kmp_dispatch.cpp 90.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/*
 * kmp_dispatch.cpp: dynamic scheduling - iteration initialization and dispatch.
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

/* Dynamic scheduling initialization and dispatch.
 *
 * NOTE: __kmp_nth is a constant inside of any dispatch loop, however
 *       it may change values between parallel regions.  __kmp_max_nth
 *       is the largest value __kmp_nth may take, 1 is the smallest.
 */

#include "kmp.h"
#include "kmp_error.h"
#include "kmp_i18n.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#include "kmp_str.h"
#if KMP_USE_X87CONTROL
#include <float.h>
#endif
#include "kmp_lock.h"
#include "kmp_dispatch.h"
#if KMP_USE_HIER_SCHED
#include "kmp_dispatch_hier.h"
#endif

#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

void __kmp_dispatch_deo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  kmp_info_t *th;

  KMP_DEBUG_ASSERT(gtid_ref);

  if (__kmp_env_consistency_check) {
    th = __kmp_threads[*gtid_ref];
    if (th->th.th_root->r.r_active &&
        (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none)) {
#if KMP_USE_DYNAMIC_LOCK
      __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL, 0);
#else
      __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL);
#endif
    }
  }
}

void __kmp_dispatch_dxo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  kmp_info_t *th;

  if (__kmp_env_consistency_check) {
    th = __kmp_threads[*gtid_ref];
    if (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none) {
      __kmp_pop_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref);
    }
  }
}

// Returns either SCHEDULE_MONOTONIC or SCHEDULE_NONMONOTONIC
static inline int __kmp_get_monotonicity(enum sched_type schedule,
                                         bool use_hier = false) {
  // Pick up the nonmonotonic/monotonic bits from the scheduling type
  int monotonicity;
  // default to monotonic
  monotonicity = SCHEDULE_MONOTONIC;
  if (SCHEDULE_HAS_NONMONOTONIC(schedule))
    monotonicity = SCHEDULE_NONMONOTONIC;
  else if (SCHEDULE_HAS_MONOTONIC(schedule))
    monotonicity = SCHEDULE_MONOTONIC;
  return monotonicity;
}

// Initialize a dispatch_private_info_template<T> buffer for a particular
// type of schedule,chunk.  The loop description is found in lb (lower bound),
// ub (upper bound), and st (stride).  nproc is the number of threads relevant
// to the scheduling (often the number of threads in a team, but not always if
// hierarchical scheduling is used).  tid is the id of the thread calling
// the function within the group of nproc threads.  It will have a value
// between 0 and nproc - 1.  This is often just the thread id within a team, but
// is not necessarily the case when using hierarchical scheduling.
// loc is the source file location of the corresponding loop
// gtid is the global thread id
template <typename T>
void __kmp_dispatch_init_algorithm(ident_t *loc, int gtid,
                                   dispatch_private_info_template<T> *pr,
                                   enum sched_type schedule, T lb, T ub,
                                   typename traits_t<T>::signed_t st,
#if USE_ITT_BUILD
                                   kmp_uint64 *cur_chunk,
#endif
                                   typename traits_t<T>::signed_t chunk,
                                   T nproc, T tid) {
  typedef typename traits_t<T>::unsigned_t UT;
  typedef typename traits_t<T>::floating_t DBL;

  int active;
  T tc;
  kmp_info_t *th;
  kmp_team_t *team;
  int monotonicity;
  bool use_hier;

#ifdef KMP_DEBUG
  typedef typename traits_t<T>::signed_t ST;
  {
    char *buff;
    // create format specifiers before the debug output
    buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d called "
                            "pr:%%p lb:%%%s ub:%%%s st:%%%s "
                            "schedule:%%d chunk:%%%s nproc:%%%s tid:%%%s\n",
                            traits_t<T>::spec, traits_t<T>::spec,
                            traits_t<ST>::spec, traits_t<ST>::spec,
                            traits_t<T>::spec, traits_t<T>::spec);
    KD_TRACE(10, (buff, gtid, pr, lb, ub, st, schedule, chunk, nproc, tid));
    __kmp_str_free(&buff);
  }
#endif
  /* setup data */
  th = __kmp_threads[gtid];
  team = th->th.th_team;
  active = !team->t.t_serialized;

#if USE_ITT_BUILD
  int itt_need_metadata_reporting =
      __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
      KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
      team->t.t_active_level == 1;
#endif

#if KMP_USE_HIER_SCHED
  use_hier = pr->flags.use_hier;
#else
  use_hier = false;
#endif

  /* Pick up the nonmonotonic/monotonic bits from the scheduling type */
  monotonicity = __kmp_get_monotonicity(schedule, use_hier);
  schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);

  /* Pick up the nomerge/ordered bits from the scheduling type */
  if ((schedule >= kmp_nm_lower) && (schedule < kmp_nm_upper)) {
    pr->flags.nomerge = TRUE;
    schedule =
        (enum sched_type)(((int)schedule) - (kmp_nm_lower - kmp_sch_lower));
  } else {
    pr->flags.nomerge = FALSE;
  }
  pr->type_size = traits_t<T>::type_size; // remember the size of variables
  if (kmp_ord_lower & schedule) {
    pr->flags.ordered = TRUE;
    schedule =
        (enum sched_type)(((int)schedule) - (kmp_ord_lower - kmp_sch_lower));
  } else {
    pr->flags.ordered = FALSE;
  }
  // Ordered overrides nonmonotonic
  if (pr->flags.ordered) {
    monotonicity = SCHEDULE_MONOTONIC;
  }

  if (schedule == kmp_sch_static) {
    schedule = __kmp_static;
  } else {
    if (schedule == kmp_sch_runtime) {
      // Use the scheduling specified by OMP_SCHEDULE (or __kmp_sch_default if
      // not specified)
      schedule = team->t.t_sched.r_sched_type;
      monotonicity = __kmp_get_monotonicity(schedule, use_hier);
      schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
      // Detail the schedule if needed (global controls are differentiated
      // appropriately)
      if (schedule == kmp_sch_guided_chunked) {
        schedule = __kmp_guided;
      } else if (schedule == kmp_sch_static) {
        schedule = __kmp_static;
      }
      // Use the chunk size specified by OMP_SCHEDULE (or default if not
      // specified)
      chunk = team->t.t_sched.chunk;
#if USE_ITT_BUILD
      if (cur_chunk)
        *cur_chunk = chunk;
#endif
#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d new: "
                                "schedule:%%d chunk:%%%s\n",
                                traits_t<ST>::spec);
        KD_TRACE(10, (buff, gtid, schedule, chunk));
        __kmp_str_free(&buff);
      }
#endif
    } else {
      if (schedule == kmp_sch_guided_chunked) {
        schedule = __kmp_guided;
      }
      if (chunk <= 0) {
        chunk = KMP_DEFAULT_CHUNK;
      }
    }

    if (schedule == kmp_sch_auto) {
      // mapping and differentiation: in the __kmp_do_serial_initialize()
      schedule = __kmp_auto;
#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format(
            "__kmp_dispatch_init_algorithm: kmp_sch_auto: T#%%d new: "
            "schedule:%%d chunk:%%%s\n",
            traits_t<ST>::spec);
        KD_TRACE(10, (buff, gtid, schedule, chunk));
        __kmp_str_free(&buff);
      }
#endif
    }
#if KMP_STATIC_STEAL_ENABLED
    // map nonmonotonic:dynamic to static steal
    if (schedule == kmp_sch_dynamic_chunked) {
      if (monotonicity == SCHEDULE_NONMONOTONIC)
        schedule = kmp_sch_static_steal;
    }
#endif
    /* guided analytical not safe for too many threads */
    if (schedule == kmp_sch_guided_analytical_chunked && nproc > 1 << 20) {
      schedule = kmp_sch_guided_iterative_chunked;
      KMP_WARNING(DispatchManyThreads);
    }
    if (schedule == kmp_sch_runtime_simd) {
      // compiler provides simd_width in the chunk parameter
      schedule = team->t.t_sched.r_sched_type;
      monotonicity = __kmp_get_monotonicity(schedule, use_hier);
      schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
      // Detail the schedule if needed (global controls are differentiated
      // appropriately)
      if (schedule == kmp_sch_static || schedule == kmp_sch_auto ||
          schedule == __kmp_static) {
        schedule = kmp_sch_static_balanced_chunked;
      } else {
        if (schedule == kmp_sch_guided_chunked || schedule == __kmp_guided) {
          schedule = kmp_sch_guided_simd;
        }
        chunk = team->t.t_sched.chunk * chunk;
      }
#if USE_ITT_BUILD
      if (cur_chunk)
        *cur_chunk = chunk;
#endif
#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format(
            "__kmp_dispatch_init_algorithm: T#%%d new: schedule:%%d"
            " chunk:%%%s\n",
            traits_t<ST>::spec);
        KD_TRACE(10, (buff, gtid, schedule, chunk));
        __kmp_str_free(&buff);
      }
#endif
    }
    pr->u.p.parm1 = chunk;
  }
  KMP_ASSERT2((kmp_sch_lower < schedule && schedule < kmp_sch_upper),
              "unknown scheduling type");

  pr->u.p.count = 0;

  if (__kmp_env_consistency_check) {
    if (st == 0) {
      __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited,
                            (pr->flags.ordered ? ct_pdo_ordered : ct_pdo), loc);
    }
  }
  // compute trip count
  if (st == 1) { // most common case
    if (ub >= lb) {
      tc = ub - lb + 1;
    } else { // ub < lb
      tc = 0; // zero-trip
    }
  } else if (st < 0) {
    if (lb >= ub) {
      // AC: cast to unsigned is needed for loops like (i=2B; i>-2B; i-=1B),
      // where the division needs to be unsigned regardless of the result type
      tc = (UT)(lb - ub) / (-st) + 1;
    } else { // lb < ub
      tc = 0; // zero-trip
    }
  } else { // st > 0
    if (ub >= lb) {
      // AC: cast to unsigned is needed for loops like (i=-2B; i<2B; i+=1B),
      // where the division needs to be unsigned regardless of the result type
      tc = (UT)(ub - lb) / st + 1;
    } else { // ub < lb
      tc = 0; // zero-trip
    }
  }

#if KMP_STATS_ENABLED
  if (KMP_MASTER_GTID(gtid)) {
    KMP_COUNT_VALUE(OMP_loop_dynamic_total_iterations, tc);
  }
#endif

  pr->u.p.lb = lb;
  pr->u.p.ub = ub;
  pr->u.p.st = st;
  pr->u.p.tc = tc;

#if KMP_OS_WINDOWS
  pr->u.p.last_upper = ub + st;
#endif /* KMP_OS_WINDOWS */

  /* NOTE: only the active parallel region(s) has active ordered sections */

  if (active) {
    if (pr->flags.ordered) {
      pr->ordered_bumped = 0;
      pr->u.p.ordered_lower = 1;
      pr->u.p.ordered_upper = 0;
    }
  }

  switch (schedule) {
#if (KMP_STATIC_STEAL_ENABLED)
  case kmp_sch_static_steal: {
    T ntc, init;

