CodeGenDAGPatterns.cpp 169 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cstdio>
#include <iterator>
#include <set>
using namespace llvm;

#define DEBUG_TYPE "dag-patterns"

static inline bool isIntegerOrPtr(MVT VT) {
  return VT.isInteger() || VT == MVT::iPTR;
}
static inline bool isFloatingPoint(MVT VT) {
  return VT.isFloatingPoint();
}
static inline bool isVector(MVT VT) {
  return VT.isVector();
}
static inline bool isScalar(MVT VT) {
  return !VT.isVector();
}

template <typename Predicate>
static bool berase_if(MachineValueTypeSet &S, Predicate P) {
  bool Erased = false;
  // It is ok to iterate over MachineValueTypeSet and remove elements from it
  // at the same time.
  for (MVT T : S) {
    if (!P(T))
      continue;
    Erased = true;
    S.erase(T);
  }
  return Erased;
}

// --- TypeSetByHwMode

// This is a parameterized type-set class. For each mode there is a list
// of types that are currently possible for a given tree node. Type
// inference will apply to each mode separately.

TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
  for (const ValueTypeByHwMode &VVT : VTList) {
    insert(VVT);
    AddrSpaces.push_back(VVT.PtrAddrSpace);
  }
}

bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
  for (const auto &I : *this) {
    if (I.second.size() > 1)
      return false;
    if (!AllowEmpty && I.second.empty())
      return false;
  }
  return true;
}

ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
  assert(isValueTypeByHwMode(true) &&
         "The type set has multiple types for at least one HW mode");
  ValueTypeByHwMode VVT;
  auto ASI = AddrSpaces.begin();

  for (const auto &I : *this) {
    MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
    VVT.getOrCreateTypeForMode(I.first, T);
    if (ASI != AddrSpaces.end())
      VVT.PtrAddrSpace = *ASI++;
  }
  return VVT;
}

bool TypeSetByHwMode::isPossible() const {
  for (const auto &I : *this)
    if (!I.second.empty())
      return true;
  return false;
}

bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
  bool Changed = false;
  bool ContainsDefault = false;
  MVT DT = MVT::Other;

  SmallDenseSet<unsigned, 4> Modes;
  for (const auto &P : VVT) {
    unsigned M = P.first;
    Modes.insert(M);
    // Make sure there exists a set for each specific mode from VVT.
    Changed |= getOrCreate(M).insert(P.second).second;
    // Cache VVT's default mode.
    if (DefaultMode == M) {
      ContainsDefault = true;
      DT = P.second;
    }
  }

  // If VVT has a default mode, add the corresponding type to all
  // modes in "this" that do not exist in VVT.
  if (ContainsDefault)
    for (auto &I : *this)
      if (!Modes.count(I.first))
        Changed |= I.second.insert(DT).second;

  return Changed;
}

// Constrain the type set to be the intersection with VTS.
bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
  bool Changed = false;
  if (hasDefault()) {
    for (const auto &I : VTS) {
      unsigned M = I.first;
      if (M == DefaultMode || hasMode(M))
        continue;
      Map.insert({M, Map.at(DefaultMode)});
      Changed = true;
    }
  }

  for (auto &I : *this) {
    unsigned M = I.first;
    SetType &S = I.second;
    if (VTS.hasMode(M) || VTS.hasDefault()) {
      Changed |= intersect(I.second, VTS.get(M));
    } else if (!S.empty()) {
      S.clear();
      Changed = true;
    }
  }
  return Changed;
}

template <typename Predicate>
bool TypeSetByHwMode::constrain(Predicate P) {
  bool Changed = false;
  for (auto &I : *this)
    Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
  return Changed;
}

template <typename Predicate>
bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
  assert(empty());
  for (const auto &I : VTS) {
    SetType &S = getOrCreate(I.first);
    for (auto J : I.second)
      if (P(J))
        S.insert(J);
  }
  return !empty();
}

void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
  SmallVector<unsigned, 4> Modes;
  Modes.reserve(Map.size());

  for (const auto &I : *this)
    Modes.push_back(I.first);
  if (Modes.empty()) {
    OS << "{}";
    return;
  }
  array_pod_sort(Modes.begin(), Modes.end());

