =
typename std::remove_reference<DeviceDstTy>::type::value_type;
Span<const DstElementTy> HostSrcSpan(HostSrc);
DeviceMemorySpan<DstElementTy> DeviceDstSpan(DeviceDst);
if (HostSrcSpan.size() < ElementCount) {
setStatus(Status("copyHToD source element count " +
std::to_string(HostSrcSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (DeviceDstSpan.size() < ElementCount) {
setStatus(Status("copyHToD destination element count " +
std::to_string(DeviceDstSpan.size()) +
" is less than requested element count " +
std::to_string(ElementCount)));
return *this;
}
if (setStatus(ThePlatform->asyncCopyHToD(
HostSrcSpan.data(), DeviceDstSpan.baseHandle(),
DeviceDstSpan.byte_offset(),
ElementCount * sizeof(DstElementTy), TheHandle.get()))
.isError()) {
return *this;
}
setStatus(sync());
return *this;
}
/// Owned device memory.
///
/// Device memory that frees itself when it goes out of scope.
template <typename ElementType> class DeviceMemory {
public:
using element_type = ElementType;
using index_type = std::ptrdiff_t;
using value_type = typename std::remove_const<element_type>::type;
DeviceMemory(const DeviceMemory &) = delete;
DeviceMemory &operator=(const DeviceMemory &) = delete;
DeviceMemory(DeviceMemory &&) noexcept;
DeviceMemory &operator=(DeviceMemory &&) noexcept;
~DeviceMemory() = default;
/// Gets the raw base handle for the underlying platform implementation.
void *handle() const { return ThePointer.get(); }
index_type length() const { return TheSize; }
index_type size() const { return TheSize; }
index_type byte_size() const { // NOLINT
return TheSize * sizeof(element_type);
}
bool empty() const { return TheSize == 0; }
// These conversion operators are useful for making triple-chevron kernel
// launches more concise.
operator element_type *() {
return static_cast<element_type *>(ThePointer.get());
}
operator const element_type *() const { return ThePointer.get(); }
/// Converts a const object to a DeviceMemorySpan of const elements.
DeviceMemorySpan<const element_type> asSpan() const {
return DeviceMemorySpan<const element_type>(
ThePlatform, static_cast<const element_type *>(ThePointer.get()),
TheSize, 0);
}
/// Converts an object to a DeviceMemorySpan.
DeviceMemorySpan<element_type> asSpan() {
return DeviceMemorySpan<element_type>(
ThePlatform, static_cast<element_type *>(ThePointer.get()), TheSize, 0);
}
private:
friend class Platform;
template <typename T> friend class DeviceMemorySpan;
DeviceMemory(Platform *ThePlatform, void *Pointer, index_type ElementCount,
HandleDestructor Destructor)
: ThePlatform(ThePlatform), ThePointer(Pointer, Destructor),
TheSize(ElementCount) {}
Platform *ThePlatform;
std::unique_ptr<void, HandleDestructor> ThePointer;
ptrdiff_t TheSize;
};
template <typename T>
DeviceMemory<T>::DeviceMemory(DeviceMemory &&) noexcept = default;
template <typename T>
DeviceMemory<T> &DeviceMemory<T>::operator=(DeviceMemory &&) noexcept = default;
/// View into device memory.
///
/// Like a Span, but for device memory rather than host memory.
template <typename ElementType> class DeviceMemorySpan {
public:
/// \name constants and types
/// \{
using element_type = ElementType;
using index_type = std::ptrdiff_t;
using pointer = element_type *;
using reference = element_type &;
using iterator = element_type *;
using const_iterator = const element_type *;
using value_type = typename std::remove_const<element_type>::type;
/// \}
DeviceMemorySpan()
: ThePlatform(nullptr), TheHandle(nullptr), TheSize(0), TheOffset(0),
TheSpanHandle(nullptr) {}
// Intentionally implicit.
template <typename OtherElementType>
DeviceMemorySpan(DeviceMemorySpan<OtherElementType> &ASpan)
: ThePlatform(ASpan.ThePlatform),
TheHandle(static_cast<pointer>(ASpan.baseHandle())),
TheSize(ASpan.size()), TheOffset(ASpan.offset()),
TheSpanHandle(nullptr) {}
// Intentionally implicit.
template <typename OtherElementType>
DeviceMemorySpan(DeviceMemorySpan<OtherElementType> &&ASpan)
: ThePlatform(ASpan.ThePlatform),
TheHandle(static_cast<pointer>(ASpan.baseHandle())),
TheSize(ASpan.size()), TheOffset(ASpan.offset()),
TheSpanHandle(nullptr) {}
// Intentionally implicit.