    KD_TRACE(100,
             ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_steal case\n",
              gtid));

    ntc = (tc % chunk ? 1 : 0) + tc / chunk;
    if (nproc > 1 && ntc >= nproc) {
      KMP_COUNT_BLOCK(OMP_LOOP_STATIC_STEAL);
      T id = tid;
      T small_chunk, extras;

      small_chunk = ntc / nproc;
      extras = ntc % nproc;

      init = id * small_chunk + (id < extras ? id : extras);
      pr->u.p.count = init;
      pr->u.p.ub = init + small_chunk + (id < extras ? 1 : 0);

      pr->u.p.parm2 = lb;
      // parm3 is the number of times to attempt stealing which is
      // proportional to the number of chunks per thread up until
      // the maximum value of nproc.
      pr->u.p.parm3 = KMP_MIN(small_chunk + extras, nproc);
      pr->u.p.parm4 = (id + 1) % nproc; // remember neighbour tid
      pr->u.p.st = st;
      if (traits_t<T>::type_size > 4) {
        // AC: TODO: check if 16-byte CAS available and use it to
        // improve performance (probably wait for explicit request
        // before spending time on this).
        // For now use dynamically allocated per-thread lock,
        // free memory in __kmp_dispatch_next when status==0.
        KMP_DEBUG_ASSERT(pr->u.p.th_steal_lock == NULL);
        pr->u.p.th_steal_lock =
            (kmp_lock_t *)__kmp_allocate(sizeof(kmp_lock_t));
        __kmp_init_lock(pr->u.p.th_steal_lock);
      }
      break;
    } else {
      /* too few chunks: switching to kmp_sch_dynamic_chunked */
      schedule = kmp_sch_dynamic_chunked;
      KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d switching to "
                     "kmp_sch_dynamic_chunked\n",
                      gtid));
      if (pr->u.p.parm1 <= 0)
        pr->u.p.parm1 = KMP_DEFAULT_CHUNK;
      break;
    } // if
  } // case
#endif
  case kmp_sch_static_balanced: {
    T init, limit;

    KD_TRACE(
        100,
        ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_balanced case\n",
         gtid));

    if (nproc > 1) {
      T id = tid;

      if (tc < nproc) {
        if (id < tc) {
          init = id;
          limit = id;
          pr->u.p.parm1 = (id == tc - 1); /* parm1 stores *plastiter */
        } else {
          pr->u.p.count = 1; /* means no more chunks to execute */
          pr->u.p.parm1 = FALSE;
          break;
        }
      } else {
        T small_chunk = tc / nproc;
        T extras = tc % nproc;
        init = id * small_chunk + (id < extras ? id : extras);
        limit = init + small_chunk - (id < extras ? 0 : 1);
        pr->u.p.parm1 = (id == nproc - 1);
      }
    } else {
      if (tc > 0) {
        init = 0;
        limit = tc - 1;
        pr->u.p.parm1 = TRUE;
      } else {
        // zero trip count
        pr->u.p.count = 1; /* means no more chunks to execute */
        pr->u.p.parm1 = FALSE;
        break;
      }
    }
#if USE_ITT_BUILD
    // Calculate chunk for metadata report
    if (itt_need_metadata_reporting)
      if (cur_chunk)
        *cur_chunk = limit - init + 1;
#endif
    if (st == 1) {
      pr->u.p.lb = lb + init;
      pr->u.p.ub = lb + limit;
    } else {
      // calculated upper bound, "ub" is user-defined upper bound
      T ub_tmp = lb + limit * st;
      pr->u.p.lb = lb + init * st;
      // adjust upper bound to "ub" if needed, so that MS lastprivate will match
      // it exactly
      if (st > 0) {
        pr->u.p.ub = (ub_tmp + st > ub ? ub : ub_tmp);
      } else {
        pr->u.p.ub = (ub_tmp + st < ub ? ub : ub_tmp);
      }
    }
    if (pr->flags.ordered) {
      pr->u.p.ordered_lower = init;
      pr->u.p.ordered_upper = limit;
    }
    break;
  } // case
  case kmp_sch_static_balanced_chunked: {
    // similar to balanced, but chunk adjusted to multiple of simd width
    T nth = nproc;
    KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d runtime(simd:static)"
                   " -> falling-through to static_greedy\n",
                   gtid));
    schedule = kmp_sch_static_greedy;
    if (nth > 1)
      pr->u.p.parm1 = ((tc + nth - 1) / nth + chunk - 1) & ~(chunk - 1);
    else
      pr->u.p.parm1 = tc;
    break;
  } // case
  case kmp_sch_guided_simd:
  case kmp_sch_guided_iterative_chunked: {
    KD_TRACE(
        100,
        ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_guided_iterative_chunked"
         " case\n",
         gtid));

    if (nproc > 1) {
      if ((2L * chunk + 1) * nproc >= tc) {
        /* chunk size too large, switch to dynamic */
        schedule = kmp_sch_dynamic_chunked;
      } else {
        // when remaining iters become less than parm2 - switch to dynamic
        pr->u.p.parm2 = guided_int_param * nproc * (chunk + 1);
        *(double *)&pr->u.p.parm3 =
            guided_flt_param / nproc; // may occupy parm3 and parm4
      }
    } else {
      KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to "
                     "kmp_sch_static_greedy\n",
                     gtid));
      schedule = kmp_sch_static_greedy;
      /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */
      KD_TRACE(
          100,
          ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n",
           gtid));
      pr->u.p.parm1 = tc;
    } // if
  } // case
  break;
  case kmp_sch_guided_analytical_chunked: {
    KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d "
                   "kmp_sch_guided_analytical_chunked case\n",
                   gtid));

    if (nproc > 1) {
      if ((2L * chunk + 1) * nproc >= tc) {
        /* chunk size too large, switch to dynamic */
        schedule = kmp_sch_dynamic_chunked;
      } else {
        /* commonly used term: (2 nproc - 1)/(2 nproc) */
        DBL x;

#if KMP_USE_X87CONTROL
        /* Linux* OS already has 64-bit computation by default for long double,
           and on Windows* OS on Intel(R) 64, /Qlong_double doesn't work. On
           Windows* OS on IA-32 architecture, we need to set precision to 64-bit
           instead of the default 53-bit. Even though long double doesn't work
           on Windows* OS on Intel(R) 64, the resulting lack of precision is not
           expected to impact the correctness of the algorithm, but this has not
           been mathematically proven. */
        // save original FPCW and set precision to 64-bit, as
        // Windows* OS on IA-32 architecture defaults to 53-bit
        unsigned int oldFpcw = _control87(0, 0);
        _control87(_PC_64, _MCW_PC); // 0,0x30000
#endif
        /* value used for comparison in solver for cross-over point */
        long double target = ((long double)chunk * 2 + 1) * nproc / tc;

        /* crossover point--chunk indexes equal to or greater than
           this point switch to dynamic-style scheduling */
        UT cross;

        /* commonly used term: (2 nproc - 1)/(2 nproc) */
        x = (long double)1.0 - (long double)0.5 / nproc;

#ifdef KMP_DEBUG
        { // test natural alignment
          struct _test_a {
            char a;
            union {
              char b;
              DBL d;
            };
          } t;
          ptrdiff_t natural_alignment =
              (ptrdiff_t)&t.b - (ptrdiff_t)&t - (ptrdiff_t)1;
          //__kmp_warn( " %llx %llx %lld", (long long)&t.d, (long long)&t, (long
          // long)natural_alignment );
          KMP_DEBUG_ASSERT(
              (((ptrdiff_t)&pr->u.p.parm3) & (natural_alignment)) == 0);
        }
#endif // KMP_DEBUG

        /* save the term in thread private dispatch structure */
        *(DBL *)&pr->u.p.parm3 = x;

        /* solve for the crossover point to the nearest integer i for which C_i
           <= chunk */
        {
          UT left, right, mid;
          long double p;

          /* estimate initial upper and lower bound */

          /* doesn't matter what value right is as long as it is positive, but
             it affects performance of the solver */
          right = 229;
          p = __kmp_pow<UT>(x, right);
          if (p > target) {
            do {
              p *= p;
              right <<= 1;
            } while (p > target && right < (1 << 27));
            /* lower bound is previous (failed) estimate of upper bound */
            left = right >> 1;
          } else {
            left = 0;
          }

          /* bisection root-finding method */
          while (left + 1 < right) {
            mid = (left + right) / 2;
            if (__kmp_pow<UT>(x, mid) > target) {
              left = mid;
            } else {
              right = mid;
            }
          } // while
          cross = right;
        }
        /* assert sanity of computed crossover point */
        KMP_ASSERT(cross && __kmp_pow<UT>(x, cross - 1) > target &&
                   __kmp_pow<UT>(x, cross) <= target);

        /* save the crossover point in thread private dispatch structure */
        pr->u.p.parm2 = cross;

// C75803
#if ((KMP_OS_LINUX || KMP_OS_WINDOWS) && KMP_ARCH_X86) && (!defined(KMP_I8))
#define GUIDED_ANALYTICAL_WORKAROUND (*(DBL *)&pr->u.p.parm3)
#else
#define GUIDED_ANALYTICAL_WORKAROUND (x)
#endif
        /* dynamic-style scheduling offset */
        pr->u.p.count = tc - __kmp_dispatch_guided_remaining(
                                 tc, GUIDED_ANALYTICAL_WORKAROUND, cross) -
                        cross * chunk;
#if KMP_USE_X87CONTROL
        // restore FPCW
        _control87(oldFpcw, _MCW_PC);
#endif
      } // if
    } else {
      KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to "
                     "kmp_sch_static_greedy\n",
                     gtid));
      schedule = kmp_sch_static_greedy;
      /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */
      pr->u.p.parm1 = tc;
    } // if
  } // case
  break;
  case kmp_sch_static_greedy:
    KD_TRACE(
        100,
        ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n",
         gtid));
    pr->u.p.parm1 = (nproc > 1) ? (tc + nproc - 1) / nproc : tc;
    break;
  case kmp_sch_static_chunked:
  case kmp_sch_dynamic_chunked:
    if (pr->u.p.parm1 <= 0) {
      pr->u.p.parm1 = KMP_DEFAULT_CHUNK;
    }
    KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d "
                   "kmp_sch_static_chunked/kmp_sch_dynamic_chunked cases\n",
                   gtid));
    break;
  case kmp_sch_trapezoidal: {
    /* TSS: trapezoid self-scheduling, minimum chunk_size = parm1 */

    T parm1, parm2, parm3, parm4;
    KD_TRACE(100,
             ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_trapezoidal case\n",
              gtid));

    parm1 = chunk;

    /* F : size of the first cycle */
    parm2 = (tc / (2 * nproc));

    if (parm2 < 1) {
      parm2 = 1;
    }

    /* L : size of the last cycle.  Make sure the last cycle is not larger
       than the first cycle. */
    if (parm1 < 1) {
      parm1 = 1;
    } else if (parm1 > parm2) {
      parm1 = parm2;
    }

