kmp_wait_release.h 32.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/*
 * kmp_wait_release.h -- Wait/Release implementation
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef KMP_WAIT_RELEASE_H
#define KMP_WAIT_RELEASE_H

#include "kmp.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif

/*!
@defgroup WAIT_RELEASE Wait/Release operations

The definitions and functions here implement the lowest level thread
synchronizations of suspending a thread and awaking it. They are used to build
higher level operations such as barriers and fork/join.
*/

/*!
@ingroup WAIT_RELEASE
@{
*/

/*!
 * The flag_type describes the storage used for the flag.
 */
enum flag_type {
  flag32, /**< 32 bit flags */
  flag64, /**< 64 bit flags */
  flag_oncore /**< special 64-bit flag for on-core barrier (hierarchical) */
};

/*!
 * Base class for wait/release volatile flag
 */
template <typename P> class kmp_flag_native {
  volatile P *loc;
  flag_type t;

public:
  typedef P flag_t;
  kmp_flag_native(volatile P *p, flag_type ft) : loc(p), t(ft) {}
  volatile P *get() { return loc; }
  void *get_void_p() { return RCAST(void *, CCAST(P *, loc)); }
  void set(volatile P *new_loc) { loc = new_loc; }
  flag_type get_type() { return t; }
  P load() { return *loc; }
  void store(P val) { *loc = val; }
};

/*!
 * Base class for wait/release atomic flag
 */
template <typename P> class kmp_flag {
  std::atomic<P>
      *loc; /**< Pointer to the flag storage that is modified by another thread
             */
  flag_type t; /**< "Type" of the flag in loc */
public:
  typedef P flag_t;
  kmp_flag(std::atomic<P> *p, flag_type ft) : loc(p), t(ft) {}
  /*!
   * @result the pointer to the actual flag
   */
  std::atomic<P> *get() { return loc; }
  /*!
   * @result void* pointer to the actual flag
   */
  void *get_void_p() { return RCAST(void *, loc); }
  /*!
   * @param new_loc in   set loc to point at new_loc
   */
  void set(std::atomic<P> *new_loc) { loc = new_loc; }
  /*!
   * @result the flag_type
   */
  flag_type get_type() { return t; }
  /*!
   * @result flag value
   */
  P load() { return loc->load(std::memory_order_acquire); }
  /*!
   * @param val the new flag value to be stored
   */
  void store(P val) { loc->store(val, std::memory_order_release); }
  // Derived classes must provide the following:
  /*
  kmp_info_t * get_waiter(kmp_uint32 i);
  kmp_uint32 get_num_waiters();
  bool done_check();
  bool done_check_val(P old_loc);
  bool notdone_check();
  P internal_release();
  void suspend(int th_gtid);
  void resume(int th_gtid);
  P set_sleeping();
  P unset_sleeping();
  bool is_sleeping();
  bool is_any_sleeping();
  bool is_sleeping_val(P old_loc);
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished
                    USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32
                    is_constrained);
  */
};

#if OMPT_SUPPORT
OMPT_NOINLINE
static void __ompt_implicit_task_end(kmp_info_t *this_thr,
                                     ompt_state_t ompt_state,
                                     ompt_data_t *tId) {
  int ds_tid = this_thr->th.th_info.ds.ds_tid;
  if (ompt_state == ompt_state_wait_barrier_implicit) {
    this_thr->th.ompt_thread_info.state = ompt_state_overhead;
#if OMPT_OPTIONAL
    void *codeptr = NULL;
    if (ompt_enabled.ompt_callback_sync_region_wait) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
          codeptr);
    }
    if (ompt_enabled.ompt_callback_sync_region) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
          codeptr);
    }
#endif
    if (!KMP_MASTER_TID(ds_tid)) {
      if (ompt_enabled.ompt_callback_implicit_task) {
        int flags = this_thr->th.ompt_thread_info.parallel_flags;
        flags = (flags & ompt_parallel_league) ? ompt_task_initial
                                               : ompt_task_implicit;
        ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
            ompt_scope_end, NULL, tId, 0, ds_tid, flags);
      }
      // return to idle state
      this_thr->th.ompt_thread_info.state = ompt_state_idle;
    } else {
      this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    }
  }
}
#endif

/* Spin wait loop that first does pause/yield, then sleep. A thread that calls
   __kmp_wait_*  must make certain that another thread calls __kmp_release
   to wake it back up to prevent deadlocks!