  OS << '{';
  for (unsigned M : Modes) {
    OS << ' ' << getModeName(M) << ':';
    writeToStream(get(M), OS);
  }
  OS << " }";
}

void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
  SmallVector<MVT, 4> Types(S.begin(), S.end());
  array_pod_sort(Types.begin(), Types.end());

  OS << '[';
  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    OS << ValueTypeByHwMode::getMVTName(Types[i]);
    if (i != e-1)
      OS << ' ';
  }
  OS << ']';
}

bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
  // The isSimple call is much quicker than hasDefault - check this first.
  bool IsSimple = isSimple();
  bool VTSIsSimple = VTS.isSimple();
  if (IsSimple && VTSIsSimple)
    return *begin() == *VTS.begin();

  // Speedup: We have a default if the set is simple.
  bool HaveDefault = IsSimple || hasDefault();
  bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
  if (HaveDefault != VTSHaveDefault)
    return false;

  SmallDenseSet<unsigned, 4> Modes;
  for (auto &I : *this)
    Modes.insert(I.first);
  for (const auto &I : VTS)
    Modes.insert(I.first);

  if (HaveDefault) {
    // Both sets have default mode.
    for (unsigned M : Modes) {
      if (get(M) != VTS.get(M))
        return false;
    }
  } else {
    // Neither set has default mode.
    for (unsigned M : Modes) {
      // If there is no default mode, an empty set is equivalent to not having
      // the corresponding mode.
      bool NoModeThis = !hasMode(M) || get(M).empty();
      bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
      if (NoModeThis != NoModeVTS)
        return false;
      if (!NoModeThis)
        if (get(M) != VTS.get(M))
          return false;
    }
  }

  return true;
}

namespace llvm {
  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
    T.writeToStream(OS);
    return OS;
  }
}

LLVM_DUMP_METHOD
void TypeSetByHwMode::dump() const {
  dbgs() << *this << '\n';
}

bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
  bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
  auto Int = [&In](MVT T) -> bool { return !In.count(T); };

  if (OutP == InP)
    return berase_if(Out, Int);

  // Compute the intersection of scalars separately to account for only
  // one set containing iPTR.
  // The intersection of iPTR with a set of integer scalar types that does not
  // include iPTR will result in the most specific scalar type:
  // - iPTR is more specific than any set with two elements or more
  // - iPTR is less specific than any single integer scalar type.
  // For example
  // { iPTR } * { i32 }     -> { i32 }
  // { iPTR } * { i32 i64 } -> { iPTR }
  // and
  // { iPTR i32 } * { i32 }          -> { i32 }
  // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
  // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }

  // Compute the difference between the two sets in such a way that the
  // iPTR is in the set that is being subtracted. This is to see if there
  // are any extra scalars in the set without iPTR that are not in the
  // set containing iPTR. Then the iPTR could be considered a "wildcard"
  // matching these scalars. If there is only one such scalar, it would
  // replace the iPTR, if there are more, the iPTR would be retained.
  SetType Diff;
  if (InP) {
    Diff = Out;
    berase_if(Diff, [&In](MVT T) { return In.count(T); });
    // Pre-remove these elements and rely only on InP/OutP to determine
    // whether a change has been made.
    berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
  } else {
    Diff = In;
    berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
    Out.erase(MVT::iPTR);
  }

  // The actual intersection.
  bool Changed = berase_if(Out, Int);
  unsigned NumD = Diff.size();
  if (NumD == 0)
    return Changed;

  if (NumD == 1) {
    Out.insert(*Diff.begin());
    // This is a change only if Out was the one with iPTR (which is now
    // being replaced).
    Changed |= OutP;
  } else {
    // Multiple elements from Out are now replaced with iPTR.
    Out.insert(MVT::iPTR);
    Changed |= !OutP;
  }
  return Changed;
}

bool TypeSetByHwMode::validate() const {
#ifndef NDEBUG
  if (empty())
    return true;
  bool AllEmpty = true;
  for (const auto &I : *this)
    AllEmpty &= I.second.empty();
  return !AllEmpty;
#endif
  return true;
}