    /* N : number of cycles */
    parm3 = (parm2 + parm1);
    parm3 = (2 * tc + parm3 - 1) / parm3;

    if (parm3 < 2) {
      parm3 = 2;
    }

    /* sigma : decreasing incr of the trapezoid */
    parm4 = (parm3 - 1);
    parm4 = (parm2 - parm1) / parm4;

    // pointless check, because parm4 >= 0 always
    // if ( parm4 < 0 ) {
    //    parm4 = 0;
    //}

    pr->u.p.parm1 = parm1;
    pr->u.p.parm2 = parm2;
    pr->u.p.parm3 = parm3;
    pr->u.p.parm4 = parm4;
  } // case
  break;

  default: {
    __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message
                KMP_HNT(GetNewerLibrary), // Hint
                __kmp_msg_null // Variadic argument list terminator
                );
  } break;
  } // switch
  pr->schedule = schedule;
}

#if KMP_USE_HIER_SCHED
template <typename T>
inline void __kmp_dispatch_init_hier_runtime(ident_t *loc, T lb, T ub,
                                             typename traits_t<T>::signed_t st);
template <>
inline void
__kmp_dispatch_init_hier_runtime<kmp_int32>(ident_t *loc, kmp_int32 lb,
                                            kmp_int32 ub, kmp_int32 st) {
  __kmp_dispatch_init_hierarchy<kmp_int32>(
      loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
      __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st);
}
template <>
inline void
__kmp_dispatch_init_hier_runtime<kmp_uint32>(ident_t *loc, kmp_uint32 lb,
                                             kmp_uint32 ub, kmp_int32 st) {
  __kmp_dispatch_init_hierarchy<kmp_uint32>(
      loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
      __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st);
}
template <>
inline void
__kmp_dispatch_init_hier_runtime<kmp_int64>(ident_t *loc, kmp_int64 lb,
                                            kmp_int64 ub, kmp_int64 st) {
  __kmp_dispatch_init_hierarchy<kmp_int64>(
      loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
      __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st);
}
template <>
inline void
__kmp_dispatch_init_hier_runtime<kmp_uint64>(ident_t *loc, kmp_uint64 lb,
                                             kmp_uint64 ub, kmp_int64 st) {
  __kmp_dispatch_init_hierarchy<kmp_uint64>(
      loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
      __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st);
}

// free all the hierarchy scheduling memory associated with the team
void __kmp_dispatch_free_hierarchies(kmp_team_t *team) {
  int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
  for (int i = 0; i < num_disp_buff; ++i) {
    // type does not matter here so use kmp_int32
    auto sh =
        reinterpret_cast<dispatch_shared_info_template<kmp_int32> volatile *>(
            &team->t.t_disp_buffer[i]);
    if (sh->hier) {
      sh->hier->deallocate();
      __kmp_free(sh->hier);
    }
  }
}
#endif

// UT - unsigned flavor of T, ST - signed flavor of T,
// DBL - double if sizeof(T)==4, or long double if sizeof(T)==8
template <typename T>
static void
__kmp_dispatch_init(ident_t *loc, int gtid, enum sched_type schedule, T lb,
                    T ub, typename traits_t<T>::signed_t st,
                    typename traits_t<T>::signed_t chunk, int push_ws) {
  typedef typename traits_t<T>::unsigned_t UT;

  int active;
  kmp_info_t *th;
  kmp_team_t *team;
  kmp_uint32 my_buffer_index;
  dispatch_private_info_template<T> *pr;
  dispatch_shared_info_template<T> volatile *sh;

  KMP_BUILD_ASSERT(sizeof(dispatch_private_info_template<T>) ==
                   sizeof(dispatch_private_info));
  KMP_BUILD_ASSERT(sizeof(dispatch_shared_info_template<UT>) ==
                   sizeof(dispatch_shared_info));

  if (!TCR_4(__kmp_init_parallel))
    __kmp_parallel_initialize();

  __kmp_resume_if_soft_paused();

#if INCLUDE_SSC_MARKS
  SSC_MARK_DISPATCH_INIT();
#endif
#ifdef KMP_DEBUG
  typedef typename traits_t<T>::signed_t ST;
  {
    char *buff;
    // create format specifiers before the debug output
    buff = __kmp_str_format("__kmp_dispatch_init: T#%%d called: schedule:%%d "
                            "chunk:%%%s lb:%%%s ub:%%%s st:%%%s\n",
                            traits_t<ST>::spec, traits_t<T>::spec,
                            traits_t<T>::spec, traits_t<ST>::spec);
    KD_TRACE(10, (buff, gtid, schedule, chunk, lb, ub, st));
    __kmp_str_free(&buff);
  }
#endif
  /* setup data */
  th = __kmp_threads[gtid];
  team = th->th.th_team;
  active = !team->t.t_serialized;
  th->th.th_ident = loc;

  // Any half-decent optimizer will remove this test when the blocks are empty
  // since the macros expand to nothing
  // when statistics are disabled.
  if (schedule == __kmp_static) {
    KMP_COUNT_BLOCK(OMP_LOOP_STATIC);
  } else {
    KMP_COUNT_BLOCK(OMP_LOOP_DYNAMIC);
  }

#if KMP_USE_HIER_SCHED
  // Initialize the scheduling hierarchy if requested in OMP_SCHEDULE envirable
  // Hierarchical scheduling does not work with ordered, so if ordered is
  // detected, then revert back to threaded scheduling.
  bool ordered;
  enum sched_type my_sched = schedule;
  my_buffer_index = th->th.th_dispatch->th_disp_index;
  pr = reinterpret_cast<dispatch_private_info_template<T> *>(
      &th->th.th_dispatch
           ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
  my_sched = SCHEDULE_WITHOUT_MODIFIERS(my_sched);
  if ((my_sched >= kmp_nm_lower) && (my_sched < kmp_nm_upper))
    my_sched =
        (enum sched_type)(((int)my_sched) - (kmp_nm_lower - kmp_sch_lower));
  ordered = (kmp_ord_lower & my_sched);
  if (pr->flags.use_hier) {
    if (ordered) {
      KD_TRACE(100, ("__kmp_dispatch_init: T#%d ordered loop detected.  "
                     "Disabling hierarchical scheduling.\n",
                     gtid));
      pr->flags.use_hier = FALSE;
    }
  }
  if (schedule == kmp_sch_runtime && __kmp_hier_scheds.size > 0) {
    // Don't use hierarchical for ordered parallel loops and don't
    // use the runtime hierarchy if one was specified in the program
    if (!ordered && !pr->flags.use_hier)
      __kmp_dispatch_init_hier_runtime<T>(loc, lb, ub, st);
  }
#endif // KMP_USE_HIER_SCHED

#if USE_ITT_BUILD
  kmp_uint64 cur_chunk = chunk;
  int itt_need_metadata_reporting =
      __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
      KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
      team->t.t_active_level == 1;
#endif
  if (!active) {
    pr = reinterpret_cast<dispatch_private_info_template<T> *>(
        th->th.th_dispatch->th_disp_buffer); /* top of the stack */
  } else {
    KMP_DEBUG_ASSERT(th->th.th_dispatch ==
                     &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);

    my_buffer_index = th->th.th_dispatch->th_disp_index++;

    /* What happens when number of threads changes, need to resize buffer? */
    pr = reinterpret_cast<dispatch_private_info_template<T> *>(
        &th->th.th_dispatch
             ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
    sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
        &team->t.t_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
    KD_TRACE(10, ("__kmp_dispatch_init: T#%d my_buffer_index:%d\n", gtid,
                  my_buffer_index));
  }

  __kmp_dispatch_init_algorithm(loc, gtid, pr, schedule, lb, ub, st,
#if USE_ITT_BUILD
                                &cur_chunk,
#endif
                                chunk, (T)th->th.th_team_nproc,
                                (T)th->th.th_info.ds.ds_tid);
  if (active) {
    if (pr->flags.ordered == 0) {
      th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo_error;
      th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo_error;
    } else {
      th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo<UT>;
      th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo<UT>;
    }
  }

  if (active) {
    /* The name of this buffer should be my_buffer_index when it's free to use
     * it */

    KD_TRACE(100, ("__kmp_dispatch_init: T#%d before wait: my_buffer_index:%d "
                   "sh->buffer_index:%d\n",
                   gtid, my_buffer_index, sh->buffer_index));
    __kmp_wait<kmp_uint32>(&sh->buffer_index, my_buffer_index,
                           __kmp_eq<kmp_uint32> USE_ITT_BUILD_ARG(NULL));
    // Note: KMP_WAIT() cannot be used there: buffer index and
    // my_buffer_index are *always* 32-bit integers.
    KMP_MB(); /* is this necessary? */
    KD_TRACE(100, ("__kmp_dispatch_init: T#%d after wait: my_buffer_index:%d "
                   "sh->buffer_index:%d\n",
                   gtid, my_buffer_index, sh->buffer_index));

    th->th.th_dispatch->th_dispatch_pr_current = (dispatch_private_info_t *)pr;
    th->th.th_dispatch->th_dispatch_sh_current =
        CCAST(dispatch_shared_info_t *, (volatile dispatch_shared_info_t *)sh);
#if USE_ITT_BUILD
    if (pr->flags.ordered) {
      __kmp_itt_ordered_init(gtid);
    }
    // Report loop metadata
    if (itt_need_metadata_reporting) {
      // Only report metadata by master of active team at level 1
      kmp_uint64 schedtype = 0;
      switch (schedule) {
      case kmp_sch_static_chunked:
      case kmp_sch_static_balanced: // Chunk is calculated in the switch above
        break;
      case kmp_sch_static_greedy:
        cur_chunk = pr->u.p.parm1;
        break;
      case kmp_sch_dynamic_chunked:
        schedtype = 1;
        break;
      case kmp_sch_guided_iterative_chunked:
      case kmp_sch_guided_analytical_chunked:
      case kmp_sch_guided_simd:
        schedtype = 2;
        break;
      default:
        // Should we put this case under "static"?
        // case kmp_sch_static_steal:
        schedtype = 3;
        break;
      }
      __kmp_itt_metadata_loop(loc, schedtype, pr->u.p.tc, cur_chunk);
    }
#if KMP_USE_HIER_SCHED
    if (pr->flags.use_hier) {
      pr->u.p.count = 0;
      pr->u.p.ub = pr->u.p.lb = pr->u.p.st = pr->u.p.tc = 0;
    }
#endif // KMP_USER_HIER_SCHED
#endif /* USE_ITT_BUILD */
  }