   NOTE: We may not belong to a team at this point.  */
template <class C, int final_spin, bool cancellable = false,
          bool sleepable = true>
static inline bool
__kmp_wait_template(kmp_info_t *this_thr,
                    C *flag USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
#if USE_ITT_BUILD && USE_ITT_NOTIFY
  volatile void *spin = flag->get();
#endif
  kmp_uint32 spins;
  int th_gtid;
  int tasks_completed = FALSE;
  int oversubscribed;
#if !KMP_USE_MONITOR
  kmp_uint64 poll_count;
  kmp_uint64 hibernate_goal;
#else
  kmp_uint32 hibernate;
#endif

  KMP_FSYNC_SPIN_INIT(spin, NULL);
  if (flag->done_check()) {
    KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
    return false;
  }
  th_gtid = this_thr->th.th_info.ds.ds_gtid;
  if (cancellable) {
    kmp_team_t *team = this_thr->th.th_team;
    if (team && team->t.t_cancel_request == cancel_parallel)
      return true;
  }
#if KMP_OS_UNIX
  if (final_spin)
    KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
#endif
  KA_TRACE(20,
           ("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag));
#if KMP_STATS_ENABLED
  stats_state_e thread_state = KMP_GET_THREAD_STATE();
#endif

/* OMPT Behavior:
THIS function is called from
  __kmp_barrier (2 times)  (implicit or explicit barrier in parallel regions)
            these have join / fork behavior

       In these cases, we don't change the state or trigger events in THIS
function.
       Events are triggered in the calling code (__kmp_barrier):

                state := ompt_state_overhead
            barrier-begin
            barrier-wait-begin
                state := ompt_state_wait_barrier
          call join-barrier-implementation (finally arrive here)
          {}
          call fork-barrier-implementation (finally arrive here)
          {}
                state := ompt_state_overhead
            barrier-wait-end
            barrier-end
                state := ompt_state_work_parallel


  __kmp_fork_barrier  (after thread creation, before executing implicit task)
          call fork-barrier-implementation (finally arrive here)
          {} // worker arrive here with state = ompt_state_idle


  __kmp_join_barrier  (implicit barrier at end of parallel region)
                state := ompt_state_barrier_implicit
            barrier-begin
            barrier-wait-begin
          call join-barrier-implementation (finally arrive here
final_spin=FALSE)
          {
          }
  __kmp_fork_barrier  (implicit barrier at end of parallel region)
          call fork-barrier-implementation (finally arrive here final_spin=TRUE)

       Worker after task-team is finished:
            barrier-wait-end
            barrier-end
            implicit-task-end
            idle-begin
                state := ompt_state_idle

       Before leaving, if state = ompt_state_idle
            idle-end
                state := ompt_state_overhead
*/
#if OMPT_SUPPORT
  ompt_state_t ompt_entry_state;
  ompt_data_t *tId;
  if (ompt_enabled.enabled) {
    ompt_entry_state = this_thr->th.ompt_thread_info.state;
    if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit ||
        KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) {
      ompt_lw_taskteam_t *team =
          this_thr->th.th_team->t.ompt_serialized_team_info;
      if (team) {
        tId = &(team->ompt_task_info.task_data);
      } else {
        tId = OMPT_CUR_TASK_DATA(this_thr);
      }
    } else {
      tId = &(this_thr->th.ompt_thread_info.task_data);
    }
    if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec ||
                       this_thr->th.th_task_team == NULL)) {
      // implicit task is done. Either no taskqueue, or task-team finished
      __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
    }
  }
#endif

  KMP_INIT_YIELD(spins); // Setup for waiting

  if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ||
      __kmp_pause_status == kmp_soft_paused) {
#if KMP_USE_MONITOR
// The worker threads cannot rely on the team struct existing at this point.
// Use the bt values cached in the thread struct instead.
#ifdef KMP_ADJUST_BLOCKTIME
    if (__kmp_pause_status == kmp_soft_paused ||
        (__kmp_zero_bt && !this_thr->th.th_team_bt_set))
      // Force immediate suspend if not set by user and more threads than
      // available procs
      hibernate = 0;
    else
      hibernate = this_thr->th.th_team_bt_intervals;
#else
    hibernate = this_thr->th.th_team_bt_intervals;
#endif /* KMP_ADJUST_BLOCKTIME */