template <typename OtherElementType>
DeviceMemorySpan(DeviceMemory<OtherElementType> &Memory)
: ThePlatform(Memory.ThePlatform),
TheHandle(static_cast<value_type *>(Memory.handle())),
TheSize(Memory.size()), TheOffset(0), TheSpanHandle(nullptr) {}
~DeviceMemorySpan() {
if (TheSpanHandle) {
ThePlatform->rawDestroyDeviceMemorySpanHandle(
const_cast<value_type *>(TheSpanHandle));
}
}
/// \name observers
/// \{
index_type length() const { return TheSize; }
index_type size() const { return TheSize; }
index_type byte_size() const { // NOLINT
return TheSize * sizeof(element_type);
}
index_type offset() const { return TheOffset; }
index_type byte_offset() const { // NOLINT
return TheOffset * sizeof(element_type);
}
bool empty() const { return TheSize == 0; }
/// \}
void *baseHandle() const {
return static_cast<void *>(const_cast<value_type *>(TheHandle));
}
/// Casts to a host memory pointer.
///
/// This is only guaranteed to make sense for the CUDA platform, where device
/// pointers can be stored and manipulated much like host pointers. This makes
/// it easy to do triple-chevron kernel launches in CUDA because
/// DeviceMemorySpan values can be passed to parameters expecting regular
/// pointers.
///
/// If the CUDA platform is using unified memory, it may also be possible to
/// dereference this pointer on the host.
///
/// For platforms other than CUDA, this may return a garbage pointer.
operator element_type *() const {
if (!TheSpanHandle)
TheSpanHandle = ThePlatform->getDeviceMemorySpanHandle(
TheHandle, TheSize * sizeof(element_type),
TheOffset * sizeof(element_type));
return TheSpanHandle;
}
DeviceMemorySpan<element_type> first(index_type Count) const {
bool Valid = Count >= 0 && Count <= TheSize;
if (!Valid)
std::terminate();
return DeviceMemorySpan<element_type>(ThePlatform, TheHandle, Count,
TheOffset);
}
DeviceMemorySpan<element_type> last(index_type Count) const {
bool Valid = Count >= 0 && Count <= TheSize;
if (!Valid)
std::terminate();
return DeviceMemorySpan<element_type>(ThePlatform, TheHandle, Count,
TheOffset + TheSize - Count);
}
DeviceMemorySpan<element_type>
subspan(index_type Offset, index_type Count = dynamic_extent) const {
bool Valid =
(Offset == 0 || (Offset > 0 && Offset <= TheSize)) &&
(Count == dynamic_extent || (Count >= 0 && Offset + Count <= TheSize));
if (!Valid)
std::terminate();
return DeviceMemorySpan<element_type>(ThePlatform, TheHandle, Count,
TheOffset + Offset);
}
private:
template <typename T> friend class DeviceMemory;
template <typename T> friend class DeviceMemorySpan;
friend class Platform;
DeviceMemorySpan(Platform *ThePlatform, pointer AHandle, index_type Size,
index_type Offset)
: ThePlatform(ThePlatform), TheHandle(AHandle), TheSize(Size),
TheOffset(Offset), TheSpanHandle(nullptr) {}
Platform *ThePlatform;
pointer TheHandle;
index_type TheSize;
index_type TheOffset;
pointer TheSpanHandle;
};
/// Asynchronous host memory.
///
/// This memory is pinned or otherwise registered in the host memory space to
/// allow for asynchronous copies between it and device memory.
///
/// This memory unpins/unregisters itself when it goes out of scope, but does
/// not free itself.
template <typename ElementType> class AsyncHostMemory {
public:
using value_type = ElementType;
using remove_const_type = typename std::remove_const<ElementType>::type;
AsyncHostMemory(const AsyncHostMemory &) = delete;
AsyncHostMemory &operator=(const AsyncHostMemory &) = delete;
AsyncHostMemory(AsyncHostMemory &&) noexcept;
AsyncHostMemory &operator=(AsyncHostMemory &&) noexcept;
~AsyncHostMemory() = default;
template <typename OtherElementType>
AsyncHostMemory(AsyncHostMemory<OtherElementType> &&Other)
: ThePointer(std::move(Other.ThePointer)),
TheElementCount(Other.TheElementCount) {
static_assert(
std::is_assignable<ElementType *, OtherElementType *>::value,
"cannot assign OtherElementType pointer to ElementType pointer type");
}
ElementType *data() const {
return const_cast<ElementType *>(
static_cast<remove_const_type *>(ThePointer.get()));
}
ptrdiff_t size() const { return TheElementCount; }
private:
template <typename U> friend class AsyncHostMemory;
friend class Platform;
AsyncHostMemory(ElementType *Pointer, ptrdiff_t ElementCount,
HandleDestructor Destructor)
: ThePointer(
static_cast<void *>(const_cast<remove_const_type *>(Pointer)),
Destructor),
TheElementCount(ElementCount) {}
std::unique_ptr<void, HandleDestructor> ThePointer;
ptrdiff_t TheElementCount;
};
template <typename T>
AsyncHostMemory<T>::AsyncHostMemory(AsyncHostMemory &&) noexcept = default;
template <typename T>
AsyncHostMemory<T> &AsyncHostMemory<T>::
operator=(AsyncHostMemory &&) noexcept = default;
/// Owned registered host memory.