#ifdef KMP_DEBUG
  {
    char *buff;
    // create format specifiers before the debug output
    buff = __kmp_str_format(
        "__kmp_dispatch_init: T#%%d returning: schedule:%%d ordered:%%%s "
        "lb:%%%s ub:%%%s"
        " st:%%%s tc:%%%s count:%%%s\n\tordered_lower:%%%s ordered_upper:%%%s"
        " parm1:%%%s parm2:%%%s parm3:%%%s parm4:%%%s\n",
        traits_t<UT>::spec, traits_t<T>::spec, traits_t<T>::spec,
        traits_t<ST>::spec, traits_t<UT>::spec, traits_t<UT>::spec,
        traits_t<UT>::spec, traits_t<UT>::spec, traits_t<T>::spec,
        traits_t<T>::spec, traits_t<T>::spec, traits_t<T>::spec);
    KD_TRACE(10, (buff, gtid, pr->schedule, pr->flags.ordered, pr->u.p.lb,
                  pr->u.p.ub, pr->u.p.st, pr->u.p.tc, pr->u.p.count,
                  pr->u.p.ordered_lower, pr->u.p.ordered_upper, pr->u.p.parm1,
                  pr->u.p.parm2, pr->u.p.parm3, pr->u.p.parm4));
    __kmp_str_free(&buff);
  }
#endif
#if (KMP_STATIC_STEAL_ENABLED)
  // It cannot be guaranteed that after execution of a loop with some other
  // schedule kind all the parm3 variables will contain the same value. Even if
  // all parm3 will be the same, it still exists a bad case like using 0 and 1
  // rather than program life-time increment. So the dedicated variable is
  // required. The 'static_steal_counter' is used.
  if (pr->schedule == kmp_sch_static_steal) {
    // Other threads will inspect this variable when searching for a victim.
    // This is a flag showing that other threads may steal from this thread
    // since then.
    volatile T *p = &pr->u.p.static_steal_counter;
    *p = *p + 1;
  }
#endif // ( KMP_STATIC_STEAL_ENABLED )

#if OMPT_SUPPORT && OMPT_OPTIONAL
  if (ompt_enabled.ompt_callback_work) {
    ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
    ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
    ompt_callbacks.ompt_callback(ompt_callback_work)(
        ompt_work_loop, ompt_scope_begin, &(team_info->parallel_data),
        &(task_info->task_data), pr->u.p.tc, OMPT_LOAD_RETURN_ADDRESS(gtid));
  }
#endif
  KMP_PUSH_PARTITIONED_TIMER(OMP_loop_dynamic);
}

/* For ordered loops, either __kmp_dispatch_finish() should be called after
 * every iteration, or __kmp_dispatch_finish_chunk() should be called after
 * every chunk of iterations.  If the ordered section(s) were not executed
 * for this iteration (or every iteration in this chunk), we need to set the
 * ordered iteration counters so that the next thread can proceed. */
template <typename UT>
static void __kmp_dispatch_finish(int gtid, ident_t *loc) {
  typedef typename traits_t<UT>::signed_t ST;
  kmp_info_t *th = __kmp_threads[gtid];

  KD_TRACE(100, ("__kmp_dispatch_finish: T#%d called\n", gtid));
  if (!th->th.th_team->t.t_serialized) {

    dispatch_private_info_template<UT> *pr =
        reinterpret_cast<dispatch_private_info_template<UT> *>(
            th->th.th_dispatch->th_dispatch_pr_current);
    dispatch_shared_info_template<UT> volatile *sh =
        reinterpret_cast<dispatch_shared_info_template<UT> volatile *>(
            th->th.th_dispatch->th_dispatch_sh_current);
    KMP_DEBUG_ASSERT(pr);
    KMP_DEBUG_ASSERT(sh);
    KMP_DEBUG_ASSERT(th->th.th_dispatch ==
                     &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);

    if (pr->ordered_bumped) {
      KD_TRACE(
          1000,
          ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n",
           gtid));
      pr->ordered_bumped = 0;
    } else {
      UT lower = pr->u.p.ordered_lower;

#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d before wait: "
                                "ordered_iteration:%%%s lower:%%%s\n",
                                traits_t<UT>::spec, traits_t<UT>::spec);
        KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
        __kmp_str_free(&buff);
      }
#endif

      __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
                     __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));
      KMP_MB(); /* is this necessary? */
#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d after wait: "
                                "ordered_iteration:%%%s lower:%%%s\n",
                                traits_t<UT>::spec, traits_t<UT>::spec);
        KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
        __kmp_str_free(&buff);
      }
#endif

      test_then_inc<ST>((volatile ST *)&sh->u.s.ordered_iteration);
    } // if
  } // if
  KD_TRACE(100, ("__kmp_dispatch_finish: T#%d returned\n", gtid));
}

#ifdef KMP_GOMP_COMPAT

template <typename UT>
static void __kmp_dispatch_finish_chunk(int gtid, ident_t *loc) {
  typedef typename traits_t<UT>::signed_t ST;
  kmp_info_t *th = __kmp_threads[gtid];

  KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d called\n", gtid));
  if (!th->th.th_team->t.t_serialized) {
    //        int cid;
    dispatch_private_info_template<UT> *pr =
        reinterpret_cast<dispatch_private_info_template<UT> *>(
            th->th.th_dispatch->th_dispatch_pr_current);
    dispatch_shared_info_template<UT> volatile *sh =
        reinterpret_cast<dispatch_shared_info_template<UT> volatile *>(
            th->th.th_dispatch->th_dispatch_sh_current);
    KMP_DEBUG_ASSERT(pr);
    KMP_DEBUG_ASSERT(sh);
    KMP_DEBUG_ASSERT(th->th.th_dispatch ==
                     &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);

    //        for (cid = 0; cid < KMP_MAX_ORDERED; ++cid) {
    UT lower = pr->u.p.ordered_lower;
    UT upper = pr->u.p.ordered_upper;
    UT inc = upper - lower + 1;

    if (pr->ordered_bumped == inc) {
      KD_TRACE(
          1000,
          ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n",
           gtid));
      pr->ordered_bumped = 0;
    } else {
      inc -= pr->ordered_bumped;

#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format(
            "__kmp_dispatch_finish_chunk: T#%%d before wait: "
            "ordered_iteration:%%%s lower:%%%s upper:%%%s\n",
            traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec);
        KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower, upper));
        __kmp_str_free(&buff);
      }
#endif

      __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
                     __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));

      KMP_MB(); /* is this necessary? */
      KD_TRACE(1000, ("__kmp_dispatch_finish_chunk: T#%d resetting "
                      "ordered_bumped to zero\n",
                      gtid));
      pr->ordered_bumped = 0;
//!!!!! TODO check if the inc should be unsigned, or signed???
#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format(
            "__kmp_dispatch_finish_chunk: T#%%d after wait: "
            "ordered_iteration:%%%s inc:%%%s lower:%%%s upper:%%%s\n",
            traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec,
            traits_t<UT>::spec);
        KD_TRACE(1000,
                 (buff, gtid, sh->u.s.ordered_iteration, inc, lower, upper));
        __kmp_str_free(&buff);
      }
#endif

      test_then_add<ST>((volatile ST *)&sh->u.s.ordered_iteration, inc);
    }
    //        }
  }
  KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d returned\n", gtid));
}

#endif /* KMP_GOMP_COMPAT */

template <typename T>
int __kmp_dispatch_next_algorithm(int gtid,
                                  dispatch_private_info_template<T> *pr,
                                  dispatch_shared_info_template<T> volatile *sh,
                                  kmp_int32 *p_last, T *p_lb, T *p_ub,
                                  typename traits_t<T>::signed_t *p_st, T nproc,
                                  T tid) {
  typedef typename traits_t<T>::unsigned_t UT;
  typedef typename traits_t<T>::signed_t ST;
  typedef typename traits_t<T>::floating_t DBL;
  int status = 0;
  kmp_int32 last = 0;
  T start;
  ST incr;
  UT limit, trip, init;
  kmp_info_t *th = __kmp_threads[gtid];
  kmp_team_t *team = th->th.th_team;

  KMP_DEBUG_ASSERT(th->th.th_dispatch ==
                   &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
  KMP_DEBUG_ASSERT(pr);
  KMP_DEBUG_ASSERT(sh);
  KMP_DEBUG_ASSERT(tid >= 0 && tid < nproc);
#ifdef KMP_DEBUG
  {
    char *buff;
    // create format specifiers before the debug output
    buff =
        __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d called pr:%%p "
                         "sh:%%p nproc:%%%s tid:%%%s\n",
                         traits_t<T>::spec, traits_t<T>::spec);
    KD_TRACE(10, (buff, gtid, pr, sh, nproc, tid));
    __kmp_str_free(&buff);
  }
#endif

  // zero trip count
  if (pr->u.p.tc == 0) {
    KD_TRACE(10,
             ("__kmp_dispatch_next_algorithm: T#%d early exit trip count is "
              "zero status:%d\n",
              gtid, status));
    return 0;
  }

  switch (pr->schedule) {
#if (KMP_STATIC_STEAL_ENABLED)
  case kmp_sch_static_steal: {
    T chunk = pr->u.p.parm1;

    KD_TRACE(100,
             ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_steal case\n",
              gtid));

    trip = pr->u.p.tc - 1;

    if (traits_t<T>::type_size > 4) {
      // use lock for 8-byte and CAS for 4-byte induction
      // variable. TODO (optional): check and use 16-byte CAS
      kmp_lock_t *lck = pr->u.p.th_steal_lock;
      KMP_DEBUG_ASSERT(lck != NULL);
      if (pr->u.p.count < (UT)pr->u.p.ub) {
        __kmp_acquire_lock(lck, gtid);
        // try to get own chunk of iterations
        init = (pr->u.p.count)++;
        status = (init < (UT)pr->u.p.ub);
        __kmp_release_lock(lck, gtid);
      } else {
        status = 0; // no own chunks
      }
      if (!status) { // try to steal
        kmp_info_t **other_threads = team->t.t_threads;
        int while_limit = pr->u.p.parm3;
        int while_index = 0;
        T id = pr->u.p.static_steal_counter; // loop id
        int idx = (th->th.th_dispatch->th_disp_index - 1) %
                  __kmp_dispatch_num_buffers; // current loop index
        // note: victim thread can potentially execute another loop
        // TODO: algorithm of searching for a victim
        // should be cleaned up and measured
        while ((!status) && (while_limit != ++while_index)) {
          dispatch_private_info_template<T> *victim;
          T remaining;
          T victimIdx = pr->u.p.parm4;
          T oldVictimIdx = victimIdx ? victimIdx - 1 : nproc - 1;
          victim = reinterpret_cast<dispatch_private_info_template<T> *>(
              &other_threads[victimIdx]->th.th_dispatch->th_disp_buffer[idx]);
          KMP_DEBUG_ASSERT(victim);
          while ((victim == pr || id != victim->u.p.static_steal_counter) &&
                 oldVictimIdx != victimIdx) {
            victimIdx = (victimIdx + 1) % nproc;
            victim = reinterpret_cast<dispatch_private_info_template<T> *>(
                &other_threads[victimIdx]->th.th_dispatch->th_disp_buffer[idx]);
            KMP_DEBUG_ASSERT(victim);
          }
          if (victim == pr || id != victim->u.p.static_steal_counter) {
            continue; // try once more (nproc attempts in total)
            // no victim is ready yet to participate in stealing
            // because no victim passed kmp_init_dispatch yet
          }
          if (victim->u.p.count + 2 > (UT)victim->u.p.ub) {
            pr->u.p.parm4 = (victimIdx + 1) % nproc; // shift start tid
            continue; // not enough chunks to steal, goto next victim
          }

          lck = victim->u.p.th_steal_lock;
          KMP_ASSERT(lck != NULL);
          __kmp_acquire_lock(lck, gtid);
          limit = victim->u.p.ub; // keep initial ub
          if (victim->u.p.count >= limit ||
              (remaining = limit - victim->u.p.count) < 2) {
            __kmp_release_lock(lck, gtid);
            pr->u.p.parm4 = (victimIdx + 1) % nproc; // next victim
            continue; // not enough chunks to steal
          }
          // stealing succeeded, reduce victim's ub by 1/4 of undone chunks or
          // by 1
          if (remaining > 3) {
            // steal 1/4 of remaining
            KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, remaining >> 2);
            init = (victim->u.p.ub -= (remaining >> 2));
          } else {
            // steal 1 chunk of 2 or 3 remaining
            KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, 1);
            init = (victim->u.p.ub -= 1);
          }
          __kmp_release_lock(lck, gtid);