    /* If the blocktime is nonzero, we want to make sure that we spin wait for
       the entirety of the specified #intervals, plus up to one interval more.
       This increment make certain that this thread doesn't go to sleep too
       soon.  */
    if (hibernate != 0)
      hibernate++;

    // Add in the current time value.
    hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value);
    KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
                  th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate,
                  hibernate - __kmp_global.g.g_time.dt.t_value));
#else
    if (__kmp_pause_status == kmp_soft_paused) {
      // Force immediate suspend
      hibernate_goal = KMP_NOW();
    } else
      hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals;
    poll_count = 0;
#endif // KMP_USE_MONITOR
  }

  oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc);
  KMP_MB();

  // Main wait spin loop
  while (flag->notdone_check()) {
    kmp_task_team_t *task_team = NULL;
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      task_team = this_thr->th.th_task_team;
      /* If the thread's task team pointer is NULL, it means one of 3 things:
         1) A newly-created thread is first being released by
         __kmp_fork_barrier(), and its task team has not been set up yet.
         2) All tasks have been executed to completion.
         3) Tasking is off for this region.  This could be because we are in a
         serialized region (perhaps the outer one), or else tasking was manually
         disabled (KMP_TASKING=0).  */
      if (task_team != NULL) {
        if (TCR_SYNC_4(task_team->tt.tt_active)) {
          if (KMP_TASKING_ENABLED(task_team))
            flag->execute_tasks(
                this_thr, th_gtid, final_spin,
                &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
          else
            this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
        } else {
          KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid));
#if OMPT_SUPPORT
          // task-team is done now, other cases should be catched above
          if (final_spin && ompt_enabled.enabled)
            __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
#endif
          this_thr->th.th_task_team = NULL;
          this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
        }
      } else {
        this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
      } // if
    } // if

    KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin));
    if (TCR_4(__kmp_global.g.g_done)) {
      if (__kmp_global.g.g_abort)
        __kmp_abort_thread();
      break;
    }

    // If we are oversubscribed, or have waited a bit (and
    // KMP_LIBRARY=throughput), then yield
    KMP_YIELD_OVERSUB_ELSE_SPIN(spins);

#if KMP_STATS_ENABLED
    // Check if thread has been signalled to idle state
    // This indicates that the logical "join-barrier" has finished
    if (this_thr->th.th_stats->isIdle() &&
        KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) {
      KMP_SET_THREAD_STATE(IDLE);
      KMP_PUSH_PARTITIONED_TIMER(OMP_idle);
    }
#endif
    // Check if the barrier surrounding this wait loop has been cancelled
    if (cancellable) {
      kmp_team_t *team = this_thr->th.th_team;
      if (team && team->t.t_cancel_request == cancel_parallel)
        break;
    }

    // Don't suspend if KMP_BLOCKTIME is set to "infinite"
    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
        __kmp_pause_status != kmp_soft_paused)
      continue;

    // Don't suspend if there is a likelihood of new tasks being spawned.
    if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks))
      continue;

#if KMP_USE_MONITOR
    // If we have waited a bit more, fall asleep
    if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate)
      continue;
#else
    if (KMP_BLOCKING(hibernate_goal, poll_count++))
      continue;
#endif
    // Don't suspend if wait loop designated non-sleepable
    // in template parameters
    if (!sleepable)
      continue;

    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
        __kmp_pause_status != kmp_soft_paused)
      continue;

    KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid));

#if KMP_OS_UNIX
    if (final_spin)
      KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
#endif
    flag->suspend(th_gtid);
#if KMP_OS_UNIX
    if (final_spin)
      KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
#endif

    if (TCR_4(__kmp_global.g.g_done)) {
      if (__kmp_global.g.g_abort)
        __kmp_abort_thread();
      break;
    } else if (__kmp_tasking_mode != tskm_immediate_exec &&
               this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
      this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
    }
    // TODO: If thread is done with work and times out, disband/free
  }