// --- TypeInfer

bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
                                const TypeSetByHwMode &In) {
  ValidateOnExit _1(Out, *this);
  In.validate();
  if (In.empty() || Out == In || TP.hasError())
    return false;
  if (Out.empty()) {
    Out = In;
    return true;
  }

  bool Changed = Out.constrain(In);
  if (Changed && Out.empty())
    TP.error("Type contradiction");

  return Changed;
}

bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  assert(!Out.empty() && "cannot pick from an empty set");

  bool Changed = false;
  for (auto &I : Out) {
    TypeSetByHwMode::SetType &S = I.second;
    if (S.size() <= 1)
      continue;
    MVT T = *S.begin(); // Pick the first element.
    S.clear();
    S.insert(T);
    Changed = true;
  }
  return Changed;
}

bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isIntegerOrPtr);

  return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
}

bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isFloatingPoint);

  return Out.assign_if(getLegalTypes(), isFloatingPoint);
}

bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isScalar);

  return Out.assign_if(getLegalTypes(), isScalar);
}

bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isVector);

  return Out.assign_if(getLegalTypes(), isVector);
}

bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError() || !Out.empty())
    return false;

  Out = getLegalTypes();
  return true;
}

template <typename Iter, typename Pred, typename Less>
static Iter min_if(Iter B, Iter E, Pred P, Less L) {
  if (B == E)
    return E;
  Iter Min = E;
  for (Iter I = B; I != E; ++I) {
    if (!P(*I))
      continue;
    if (Min == E || L(*I, *Min))
      Min = I;
  }
  return Min;
}

template <typename Iter, typename Pred, typename Less>
static Iter max_if(Iter B, Iter E, Pred P, Less L) {
  if (B == E)
    return E;
  Iter Max = E;
  for (Iter I = B; I != E; ++I) {
    if (!P(*I))
      continue;
    if (Max == E || L(*Max, *I))
      Max = I;
  }
  return Max;
}

/// Make sure that for each type in Small, there exists a larger type in Big.
bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
                                   TypeSetByHwMode &Big) {
  ValidateOnExit _1(Small, *this), _2(Big, *this);
  if (TP.hasError())
    return false;
  bool Changed = false;

  if (Small.empty())
    Changed |= EnforceAny(Small);
  if (Big.empty())
    Changed |= EnforceAny(Big);

  assert(Small.hasDefault() && Big.hasDefault());

  std::vector<unsigned> Modes = union_modes(Small, Big);

  // 1. Only allow integer or floating point types and make sure that
  //    both sides are both integer or both floating point.
  // 2. Make sure that either both sides have vector types, or neither
  //    of them does.
  for (unsigned M : Modes) {
    TypeSetByHwMode::SetType &S = Small.get(M);
    TypeSetByHwMode::SetType &B = Big.get(M);

    if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
      auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
      Changed |= berase_if(S, NotInt);
      Changed |= berase_if(B, NotInt);
    } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
      auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
      Changed |= berase_if(S, NotFP);
      Changed |= berase_if(B, NotFP);
    } else if (S.empty() || B.empty()) {
      Changed = !S.empty() || !B.empty();
      S.clear();
      B.clear();
    } else {
      TP.error("Incompatible types");
      return Changed;
    }

    if (none_of(S, isVector) || none_of(B, isVector)) {
      Changed |= berase_if(S, isVector);
      Changed |= berase_if(B, isVector);
    }
  }

  auto LT = [](MVT A, MVT B) -> bool {
    // Always treat non-scalable MVTs as smaller than scalable MVTs for the
    // purposes of ordering.
    auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
                                 A.getSizeInBits());
    auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
                                 B.getSizeInBits());
    return ASize < BSize;
  };
  auto SameKindLE = [](MVT A, MVT B) -> bool {
    // This function is used when removing elements: when a vector is compared
    // to a non-vector or a scalable vector to any non-scalable MVT, it should
    // return false (to avoid removal).
    if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
        std::make_tuple(B.isVector(), B.isScalableVector()))
      return false;

    return std::make_tuple(A.getScalarSizeInBits(), A.getSizeInBits()) <=
           std::make_tuple(B.getScalarSizeInBits(), B.getSizeInBits());
  };

  for (unsigned M : Modes) {
    TypeSetByHwMode::SetType &S = Small.get(M);
    TypeSetByHwMode::SetType &B = Big.get(M);
    // MinS = min scalar in Small, remove all scalars from Big that are
    // smaller-or-equal than MinS.
    auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
    if (MinS != S.end())
      Changed |= berase_if(B, std::bind(SameKindLE,
                                        std::placeholders::_1, *MinS));