          KMP_DEBUG_ASSERT(init + 1 <= limit);
          pr->u.p.parm4 = victimIdx; // remember victim to steal from
          status = 1;
          while_index = 0;
          // now update own count and ub with stolen range but init chunk
          __kmp_acquire_lock(pr->u.p.th_steal_lock, gtid);
          pr->u.p.count = init + 1;
          pr->u.p.ub = limit;
          __kmp_release_lock(pr->u.p.th_steal_lock, gtid);
        } // while (search for victim)
      } // if (try to find victim and steal)
    } else {
      // 4-byte induction variable, use 8-byte CAS for pair (count, ub)
      typedef union {
        struct {
          UT count;
          T ub;
        } p;
        kmp_int64 b;
      } union_i4;
      // All operations on 'count' or 'ub' must be combined atomically
      // together.
      {
        union_i4 vold, vnew;
        vold.b = *(volatile kmp_int64 *)(&pr->u.p.count);
        vnew = vold;
        vnew.p.count++;
        while (!KMP_COMPARE_AND_STORE_ACQ64(
            (volatile kmp_int64 *)&pr->u.p.count,
            *VOLATILE_CAST(kmp_int64 *) & vold.b,
            *VOLATILE_CAST(kmp_int64 *) & vnew.b)) {
          KMP_CPU_PAUSE();
          vold.b = *(volatile kmp_int64 *)(&pr->u.p.count);
          vnew = vold;
          vnew.p.count++;
        }
        vnew = vold;
        init = vnew.p.count;
        status = (init < (UT)vnew.p.ub);
      }

      if (!status) {
        kmp_info_t **other_threads = team->t.t_threads;
        int while_limit = pr->u.p.parm3;
        int while_index = 0;
        T id = pr->u.p.static_steal_counter; // loop id
        int idx = (th->th.th_dispatch->th_disp_index - 1) %
                  __kmp_dispatch_num_buffers; // current loop index
        // note: victim thread can potentially execute another loop
        // TODO: algorithm of searching for a victim
        // should be cleaned up and measured
        while ((!status) && (while_limit != ++while_index)) {
          dispatch_private_info_template<T> *victim;
          union_i4 vold, vnew;
          kmp_int32 remaining;
          T victimIdx = pr->u.p.parm4;
          T oldVictimIdx = victimIdx ? victimIdx - 1 : nproc - 1;
          victim = reinterpret_cast<dispatch_private_info_template<T> *>(
              &other_threads[victimIdx]->th.th_dispatch->th_disp_buffer[idx]);
          KMP_DEBUG_ASSERT(victim);
          while ((victim == pr || id != victim->u.p.static_steal_counter) &&
                 oldVictimIdx != victimIdx) {
            victimIdx = (victimIdx + 1) % nproc;
            victim = reinterpret_cast<dispatch_private_info_template<T> *>(
                &other_threads[victimIdx]->th.th_dispatch->th_disp_buffer[idx]);
            KMP_DEBUG_ASSERT(victim);
          }
          if (victim == pr || id != victim->u.p.static_steal_counter) {
            continue; // try once more (nproc attempts in total)
            // no victim is ready yet to participate in stealing
            // because no victim passed kmp_init_dispatch yet
          }
          pr->u.p.parm4 = victimIdx; // new victim found
          while (1) { // CAS loop if victim has enough chunks to steal
            vold.b = *(volatile kmp_int64 *)(&victim->u.p.count);
            vnew = vold;

            KMP_DEBUG_ASSERT((vnew.p.ub - 1) * (UT)chunk <= trip);
            if (vnew.p.count >= (UT)vnew.p.ub ||
                (remaining = vnew.p.ub - vnew.p.count) < 2) {
              pr->u.p.parm4 = (victimIdx + 1) % nproc; // shift start victim id
              break; // not enough chunks to steal, goto next victim
            }
            if (remaining > 3) {
              vnew.p.ub -= (remaining >> 2); // try to steal 1/4 of remaining
            } else {
              vnew.p.ub -= 1; // steal 1 chunk of 2 or 3 remaining
            }
            KMP_DEBUG_ASSERT((vnew.p.ub - 1) * (UT)chunk <= trip);
            // TODO: Should this be acquire or release?
            if (KMP_COMPARE_AND_STORE_ACQ64(
                    (volatile kmp_int64 *)&victim->u.p.count,
                    *VOLATILE_CAST(kmp_int64 *) & vold.b,
                    *VOLATILE_CAST(kmp_int64 *) & vnew.b)) {
              // stealing succeeded
              KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen,
                                        vold.p.ub - vnew.p.ub);
              status = 1;
              while_index = 0;
              // now update own count and ub
              init = vnew.p.ub;
              vold.p.count = init + 1;
#if KMP_ARCH_X86
              KMP_XCHG_FIXED64((volatile kmp_int64 *)(&pr->u.p.count), vold.b);
#else
              *(volatile kmp_int64 *)(&pr->u.p.count) = vold.b;
#endif
              break;
            } // if (check CAS result)
            KMP_CPU_PAUSE(); // CAS failed, repeatedly attempt
          } // while (try to steal from particular victim)
        } // while (search for victim)
      } // if (try to find victim and steal)
    } // if (4-byte induction variable)
    if (!status) {
      *p_lb = 0;
      *p_ub = 0;
      if (p_st != NULL)
        *p_st = 0;
    } else {
      start = pr->u.p.parm2;
      init *= chunk;
      limit = chunk + init - 1;
      incr = pr->u.p.st;
      KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_chunks, 1);

      KMP_DEBUG_ASSERT(init <= trip);
      if ((last = (limit >= trip)) != 0)
        limit = trip;
      if (p_st != NULL)
        *p_st = incr;

      if (incr == 1) {
        *p_lb = start + init;
        *p_ub = start + limit;
      } else {
        *p_lb = start + init * incr;
        *p_ub = start + limit * incr;
      }

      if (pr->flags.ordered) {
        pr->u.p.ordered_lower = init;
        pr->u.p.ordered_upper = limit;
      } // if
    } // if
    break;
  } // case
#endif // ( KMP_STATIC_STEAL_ENABLED )
  case kmp_sch_static_balanced: {
    KD_TRACE(
        10,
        ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_balanced case\n",
         gtid));
    /* check if thread has any iteration to do */
    if ((status = !pr->u.p.count) != 0) {
      pr->u.p.count = 1;
      *p_lb = pr->u.p.lb;
      *p_ub = pr->u.p.ub;
      last = pr->u.p.parm1;
      if (p_st != NULL)
        *p_st = pr->u.p.st;
    } else { /* no iterations to do */
      pr->u.p.lb = pr->u.p.ub + pr->u.p.st;
    }
  } // case
  break;
  case kmp_sch_static_greedy: /* original code for kmp_sch_static_greedy was
                                 merged here */
  case kmp_sch_static_chunked: {
    T parm1;

    KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d "
                   "kmp_sch_static_[affinity|chunked] case\n",
                   gtid));
    parm1 = pr->u.p.parm1;

    trip = pr->u.p.tc - 1;
    init = parm1 * (pr->u.p.count + tid);

    if ((status = (init <= trip)) != 0) {
      start = pr->u.p.lb;
      incr = pr->u.p.st;
      limit = parm1 + init - 1;

      if ((last = (limit >= trip)) != 0)
        limit = trip;

      if (p_st != NULL)
        *p_st = incr;

      pr->u.p.count += nproc;

      if (incr == 1) {
        *p_lb = start + init;
        *p_ub = start + limit;
      } else {
        *p_lb = start + init * incr;
        *p_ub = start + limit * incr;
      }

      if (pr->flags.ordered) {
        pr->u.p.ordered_lower = init;
        pr->u.p.ordered_upper = limit;
      } // if
    } // if
  } // case
  break;

  case kmp_sch_dynamic_chunked: {
    T chunk = pr->u.p.parm1;

    KD_TRACE(
        100,
        ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_dynamic_chunked case\n",
         gtid));

    init = chunk * test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration);
    trip = pr->u.p.tc - 1;

    if ((status = (init <= trip)) == 0) {
      *p_lb = 0;
      *p_ub = 0;
      if (p_st != NULL)
        *p_st = 0;
    } else {
      start = pr->u.p.lb;
      limit = chunk + init - 1;
      incr = pr->u.p.st;

      if ((last = (limit >= trip)) != 0)
        limit = trip;

      if (p_st != NULL)
        *p_st = incr;

      if (incr == 1) {
        *p_lb = start + init;
        *p_ub = start + limit;
      } else {
        *p_lb = start + init * incr;
        *p_ub = start + limit * incr;
      }

      if (pr->flags.ordered) {
        pr->u.p.ordered_lower = init;
        pr->u.p.ordered_upper = limit;
      } // if
    } // if
  } // case
  break;

  case kmp_sch_guided_iterative_chunked: {
    T chunkspec = pr->u.p.parm1;
    KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_chunked "
                   "iterative case\n",
                   gtid));
    trip = pr->u.p.tc;
    // Start atomic part of calculations
    while (1) {
      ST remaining; // signed, because can be < 0
      init = sh->u.s.iteration; // shared value
      remaining = trip - init;
      if (remaining <= 0) { // AC: need to compare with 0 first
        // nothing to do, don't try atomic op
        status = 0;
        break;
      }
      if ((T)remaining <
          pr->u.p.parm2) { // compare with K*nproc*(chunk+1), K=2 by default
        // use dynamic-style schedule
        // atomically increment iterations, get old value
        init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
                                 (ST)chunkspec);
        remaining = trip - init;
        if (remaining <= 0) {
          status = 0; // all iterations got by other threads
        } else {
          // got some iterations to work on
          status = 1;
          if ((T)remaining > chunkspec) {
            limit = init + chunkspec - 1;
          } else {
            last = 1; // the last chunk
            limit = init + remaining - 1;
          } // if
        } // if
        break;
      } // if
      limit = init +
              (UT)(remaining * *(double *)&pr->u.p.parm3); // divide by K*nproc
      if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
                               (ST)init, (ST)limit)) {
        // CAS was successful, chunk obtained
        status = 1;
        --limit;
        break;
      } // if
    } // while
    if (status != 0) {
      start = pr->u.p.lb;
      incr = pr->u.p.st;
      if (p_st != NULL)
        *p_st = incr;
      *p_lb = start + init * incr;
      *p_ub = start + limit * incr;
      if (pr->flags.ordered) {
        pr->u.p.ordered_lower = init;
        pr->u.p.ordered_upper = limit;
      } // if
    } else {
      *p_lb = 0;
      *p_ub = 0;
      if (p_st != NULL)
        *p_st = 0;
    } // if
  } // case
  break;