#if OMPT_SUPPORT
  ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state;
  if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) {
#if OMPT_OPTIONAL
    if (final_spin) {
      __ompt_implicit_task_end(this_thr, ompt_exit_state, tId);
      ompt_exit_state = this_thr->th.ompt_thread_info.state;
    }
#endif
    if (ompt_exit_state == ompt_state_idle) {
      this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    }
  }
#endif
#if KMP_STATS_ENABLED
  // If we were put into idle state, pop that off the state stack
  if (KMP_GET_THREAD_STATE() == IDLE) {
    KMP_POP_PARTITIONED_TIMER();
    KMP_SET_THREAD_STATE(thread_state);
    this_thr->th.th_stats->resetIdleFlag();
  }
#endif

#if KMP_OS_UNIX
  if (final_spin)
    KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
#endif
  KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
  if (cancellable) {
    kmp_team_t *team = this_thr->th.th_team;
    if (team && team->t.t_cancel_request == cancel_parallel) {
      if (tasks_completed) {
        // undo the previous decrement of unfinished_threads so that the
        // thread can decrement at the join barrier with no problem
        kmp_task_team_t *task_team = this_thr->th.th_task_team;
        std::atomic<kmp_int32> *unfinished_threads =
            &(task_team->tt.tt_unfinished_threads);
        KMP_ATOMIC_INC(unfinished_threads);
      }
      return true;
    }
  }
  return false;
}

/* Release any threads specified as waiting on the flag by releasing the flag
   and resume the waiting thread if indicated by the sleep bit(s). A thread that
   calls __kmp_wait_template must call this function to wake up the potentially
   sleeping thread and prevent deadlocks!  */
template <class C> static inline void __kmp_release_template(C *flag) {
#ifdef KMP_DEBUG
  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
#endif
  KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get()));
  KMP_DEBUG_ASSERT(flag->get());
  KMP_FSYNC_RELEASING(flag->get_void_p());

  flag->internal_release();

  KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(),
                 flag->load()));

  if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
    // Only need to check sleep stuff if infinite block time not set.
    // Are *any* threads waiting on flag sleeping?
    if (flag->is_any_sleeping()) {
      for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) {
        // if sleeping waiter exists at i, sets current_waiter to i inside flag
        kmp_info_t *waiter = flag->get_waiter(i);
        if (waiter) {
          int wait_gtid = waiter->th.th_info.ds.ds_gtid;
          // Wake up thread if needed
          KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep "
                        "flag(%p) set\n",
                        gtid, wait_gtid, flag->get()));
          flag->resume(wait_gtid); // unsets flag's current_waiter when done
        }
      }
    }
  }
}

template <typename FlagType> struct flag_traits {};

template <> struct flag_traits<kmp_uint32> {
  typedef kmp_uint32 flag_t;
  static const flag_type t = flag32;
  static inline flag_t tcr(flag_t f) { return TCR_4(f); }
  static inline flag_t test_then_add4(volatile flag_t *f) {
    return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f));
  }
  static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_OR32(f, v);
  }
  static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_AND32(f, v);
  }
};

template <> struct flag_traits<kmp_uint64> {
  typedef kmp_uint64 flag_t;
  static const flag_type t = flag64;
  static inline flag_t tcr(flag_t f) { return TCR_8(f); }
  static inline flag_t test_then_add4(volatile flag_t *f) {
    return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f));
  }
  static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_OR64(f, v);
  }
  static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_AND64(f, v);
  }
};