///
/// Like AsyncHostMemory, but this memory also frees itself in addition to
/// unpinning/unregistering itself when it goes out of scope.
template <typename ElementType> class OwnedAsyncHostMemory {
public:
using remove_const_type = typename std::remove_const<ElementType>::type;
OwnedAsyncHostMemory(const OwnedAsyncHostMemory &) = delete;
OwnedAsyncHostMemory &operator=(const OwnedAsyncHostMemory &) = delete;
OwnedAsyncHostMemory(OwnedAsyncHostMemory &&) noexcept;
OwnedAsyncHostMemory &operator=(OwnedAsyncHostMemory &&) noexcept;
~OwnedAsyncHostMemory() {
if (ThePointer.get()) {
// We use placement new to construct these objects, so we have to call the
// destructors explicitly.
for (ptrdiff_t I = 0; I < TheElementCount; ++I)
static_cast<ElementType *>(ThePointer.get())[I].~ElementType();
}
}
ElementType *get() const {
return const_cast<ElementType *>(
static_cast<remove_const_type *>(ThePointer.get()));
}
ElementType &operator[](ptrdiff_t I) const {
assert(I >= 0 && I < TheElementCount);
return get()[I];
}
private:
template <typename T> friend class AsyncHostMemorySpan;
friend class Platform;
OwnedAsyncHostMemory(void *Memory, ptrdiff_t ElementCount,
HandleDestructor Destructor)
: ThePointer(Memory, Destructor), TheElementCount(ElementCount) {}
std::unique_ptr<void, HandleDestructor> ThePointer;
ptrdiff_t TheElementCount;
};
template <typename T>
OwnedAsyncHostMemory<T>::OwnedAsyncHostMemory(
OwnedAsyncHostMemory &&) noexcept = default;
template <typename T>
OwnedAsyncHostMemory<T> &OwnedAsyncHostMemory<T>::
operator=(OwnedAsyncHostMemory &&) noexcept = default;
/// View into registered host memory.
///
/// Like Span but for registered host memory.
template <typename ElementType> class AsyncHostMemorySpan {
public:
/// \name constants and types
/// \{
using element_type = ElementType;
using index_type = std::ptrdiff_t;
using pointer = element_type *;
using reference = element_type &;
using iterator = element_type *;
using const_iterator = const element_type *;
using value_type = typename std::remove_const<element_type>::type;
/// \}
AsyncHostMemorySpan() : TheSpan() {}
// Intentionally implicit.
template <typename OtherElementType>
AsyncHostMemorySpan(AsyncHostMemory<OtherElementType> &Memory)
: TheSpan(Memory.data(), Memory.size()) {}
// Intentionally implicit.
template <typename OtherElementType>
AsyncHostMemorySpan(OwnedAsyncHostMemory<OtherElementType> &Owned)
: TheSpan(Owned.get(), Owned.TheElementCount) {}
// Intentionally implicit.
template <typename OtherElementType>
AsyncHostMemorySpan(AsyncHostMemorySpan<OtherElementType> &ASpan)
: TheSpan(ASpan) {}
// Intentionally implicit.
template <typename OtherElementType>
AsyncHostMemorySpan(AsyncHostMemorySpan<OtherElementType> &&Span)
: TheSpan(Span) {}
/// \name observers
/// \{
index_type length() const { return TheSpan.length(); }
index_type size() const { return TheSpan.size(); }
index_type byte_size() const { // NOLINT
return TheSpan.size() * sizeof(element_type);
}
bool empty() const { return TheSpan.empty(); }
/// \}
pointer data() const noexcept { return TheSpan.data(); }
operator element_type *() const { return TheSpan.data(); }
AsyncHostMemorySpan<element_type> first(index_type Count) const {
return AsyncHostMemorySpan<element_type>(TheSpan.first(Count));
}
AsyncHostMemorySpan<element_type> last(index_type Count) const {
return AsyncHostMemorySpan<element_type>(TheSpan.last(Count));
}
AsyncHostMemorySpan<element_type>
subspan(index_type Offset, index_type Count = dynamic_extent) const {
return AsyncHostMemorySpan<element_type>(TheSpan.subspan(Offset, Count));
}
private:
template <typename T> friend class AsyncHostMemory;
explicit AsyncHostMemorySpan(Span<ElementType> ArraySpan)
: TheSpan(ArraySpan) {}
Span<ElementType> TheSpan;
};
} // namespace acxxel
#endif // ACXXEL_ACXXEL_H