  case kmp_sch_guided_simd: {
    // same as iterative but curr-chunk adjusted to be multiple of given
    // chunk
    T chunk = pr->u.p.parm1;
    KD_TRACE(100,
             ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_simd case\n",
              gtid));
    trip = pr->u.p.tc;
    // Start atomic part of calculations
    while (1) {
      ST remaining; // signed, because can be < 0
      init = sh->u.s.iteration; // shared value
      remaining = trip - init;
      if (remaining <= 0) { // AC: need to compare with 0 first
        status = 0; // nothing to do, don't try atomic op
        break;
      }
      KMP_DEBUG_ASSERT(init % chunk == 0);
      // compare with K*nproc*(chunk+1), K=2 by default
      if ((T)remaining < pr->u.p.parm2) {
        // use dynamic-style schedule
        // atomically increment iterations, get old value
        init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
                                 (ST)chunk);
        remaining = trip - init;
        if (remaining <= 0) {
          status = 0; // all iterations got by other threads
        } else {
          // got some iterations to work on
          status = 1;
          if ((T)remaining > chunk) {
            limit = init + chunk - 1;
          } else {
            last = 1; // the last chunk
            limit = init + remaining - 1;
          } // if
        } // if
        break;
      } // if
      // divide by K*nproc
      UT span = remaining * (*(double *)&pr->u.p.parm3);
      UT rem = span % chunk;
      if (rem) // adjust so that span%chunk == 0
        span += chunk - rem;
      limit = init + span;
      if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
                               (ST)init, (ST)limit)) {
        // CAS was successful, chunk obtained
        status = 1;
        --limit;
        break;
      } // if
    } // while
    if (status != 0) {
      start = pr->u.p.lb;
      incr = pr->u.p.st;
      if (p_st != NULL)
        *p_st = incr;
      *p_lb = start + init * incr;
      *p_ub = start + limit * incr;
      if (pr->flags.ordered) {
        pr->u.p.ordered_lower = init;
        pr->u.p.ordered_upper = limit;
      } // if
    } else {
      *p_lb = 0;
      *p_ub = 0;
      if (p_st != NULL)
        *p_st = 0;
    } // if
  } // case
  break;

  case kmp_sch_guided_analytical_chunked: {
    T chunkspec = pr->u.p.parm1;
    UT chunkIdx;
#if KMP_USE_X87CONTROL
    /* for storing original FPCW value for Windows* OS on
       IA-32 architecture 8-byte version */
    unsigned int oldFpcw;
    unsigned int fpcwSet = 0;
#endif
    KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d "
                   "kmp_sch_guided_analytical_chunked case\n",
                   gtid));

    trip = pr->u.p.tc;

    KMP_DEBUG_ASSERT(nproc > 1);
    KMP_DEBUG_ASSERT((2UL * chunkspec + 1) * (UT)nproc < trip);

    while (1) { /* this while loop is a safeguard against unexpected zero
                   chunk sizes */
      chunkIdx = test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration);
      if (chunkIdx >= (UT)pr->u.p.parm2) {
        --trip;
        /* use dynamic-style scheduling */
        init = chunkIdx * chunkspec + pr->u.p.count;
        /* need to verify init > 0 in case of overflow in the above
         * calculation */
        if ((status = (init > 0 && init <= trip)) != 0) {
          limit = init + chunkspec - 1;

          if ((last = (limit >= trip)) != 0)
            limit = trip;
        }
        break;
      } else {
/* use exponential-style scheduling */
/* The following check is to workaround the lack of long double precision on
   Windows* OS.
   This check works around the possible effect that init != 0 for chunkIdx == 0.
 */
#if KMP_USE_X87CONTROL
        /* If we haven't already done so, save original
           FPCW and set precision to 64-bit, as Windows* OS
           on IA-32 architecture defaults to 53-bit */
        if (!fpcwSet) {
          oldFpcw = _control87(0, 0);
          _control87(_PC_64, _MCW_PC);
          fpcwSet = 0x30000;
        }
#endif
        if (chunkIdx) {
          init = __kmp_dispatch_guided_remaining<T>(
              trip, *(DBL *)&pr->u.p.parm3, chunkIdx);
          KMP_DEBUG_ASSERT(init);
          init = trip - init;
        } else
          init = 0;
        limit = trip - __kmp_dispatch_guided_remaining<T>(
                           trip, *(DBL *)&pr->u.p.parm3, chunkIdx + 1);
        KMP_ASSERT(init <= limit);
        if (init < limit) {
          KMP_DEBUG_ASSERT(limit <= trip);
          --limit;
          status = 1;
          break;
        } // if
      } // if
    } // while (1)
#if KMP_USE_X87CONTROL
    /* restore FPCW if necessary
       AC: check fpcwSet flag first because oldFpcw can be uninitialized here
    */
    if (fpcwSet && (oldFpcw & fpcwSet))
      _control87(oldFpcw, _MCW_PC);
#endif
    if (status != 0) {
      start = pr->u.p.lb;
      incr = pr->u.p.st;
      if (p_st != NULL)
        *p_st = incr;
      *p_lb = start + init * incr;
      *p_ub = start + limit * incr;
      if (pr->flags.ordered) {
        pr->u.p.ordered_lower = init;
        pr->u.p.ordered_upper = limit;
      }
    } else {
      *p_lb = 0;
      *p_ub = 0;
      if (p_st != NULL)
        *p_st = 0;
    }
  } // case
  break;

  case kmp_sch_trapezoidal: {
    UT index;
    T parm2 = pr->u.p.parm2;
    T parm3 = pr->u.p.parm3;
    T parm4 = pr->u.p.parm4;
    KD_TRACE(100,
             ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_trapezoidal case\n",
              gtid));

    index = test_then_inc<ST>((volatile ST *)&sh->u.s.iteration);

    init = (index * ((2 * parm2) - (index - 1) * parm4)) / 2;
    trip = pr->u.p.tc - 1;

    if ((status = ((T)index < parm3 && init <= trip)) == 0) {
      *p_lb = 0;
      *p_ub = 0;
      if (p_st != NULL)
        *p_st = 0;
    } else {
      start = pr->u.p.lb;
      limit = ((index + 1) * (2 * parm2 - index * parm4)) / 2 - 1;
      incr = pr->u.p.st;

      if ((last = (limit >= trip)) != 0)
        limit = trip;

      if (p_st != NULL)
        *p_st = incr;

      if (incr == 1) {
        *p_lb = start + init;
        *p_ub = start + limit;
      } else {
        *p_lb = start + init * incr;
        *p_ub = start + limit * incr;
      }

      if (pr->flags.ordered) {
        pr->u.p.ordered_lower = init;
        pr->u.p.ordered_upper = limit;
      } // if
    } // if
  } // case
  break;
  default: {
    status = 0; // to avoid complaints on uninitialized variable use
    __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message
                KMP_HNT(GetNewerLibrary), // Hint
                __kmp_msg_null // Variadic argument list terminator
                );
  } break;
  } // switch
  if (p_last)
    *p_last = last;
#ifdef KMP_DEBUG
  if (pr->flags.ordered) {
    char *buff;
    // create format specifiers before the debug output
    buff = __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d "
                            "ordered_lower:%%%s ordered_upper:%%%s\n",
                            traits_t<UT>::spec, traits_t<UT>::spec);
    KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower, pr->u.p.ordered_upper));
    __kmp_str_free(&buff);
  }
  {
    char *buff;
    // create format specifiers before the debug output
    buff = __kmp_str_format(
        "__kmp_dispatch_next_algorithm: T#%%d exit status:%%d p_last:%%d "
        "p_lb:%%%s p_ub:%%%s p_st:%%%s\n",
        traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
    KD_TRACE(10, (buff, gtid, status, *p_last, *p_lb, *p_ub, *p_st));
    __kmp_str_free(&buff);
  }
#endif
  return status;
}

/* Define a macro for exiting __kmp_dispatch_next(). If status is 0 (no more
   work), then tell OMPT the loop is over. In some cases kmp_dispatch_fini()
   is not called. */
#if OMPT_SUPPORT && OMPT_OPTIONAL
#define OMPT_LOOP_END                                                          \
  if (status == 0) {                                                           \
    if (ompt_enabled.ompt_callback_work) {                                     \
      ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);              \
      ompt_task_info_t *task_info = __ompt_get_task_info_object(0);            \
      ompt_callbacks.ompt_callback(ompt_callback_work)(                        \
          ompt_work_loop, ompt_scope_end, &(team_info->parallel_data),         \
          &(task_info->task_data), 0, codeptr);                                \
    }                                                                          \
  }
// TODO: implement count
#else
#define OMPT_LOOP_END // no-op
#endif

#if KMP_STATS_ENABLED
#define KMP_STATS_LOOP_END                                                     \
  {                                                                            \
    kmp_int64 u, l, t, i;                                                      \
    l = (kmp_int64)(*p_lb);                                                    \
    u = (kmp_int64)(*p_ub);                                                    \
    i = (kmp_int64)(pr->u.p.st);                                               \
    if (status == 0) {                                                         \
      t = 0;                                                                   \
      KMP_POP_PARTITIONED_TIMER();                                             \
    } else if (i == 1) {                                                       \
      if (u >= l)                                                              \
        t = u - l + 1;                                                         \
      else                                                                     \
        t = 0;                                                                 \
    } else if (i < 0) {                                                        \
      if (l >= u)                                                              \
        t = (l - u) / (-i) + 1;                                                \
      else                                                                     \
        t = 0;                                                                 \
    } else {                                                                   \
      if (u >= l)                                                              \
        t = (u - l) / i + 1;                                                   \
      else                                                                     \
        t = 0;                                                                 \
    }                                                                          \
    KMP_COUNT_VALUE(OMP_loop_dynamic_iterations, t);                           \
  }
#else
#define KMP_STATS_LOOP_END /* Nothing */
#endif

template <typename T>
static int __kmp_dispatch_next(ident_t *loc, int gtid, kmp_int32 *p_last,
                               T *p_lb, T *p_ub,
                               typename traits_t<T>::signed_t *p_st
#if OMPT_SUPPORT && OMPT_OPTIONAL
                               ,
                               void *codeptr
#endif
                               ) {

  typedef typename traits_t<T>::unsigned_t UT;
  typedef typename traits_t<T>::signed_t ST;
  // This is potentially slightly misleading, schedule(runtime) will appear here
  // even if the actual runtime schedule is static. (Which points out a
  // disadvantage of schedule(runtime): even when static scheduling is used it
  // costs more than a compile time choice to use static scheduling would.)
  KMP_TIME_PARTITIONED_BLOCK(OMP_loop_dynamic_scheduling);

  int status;
  dispatch_private_info_template<T> *pr;
  kmp_info_t *th = __kmp_threads[gtid];
  kmp_team_t *team = th->th.th_team;