// Basic flag that does not use C11 Atomics
template <typename FlagType>
class kmp_basic_flag_native : public kmp_flag_native<FlagType> {
  typedef flag_traits<FlagType> traits_type;
  FlagType checker; /**< Value to compare flag to to check if flag has been
                       released. */
  kmp_info_t
      *waiting_threads[1]; /**< Array of threads sleeping on this thread. */
  kmp_uint32
      num_waiting_threads; /**< Number of threads sleeping on this thread. */
public:
  kmp_basic_flag_native(volatile FlagType *p)
      : kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
  kmp_basic_flag_native(volatile FlagType *p, kmp_info_t *thr)
      : kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(1) {
    waiting_threads[0] = thr;
  }
  kmp_basic_flag_native(volatile FlagType *p, FlagType c)
      : kmp_flag_native<FlagType>(p, traits_type::t), checker(c),
        num_waiting_threads(0) {}
  /*!
   * param i in   index into waiting_threads
   * @result the thread that is waiting at index i
   */
  kmp_info_t *get_waiter(kmp_uint32 i) {
    KMP_DEBUG_ASSERT(i < num_waiting_threads);
    return waiting_threads[i];
  }
  /*!
   * @result num_waiting_threads
   */
  kmp_uint32 get_num_waiters() { return num_waiting_threads; }
  /*!
   * @param thr in   the thread which is now waiting
   *
   * Insert a waiting thread at index 0.
   */
  void set_waiter(kmp_info_t *thr) {
    waiting_threads[0] = thr;
    num_waiting_threads = 1;
  }
  /*!
   * @result true if the flag object has been released.
   */
  bool done_check() { return traits_type::tcr(*(this->get())) == checker; }
  /*!
   * @param old_loc in   old value of flag
   * @result true if the flag's old value indicates it was released.
   */
  bool done_check_val(FlagType old_loc) { return old_loc == checker; }
  /*!
   * @result true if the flag object is not yet released.
   * Used in __kmp_wait_template like:
   * @code
   * while (flag.notdone_check()) { pause(); }
   * @endcode
   */
  bool notdone_check() { return traits_type::tcr(*(this->get())) != checker; }
  /*!
   * @result Actual flag value before release was applied.
   * Trigger all waiting threads to run by modifying flag to release state.
   */
  void internal_release() {
    (void)traits_type::test_then_add4((volatile FlagType *)this->get());
  }
  /*!
   * @result Actual flag value before sleep bit(s) set.
   * Notes that there is at least one thread sleeping on the flag by setting
   * sleep bit(s).
   */
  FlagType set_sleeping() {
    return traits_type::test_then_or((volatile FlagType *)this->get(),
                                     KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @result Actual flag value before sleep bit(s) cleared.
   * Notes that there are no longer threads sleeping on the flag by clearing
   * sleep bit(s).
   */
  FlagType unset_sleeping() {
    return traits_type::test_then_and((volatile FlagType *)this->get(),
                                      ~KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @param old_loc in   old value of flag
   * Test whether there are threads sleeping on the flag's old value in old_loc.
   */
  bool is_sleeping_val(FlagType old_loc) {
    return old_loc & KMP_BARRIER_SLEEP_STATE;
  }
  /*!
   * Test whether there are threads sleeping on the flag.
   */
  bool is_sleeping() { return is_sleeping_val(*(this->get())); }
  bool is_any_sleeping() { return is_sleeping_val(*(this->get())); }
  kmp_uint8 *get_stolen() { return NULL; }
  enum barrier_type get_bt() { return bs_last_barrier; }
};