  KMP_DEBUG_ASSERT(p_lb && p_ub && p_st); // AC: these cannot be NULL
  KD_TRACE(
      1000,
      ("__kmp_dispatch_next: T#%d called p_lb:%p p_ub:%p p_st:%p p_last: %p\n",
       gtid, p_lb, p_ub, p_st, p_last));

  if (team->t.t_serialized) {
    /* NOTE: serialize this dispatch because we are not at the active level */
    pr = reinterpret_cast<dispatch_private_info_template<T> *>(
        th->th.th_dispatch->th_disp_buffer); /* top of the stack */
    KMP_DEBUG_ASSERT(pr);

    if ((status = (pr->u.p.tc != 0)) == 0) {
      *p_lb = 0;
      *p_ub = 0;
      //            if ( p_last != NULL )
      //                *p_last = 0;
      if (p_st != NULL)
        *p_st = 0;
      if (__kmp_env_consistency_check) {
        if (pr->pushed_ws != ct_none) {
          pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
        }
      }
    } else if (pr->flags.nomerge) {
      kmp_int32 last;
      T start;
      UT limit, trip, init;
      ST incr;
      T chunk = pr->u.p.parm1;

      KD_TRACE(100, ("__kmp_dispatch_next: T#%d kmp_sch_dynamic_chunked case\n",
                     gtid));

      init = chunk * pr->u.p.count++;
      trip = pr->u.p.tc - 1;

      if ((status = (init <= trip)) == 0) {
        *p_lb = 0;
        *p_ub = 0;
        //                if ( p_last != NULL )
        //                    *p_last = 0;
        if (p_st != NULL)
          *p_st = 0;
        if (__kmp_env_consistency_check) {
          if (pr->pushed_ws != ct_none) {
            pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
          }
        }
      } else {
        start = pr->u.p.lb;
        limit = chunk + init - 1;
        incr = pr->u.p.st;

        if ((last = (limit >= trip)) != 0) {
          limit = trip;
#if KMP_OS_WINDOWS
          pr->u.p.last_upper = pr->u.p.ub;
#endif /* KMP_OS_WINDOWS */
        }
        if (p_last != NULL)
          *p_last = last;
        if (p_st != NULL)
          *p_st = incr;
        if (incr == 1) {
          *p_lb = start + init;
          *p_ub = start + limit;
        } else {
          *p_lb = start + init * incr;
          *p_ub = start + limit * incr;
        }

        if (pr->flags.ordered) {
          pr->u.p.ordered_lower = init;
          pr->u.p.ordered_upper = limit;
#ifdef KMP_DEBUG
          {
            char *buff;
            // create format specifiers before the debug output
            buff = __kmp_str_format("__kmp_dispatch_next: T#%%d "
                                    "ordered_lower:%%%s ordered_upper:%%%s\n",
                                    traits_t<UT>::spec, traits_t<UT>::spec);
            KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower,
                            pr->u.p.ordered_upper));
            __kmp_str_free(&buff);
          }
#endif
        } // if
      } // if
    } else {
      pr->u.p.tc = 0;
      *p_lb = pr->u.p.lb;
      *p_ub = pr->u.p.ub;
#if KMP_OS_WINDOWS
      pr->u.p.last_upper = *p_ub;
#endif /* KMP_OS_WINDOWS */
      if (p_last != NULL)
        *p_last = TRUE;
      if (p_st != NULL)
        *p_st = pr->u.p.st;
    } // if
#ifdef KMP_DEBUG
    {
      char *buff;
      // create format specifiers before the debug output
      buff = __kmp_str_format(
          "__kmp_dispatch_next: T#%%d serialized case: p_lb:%%%s "
          "p_ub:%%%s p_st:%%%s p_last:%%p %%d  returning:%%d\n",
          traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
      KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, *p_st, p_last, *p_last, status));
      __kmp_str_free(&buff);
    }
#endif
#if INCLUDE_SSC_MARKS
    SSC_MARK_DISPATCH_NEXT();
#endif
    OMPT_LOOP_END;
    KMP_STATS_LOOP_END;
    return status;
  } else {
    kmp_int32 last = 0;
    dispatch_shared_info_template<T> volatile *sh;

    KMP_DEBUG_ASSERT(th->th.th_dispatch ==
                     &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);

    pr = reinterpret_cast<dispatch_private_info_template<T> *>(
        th->th.th_dispatch->th_dispatch_pr_current);
    KMP_DEBUG_ASSERT(pr);
    sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
        th->th.th_dispatch->th_dispatch_sh_current);
    KMP_DEBUG_ASSERT(sh);

#if KMP_USE_HIER_SCHED
    if (pr->flags.use_hier)
      status = sh->hier->next(loc, gtid, pr, &last, p_lb, p_ub, p_st);
    else
#endif // KMP_USE_HIER_SCHED
      status = __kmp_dispatch_next_algorithm<T>(gtid, pr, sh, &last, p_lb, p_ub,
                                                p_st, th->th.th_team_nproc,
                                                th->th.th_info.ds.ds_tid);
    // status == 0: no more iterations to execute
    if (status == 0) {
      UT num_done;

      num_done = test_then_inc<ST>((volatile ST *)&sh->u.s.num_done);
#ifdef KMP_DEBUG
      {
        char *buff;
        // create format specifiers before the debug output
        buff = __kmp_str_format(
            "__kmp_dispatch_next: T#%%d increment num_done:%%%s\n",
            traits_t<UT>::spec);
        KD_TRACE(10, (buff, gtid, sh->u.s.num_done));
        __kmp_str_free(&buff);
      }
#endif

#if KMP_USE_HIER_SCHED
      pr->flags.use_hier = FALSE;
#endif
      if ((ST)num_done == th->th.th_team_nproc - 1) {
#if (KMP_STATIC_STEAL_ENABLED)
        if (pr->schedule == kmp_sch_static_steal &&
            traits_t<T>::type_size > 4) {
          int i;
          int idx = (th->th.th_dispatch->th_disp_index - 1) %
                    __kmp_dispatch_num_buffers; // current loop index
          kmp_info_t **other_threads = team->t.t_threads;
          // loop complete, safe to destroy locks used for stealing
          for (i = 0; i < th->th.th_team_nproc; ++i) {
            dispatch_private_info_template<T> *buf =
                reinterpret_cast<dispatch_private_info_template<T> *>(
                    &other_threads[i]->th.th_dispatch->th_disp_buffer[idx]);
            kmp_lock_t *lck = buf->u.p.th_steal_lock;
            KMP_ASSERT(lck != NULL);
            __kmp_destroy_lock(lck);
            __kmp_free(lck);
            buf->u.p.th_steal_lock = NULL;
          }
        }
#endif
        /* NOTE: release this buffer to be reused */

        KMP_MB(); /* Flush all pending memory write invalidates.  */

        sh->u.s.num_done = 0;
        sh->u.s.iteration = 0;

        /* TODO replace with general release procedure? */
        if (pr->flags.ordered) {
          sh->u.s.ordered_iteration = 0;
        }

        KMP_MB(); /* Flush all pending memory write invalidates.  */

        sh->buffer_index += __kmp_dispatch_num_buffers;
        KD_TRACE(100, ("__kmp_dispatch_next: T#%d change buffer_index:%d\n",
                       gtid, sh->buffer_index));

        KMP_MB(); /* Flush all pending memory write invalidates.  */

      } // if
      if (__kmp_env_consistency_check) {
        if (pr->pushed_ws != ct_none) {
          pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
        }
      }

      th->th.th_dispatch->th_deo_fcn = NULL;
      th->th.th_dispatch->th_dxo_fcn = NULL;
      th->th.th_dispatch->th_dispatch_sh_current = NULL;
      th->th.th_dispatch->th_dispatch_pr_current = NULL;
    } // if (status == 0)
#if KMP_OS_WINDOWS
    else if (last) {
      pr->u.p.last_upper = pr->u.p.ub;
    }
#endif /* KMP_OS_WINDOWS */
    if (p_last != NULL && status != 0)
      *p_last = last;
  } // if

#ifdef KMP_DEBUG
  {
    char *buff;
    // create format specifiers before the debug output
    buff = __kmp_str_format(
        "__kmp_dispatch_next: T#%%d normal case: "
        "p_lb:%%%s p_ub:%%%s p_st:%%%s p_last:%%p (%%d) returning:%%d\n",
        traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
    KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, p_st ? *p_st : 0, p_last,
                  (p_last ? *p_last : 0), status));
    __kmp_str_free(&buff);
  }
#endif
#if INCLUDE_SSC_MARKS
  SSC_MARK_DISPATCH_NEXT();
#endif
  OMPT_LOOP_END;
  KMP_STATS_LOOP_END;
  return status;
}

template <typename T>
static void __kmp_dist_get_bounds(ident_t *loc, kmp_int32 gtid,
                                  kmp_int32 *plastiter, T *plower, T *pupper,
                                  typename traits_t<T>::signed_t incr) {
  typedef typename traits_t<T>::unsigned_t UT;
  kmp_uint32 team_id;
  kmp_uint32 nteams;
  UT trip_count;
  kmp_team_t *team;
  kmp_info_t *th;

  KMP_DEBUG_ASSERT(plastiter && plower && pupper);
  KE_TRACE(10, ("__kmpc_dist_get_bounds called (%d)\n", gtid));
#ifdef KMP_DEBUG
  typedef typename traits_t<T>::signed_t ST;
  {
    char *buff;
    // create format specifiers before the debug output
    buff = __kmp_str_format("__kmpc_dist_get_bounds: T#%%d liter=%%d "
                            "iter=(%%%s, %%%s, %%%s) signed?<%s>\n",
                            traits_t<T>::spec, traits_t<T>::spec,
                            traits_t<ST>::spec, traits_t<T>::spec);
    KD_TRACE(100, (buff, gtid, *plastiter, *plower, *pupper, incr));
    __kmp_str_free(&buff);
  }
#endif

  if (__kmp_env_consistency_check) {
    if (incr == 0) {
      __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited, ct_pdo,
                            loc);
    }
    if (incr > 0 ? (*pupper < *plower) : (*plower < *pupper)) {
      // The loop is illegal.
      // Some zero-trip loops maintained by compiler, e.g.:
      //   for(i=10;i<0;++i) // lower >= upper - run-time check
      //   for(i=0;i>10;--i) // lower <= upper - run-time check
      //   for(i=0;i>10;++i) // incr > 0       - compile-time check
      //   for(i=10;i<0;--i) // incr < 0       - compile-time check
      // Compiler does not check the following illegal loops:
      //   for(i=0;i<10;i+=incr) // where incr<0
      //   for(i=10;i>0;i-=incr) // where incr<0
      __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrIllegal, ct_pdo, loc);
    }
  }
  th = __kmp_threads[gtid];
  team = th->th.th_team;
  KMP_DEBUG_ASSERT(th->th.th_teams_microtask); // we are in the teams construct
  nteams = th->th.th_teams_size.nteams;
  team_id = team->t.t_master_tid;
  KMP_DEBUG_ASSERT(nteams == (kmp_uint32)team->t.t_parent->t.t_nproc);

  // compute global trip count
  if (incr == 1) {
    trip_count = *pupper - *plower + 1;
  } else if (incr == -1) {
    trip_count = *plower - *pupper + 1;
  } else if (incr > 0) {
    // upper-lower can exceed the limit of signed type
    trip_count = (UT)(*pupper - *plower) / incr + 1;
  } else {
    trip_count = (UT)(*plower - *pupper) / (-incr) + 1;
  }

  if (trip_count <= nteams) {
    KMP_DEBUG_ASSERT(
        __kmp_static == kmp_sch_static_greedy ||
        __kmp_static ==
            kmp_sch_static_balanced); // Unknown static scheduling type.
    // only some teams get single iteration, others get nothing
    if (team_id < trip_count) {
      *pupper = *plower = *plower + team_id * incr;
    } else {
      *plower = *pupper + incr; // zero-trip loop
    }
    if (plastiter != NULL)
      *plastiter = (team_id == trip_count - 1);
  } else {
    if (__kmp_static == kmp_sch_static_balanced) {
      UT chunk = trip_count / nteams;
      UT extras = trip_count % nteams;
      *plower +=
          incr * (team_id * chunk + (team_id < extras ? team_id : extras));
      *pupper = *plower + chunk * incr - (team_id < extras ? 0 : incr);
      if (plastiter != NULL)
        *plastiter = (team_id == nteams - 1);
    } else {
      T chunk_inc_count =
          (trip_count / nteams + ((trip_count % nteams) ? 1 : 0)) * incr;
      T upper = *pupper;
      KMP_DEBUG_ASSERT(__kmp_static == kmp_sch_static_greedy);
      // Unknown static scheduling type.
      *plower += team_id * chunk_inc_count;
      *pupper = *plower + chunk_inc_count - incr;
      // Check/correct bounds if needed
      if (incr > 0) {
        if (*pupper < *plower)
          *pupper = traits_t<T>::max_value;
        if (plastiter != NULL)
          *plastiter = *plower <= upper && *pupper > upper - incr;
        if (*pupper > upper)
          *pupper = upper; // tracker C73258
      } else {
        if (*pupper > *plower)
          *pupper = traits_t<T>::min_value;
        if (plastiter != NULL)
          *plastiter = *plower >= upper && *pupper < upper - incr;
        if (*pupper < upper)
          *pupper = upper; // tracker C73258
      }
    }
  }
}

//-----------------------------------------------------------------------------
// Dispatch routines
//    Transfer call to template< type T >
//    __kmp_dispatch_init( ident_t *loc, int gtid, enum sched_type schedule,
//                         T lb, T ub, ST st, ST chunk )
extern "C" {

/*!
@ingroup WORK_SHARING
@{
@param loc Source location
@param gtid Global thread id
@param schedule Schedule type
@param lb  Lower bound
@param ub  Upper bound
@param st  Step (or increment if you prefer)
@param chunk The chunk size to block with

This function prepares the runtime to start a dynamically scheduled for loop,
saving the loop arguments.
These functions are all identical apart from the types of the arguments.
*/

void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
                            enum sched_type schedule, kmp_int32 lb,
                            kmp_int32 ub, kmp_int32 st, kmp_int32 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true);
}
/*!
See @ref __kmpc_dispatch_init_4
*/
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
                             enum sched_type schedule, kmp_uint32 lb,
                             kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true);
}

/*!
See @ref __kmpc_dispatch_init_4
*/
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
                            enum sched_type schedule, kmp_int64 lb,
                            kmp_int64 ub, kmp_int64 st, kmp_int64 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true);
}

/*!
See @ref __kmpc_dispatch_init_4
*/
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
                             enum sched_type schedule, kmp_uint64 lb,
                             kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true);
}

/*!
See @ref __kmpc_dispatch_init_4

Difference from __kmpc_dispatch_init set of functions is these functions
are called for composite distribute parallel for construct. Thus before
regular iterations dispatching we need to calc per-team iteration space.

These functions are all identical apart from the types of the arguments.
*/
void __kmpc_dist_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
                                 enum sched_type schedule, kmp_int32 *p_last,
                                 kmp_int32 lb, kmp_int32 ub, kmp_int32 st,
                                 kmp_int32 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dist_get_bounds<kmp_int32>(loc, gtid, p_last, &lb, &ub, st);
  __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true);
}

void __kmpc_dist_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
                                  enum sched_type schedule, kmp_int32 *p_last,
                                  kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st,
                                  kmp_int32 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dist_get_bounds<kmp_uint32>(loc, gtid, p_last, &lb, &ub, st);
  __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true);
}

void __kmpc_dist_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
                                 enum sched_type schedule, kmp_int32 *p_last,
                                 kmp_int64 lb, kmp_int64 ub, kmp_int64 st,
                                 kmp_int64 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dist_get_bounds<kmp_int64>(loc, gtid, p_last, &lb, &ub, st);
  __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true);
}

void __kmpc_dist_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
                                  enum sched_type schedule, kmp_int32 *p_last,
                                  kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st,
                                  kmp_int64 chunk) {
  KMP_DEBUG_ASSERT(__kmp_init_serial);
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  __kmp_dist_get_bounds<kmp_uint64>(loc, gtid, p_last, &lb, &ub, st);
  __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true);
}

/*!
@param loc Source code location
@param gtid Global thread id
@param p_last Pointer to a flag set to one if this is the last chunk or zero
otherwise
@param p_lb   Pointer to the lower bound for the next chunk of work
@param p_ub   Pointer to the upper bound for the next chunk of work
@param p_st   Pointer to the stride for the next chunk of work
@return one if there is work to be done, zero otherwise

Get the next dynamically allocated chunk of work for this thread.
If there is no more work, then the lb,ub and stride need not be modified.
*/
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
                           kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  return __kmp_dispatch_next<kmp_int32>(loc, gtid, p_last, p_lb, p_ub, p_st
#if OMPT_SUPPORT && OMPT_OPTIONAL
                                        ,
                                        OMPT_LOAD_RETURN_ADDRESS(gtid)
#endif
                                            );
}

/*!
See @ref __kmpc_dispatch_next_4
*/
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
                            kmp_uint32 *p_lb, kmp_uint32 *p_ub,
                            kmp_int32 *p_st) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  return __kmp_dispatch_next<kmp_uint32>(loc, gtid, p_last, p_lb, p_ub, p_st
#if OMPT_SUPPORT && OMPT_OPTIONAL
                                         ,
                                         OMPT_LOAD_RETURN_ADDRESS(gtid)
#endif
                                             );
}

/*!
See @ref __kmpc_dispatch_next_4
*/
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
                           kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  return __kmp_dispatch_next<kmp_int64>(loc, gtid, p_last, p_lb, p_ub, p_st
#if OMPT_SUPPORT && OMPT_OPTIONAL
                                        ,
                                        OMPT_LOAD_RETURN_ADDRESS(gtid)
#endif
                                            );
}

/*!
See @ref __kmpc_dispatch_next_4
*/
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
                            kmp_uint64 *p_lb, kmp_uint64 *p_ub,
                            kmp_int64 *p_st) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
  OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
  return __kmp_dispatch_next<kmp_uint64>(loc, gtid, p_last, p_lb, p_ub, p_st
#if OMPT_SUPPORT && OMPT_OPTIONAL
                                         ,
                                         OMPT_LOAD_RETURN_ADDRESS(gtid)
#endif
                                             );
}

/*!
@param loc Source code location
@param gtid Global thread id

Mark the end of a dynamic loop.
*/
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish<kmp_uint32>(gtid, loc);
}

/*!
See @ref __kmpc_dispatch_fini_4
*/
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish<kmp_uint64>(gtid, loc);
}

/*!
See @ref __kmpc_dispatch_fini_4
*/
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish<kmp_uint32>(gtid, loc);
}

/*!
See @ref __kmpc_dispatch_fini_4
*/
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish<kmp_uint64>(gtid, loc);
}
/*! @} */

//-----------------------------------------------------------------------------
// Non-template routines from kmp_dispatch.cpp used in other sources

kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker) {
  return value == checker;
}

kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker) {
  return value != checker;
}

kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker) {
  return value < checker;
}

kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker) {
  return value >= checker;
}

kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker) {
  return value <= checker;
}

kmp_uint32
__kmp_wait_4(volatile kmp_uint32 *spinner, kmp_uint32 checker,
             kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
             void *obj // Higher-level synchronization object, or NULL.
             ) {
  // note: we may not belong to a team at this point
  volatile kmp_uint32 *spin = spinner;
  kmp_uint32 check = checker;
  kmp_uint32 spins;
  kmp_uint32 (*f)(kmp_uint32, kmp_uint32) = pred;
  kmp_uint32 r;

  KMP_FSYNC_SPIN_INIT(obj, CCAST(kmp_uint32 *, spin));
  KMP_INIT_YIELD(spins);
  // main wait spin loop
  while (!f(r = TCR_4(*spin), check)) {
    KMP_FSYNC_SPIN_PREPARE(obj);
    /* GEH - remove this since it was accidentally introduced when kmp_wait was
       split. It causes problems with infinite recursion because of exit lock */
    /* if ( TCR_4(__kmp_global.g.g_done) && __kmp_global.g.g_abort)
        __kmp_abort_thread(); */
    KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
  }
  KMP_FSYNC_SPIN_ACQUIRED(obj);
  return r;
}

void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
                      kmp_uint32 (*pred)(void *, kmp_uint32),
                      void *obj // Higher-level synchronization object, or NULL.
                      ) {
  // note: we may not belong to a team at this point
  void *spin = spinner;
  kmp_uint32 check = checker;
  kmp_uint32 spins;
  kmp_uint32 (*f)(void *, kmp_uint32) = pred;

  KMP_FSYNC_SPIN_INIT(obj, spin);
  KMP_INIT_YIELD(spins);
  // main wait spin loop
  while (!f(spin, check)) {
    KMP_FSYNC_SPIN_PREPARE(obj);
    /* if we have waited a bit, or are noversubscribed, yield */
    /* pause is in the following code */
    KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
  }
  KMP_FSYNC_SPIN_ACQUIRED(obj);
}

} // extern "C"

#ifdef KMP_GOMP_COMPAT

void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
                               enum sched_type schedule, kmp_int32 lb,
                               kmp_int32 ub, kmp_int32 st, kmp_int32 chunk,
                               int push_ws) {
  __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk,
                                 push_ws);
}

void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
                                enum sched_type schedule, kmp_uint32 lb,
                                kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk,
                                int push_ws) {
  __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk,
                                  push_ws);
}

void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
                               enum sched_type schedule, kmp_int64 lb,
                               kmp_int64 ub, kmp_int64 st, kmp_int64 chunk,
                               int push_ws) {
  __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk,
                                 push_ws);
}

void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
                                enum sched_type schedule, kmp_uint64 lb,
                                kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk,
                                int push_ws) {
  __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk,
                                  push_ws);
}

void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc);
}

void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc);
}

void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc);
}

void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid) {
  __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc);
}

#endif /* KMP_GOMP_COMPAT */

/* ------------------------------------------------------------------------ */