template <typename FlagType> class kmp_basic_flag : public kmp_flag<FlagType> {
  typedef flag_traits<FlagType> traits_type;
  FlagType checker; /**< Value to compare flag to to check if flag has been
                       released. */
  kmp_info_t
      *waiting_threads[1]; /**< Array of threads sleeping on this thread. */
  kmp_uint32
      num_waiting_threads; /**< Number of threads sleeping on this thread. */
public:
  kmp_basic_flag(std::atomic<FlagType> *p)
      : kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
  kmp_basic_flag(std::atomic<FlagType> *p, kmp_info_t *thr)
      : kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(1) {
    waiting_threads[0] = thr;
  }
  kmp_basic_flag(std::atomic<FlagType> *p, FlagType c)
      : kmp_flag<FlagType>(p, traits_type::t), checker(c),
        num_waiting_threads(0) {}
  /*!
   * param i in   index into waiting_threads
   * @result the thread that is waiting at index i
   */
  kmp_info_t *get_waiter(kmp_uint32 i) {
    KMP_DEBUG_ASSERT(i < num_waiting_threads);
    return waiting_threads[i];
  }
  /*!
   * @result num_waiting_threads
   */
  kmp_uint32 get_num_waiters() { return num_waiting_threads; }
  /*!
   * @param thr in   the thread which is now waiting
   *
   * Insert a waiting thread at index 0.
   */
  void set_waiter(kmp_info_t *thr) {
    waiting_threads[0] = thr;
    num_waiting_threads = 1;
  }
  /*!
   * @result true if the flag object has been released.
   */
  bool done_check() { return this->load() == checker; }
  /*!
   * @param old_loc in   old value of flag
   * @result true if the flag's old value indicates it was released.
   */
  bool done_check_val(FlagType old_loc) { return old_loc == checker; }
  /*!
   * @result true if the flag object is not yet released.
   * Used in __kmp_wait_template like:
   * @code
   * while (flag.notdone_check()) { pause(); }
   * @endcode
   */
  bool notdone_check() { return this->load() != checker; }
  /*!
   * @result Actual flag value before release was applied.
   * Trigger all waiting threads to run by modifying flag to release state.
   */
  void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); }
  /*!
   * @result Actual flag value before sleep bit(s) set.
   * Notes that there is at least one thread sleeping on the flag by setting
   * sleep bit(s).
   */
  FlagType set_sleeping() {
    return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @result Actual flag value before sleep bit(s) cleared.
   * Notes that there are no longer threads sleeping on the flag by clearing
   * sleep bit(s).
   */
  FlagType unset_sleeping() {
    return KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @param old_loc in   old value of flag
   * Test whether there are threads sleeping on the flag's old value in old_loc.
   */
  bool is_sleeping_val(FlagType old_loc) {
    return old_loc & KMP_BARRIER_SLEEP_STATE;
  }
  /*!
   * Test whether there are threads sleeping on the flag.
   */
  bool is_sleeping() { return is_sleeping_val(this->load()); }
  bool is_any_sleeping() { return is_sleeping_val(this->load()); }
  kmp_uint8 *get_stolen() { return NULL; }
  enum barrier_type get_bt() { return bs_last_barrier; }
};

class kmp_flag_32 : public kmp_basic_flag<kmp_uint32> {
public:
  kmp_flag_32(std::atomic<kmp_uint32> *p) : kmp_basic_flag<kmp_uint32>(p) {}
  kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr)
      : kmp_basic_flag<kmp_uint32>(p, thr) {}
  kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c)
      : kmp_basic_flag<kmp_uint32>(p, c) {}
  void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); }
  void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); }
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
                    kmp_int32 is_constrained) {
    return __kmp_execute_tasks_32(
        this_thr, gtid, this, final_spin,
        thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
  }
  void wait(kmp_info_t *this_thr,
            int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
    if (final_spin)
      __kmp_wait_template<kmp_flag_32, TRUE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      __kmp_wait_template<kmp_flag_32, FALSE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
  }
  void release() { __kmp_release_template(this); }
  flag_type get_ptr_type() { return flag32; }
};

class kmp_flag_64 : public kmp_basic_flag_native<kmp_uint64> {
public:
  kmp_flag_64(volatile kmp_uint64 *p) : kmp_basic_flag_native<kmp_uint64>(p) {}
  kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr)
      : kmp_basic_flag_native<kmp_uint64>(p, thr) {}
  kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c)
      : kmp_basic_flag_native<kmp_uint64>(p, c) {}
  void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); }
  void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); }
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
                    kmp_int32 is_constrained) {
    return __kmp_execute_tasks_64(
        this_thr, gtid, this, final_spin,
        thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
  }
  void wait(kmp_info_t *this_thr,
            int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
    if (final_spin)
      __kmp_wait_template<kmp_flag_64, TRUE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      __kmp_wait_template<kmp_flag_64, FALSE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
  }
  bool wait_cancellable_nosleep(kmp_info_t *this_thr,
                                int final_spin
                                    USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
    bool retval = false;
    if (final_spin)
      retval = __kmp_wait_template<kmp_flag_64, TRUE, true, false>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      retval = __kmp_wait_template<kmp_flag_64, FALSE, true, false>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    return retval;
  }
  void release() { __kmp_release_template(this); }
  flag_type get_ptr_type() { return flag64; }
};

// Hierarchical 64-bit on-core barrier instantiation
class kmp_flag_oncore : public kmp_flag_native<kmp_uint64> {
  kmp_uint64 checker;
  kmp_info_t *waiting_threads[1];
  kmp_uint32 num_waiting_threads;
  kmp_uint32
      offset; /**< Portion of flag that is of interest for an operation. */
  bool flag_switch; /**< Indicates a switch in flag location. */
  enum barrier_type bt; /**< Barrier type. */
  kmp_info_t *this_thr; /**< Thread that may be redirected to different flag
                           location. */
#if USE_ITT_BUILD
  void *
      itt_sync_obj; /**< ITT object that must be passed to new flag location. */
#endif
  unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) {
    return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset];
  }

public:
  kmp_flag_oncore(volatile kmp_uint64 *p)
      : kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
        flag_switch(false) {}
  kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx)
      : kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
        offset(idx), flag_switch(false) {}
  kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx,
                  enum barrier_type bar_t,
                  kmp_info_t *thr USE_ITT_BUILD_ARG(void *itt))
      : kmp_flag_native<kmp_uint64>(p, flag_oncore), checker(c),
        num_waiting_threads(0), offset(idx), flag_switch(false), bt(bar_t),
        this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {}
  kmp_info_t *get_waiter(kmp_uint32 i) {
    KMP_DEBUG_ASSERT(i < num_waiting_threads);
    return waiting_threads[i];
  }
  kmp_uint32 get_num_waiters() { return num_waiting_threads; }
  void set_waiter(kmp_info_t *thr) {
    waiting_threads[0] = thr;
    num_waiting_threads = 1;
  }
  bool done_check_val(kmp_uint64 old_loc) {
    return byteref(&old_loc, offset) == checker;
  }
  bool done_check() { return done_check_val(*get()); }
  bool notdone_check() {
    // Calculate flag_switch
    if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG)
      flag_switch = true;
    if (byteref(get(), offset) != 1 && !flag_switch)
      return true;
    else if (flag_switch) {
      this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING;
      kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go,
                       (kmp_uint64)KMP_BARRIER_STATE_BUMP);
      __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
    }
    return false;
  }
  void internal_release() {
    // Other threads can write their own bytes simultaneously.
    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
      byteref(get(), offset) = 1;
    } else {
      kmp_uint64 mask = 0;
      byteref(&mask, offset) = 1;
      KMP_TEST_THEN_OR64(get(), mask);
    }
  }
  kmp_uint64 set_sleeping() {
    return KMP_TEST_THEN_OR64(get(), KMP_BARRIER_SLEEP_STATE);
  }
  kmp_uint64 unset_sleeping() {
    return KMP_TEST_THEN_AND64(get(), ~KMP_BARRIER_SLEEP_STATE);
  }
  bool is_sleeping_val(kmp_uint64 old_loc) {
    return old_loc & KMP_BARRIER_SLEEP_STATE;
  }
  bool is_sleeping() { return is_sleeping_val(*get()); }
  bool is_any_sleeping() { return is_sleeping_val(*get()); }
  void wait(kmp_info_t *this_thr, int final_spin) {
    if (final_spin)
      __kmp_wait_template<kmp_flag_oncore, TRUE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      __kmp_wait_template<kmp_flag_oncore, FALSE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
  }
  void release() { __kmp_release_template(this); }
  void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); }
  void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); }
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
                    kmp_int32 is_constrained) {
    return __kmp_execute_tasks_oncore(
        this_thr, gtid, this, final_spin,
        thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
  }
  kmp_uint8 *get_stolen() { return NULL; }
  enum barrier_type get_bt() { return bt; }
  flag_type get_ptr_type() { return flag_oncore; }
};

// Used to wake up threads, volatile void* flag is usually the th_sleep_loc
// associated with int gtid.
static inline void __kmp_null_resume_wrapper(int gtid, volatile void *flag) {
  if (!flag)
    return;

  switch (RCAST(kmp_flag_64 *, CCAST(void *, flag))->get_type()) {
  case flag32:
    __kmp_resume_32(gtid, NULL);
    break;
  case flag64:
    __kmp_resume_64(gtid, NULL);
    break;
  case flag_oncore:
    __kmp_resume_oncore(gtid, NULL);
    break;
  }
}

/*!
@}
*/

#endif // KMP_WAIT_RELEASE_H