    // MaxS = max scalar in Big, remove all scalars from Small that are
    // larger than MaxS.
    auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
    if (MaxS != B.end())
      Changed |= berase_if(S, std::bind(SameKindLE,
                                        *MaxS, std::placeholders::_1));

    // MinV = min vector in Small, remove all vectors from Big that are
    // smaller-or-equal than MinV.
    auto MinV = min_if(S.begin(), S.end(), isVector, LT);
    if (MinV != S.end())
      Changed |= berase_if(B, std::bind(SameKindLE,
                                        std::placeholders::_1, *MinV));

    // MaxV = max vector in Big, remove all vectors from Small that are
    // larger than MaxV.
    auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
    if (MaxV != B.end())
      Changed |= berase_if(S, std::bind(SameKindLE,
                                        *MaxV, std::placeholders::_1));
  }

  return Changed;
}

/// 1. Ensure that for each type T in Vec, T is a vector type, and that
///    for each type U in Elem, U is a scalar type.
/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
///    type T in Vec, such that U is the element type of T.
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
                                       TypeSetByHwMode &Elem) {
  ValidateOnExit _1(Vec, *this), _2(Elem, *this);
  if (TP.hasError())
    return false;
  bool Changed = false;

  if (Vec.empty())
    Changed |= EnforceVector(Vec);
  if (Elem.empty())
    Changed |= EnforceScalar(Elem);

  for (unsigned M : union_modes(Vec, Elem)) {
    TypeSetByHwMode::SetType &V = Vec.get(M);
    TypeSetByHwMode::SetType &E = Elem.get(M);

    Changed |= berase_if(V, isScalar);  // Scalar = !vector
    Changed |= berase_if(E, isVector);  // Vector = !scalar
    assert(!V.empty() && !E.empty());

    SmallSet<MVT,4> VT, ST;
    // Collect element types from the "vector" set.
    for (MVT T : V)
      VT.insert(T.getVectorElementType());
    // Collect scalar types from the "element" set.
    for (MVT T : E)
      ST.insert(T);

    // Remove from V all (vector) types whose element type is not in S.
    Changed |= berase_if(V, [&ST](MVT T) -> bool {
                              return !ST.count(T.getVectorElementType());
                            });
    // Remove from E all (scalar) types, for which there is no corresponding
    // type in V.
    Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
  }

  return Changed;
}

bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
                                       const ValueTypeByHwMode &VVT) {
  TypeSetByHwMode Tmp(VVT);
  ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
  return EnforceVectorEltTypeIs(Vec, Tmp);
}

/// Ensure that for each type T in Sub, T is a vector type, and there
/// exists a type U in Vec such that U is a vector type with the same
/// element type as T and at least as many elements as T.
bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
                                             TypeSetByHwMode &Sub) {
  ValidateOnExit _1(Vec, *this), _2(Sub, *this);
  if (TP.hasError())
    return false;

  /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
  auto IsSubVec = [](MVT B, MVT P) -> bool {
    if (!B.isVector() || !P.isVector())
      return false;
    // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
    // but until there are obvious use-cases for this, keep the
    // types separate.
    if (B.isScalableVector() != P.isScalableVector())
      return false;
    if (B.getVectorElementType() != P.getVectorElementType())
      return false;
    return B.getVectorNumElements() < P.getVectorNumElements();
  };

  /// Return true if S has no element (vector type) that T is a sub-vector of,
  /// i.e. has the same element type as T and more elements.
  auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
    for (auto I : S)
      if (IsSubVec(T, I))
        return false;
    return true;
  };

  /// Return true if S has no element (vector type) that T is a super-vector
  /// of, i.e. has the same element type as T and fewer elements.
  auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
    for (auto I : S)
      if (IsSubVec(I, T))
        return false;
    return true;
  };

  bool Changed = false;

  if (Vec.empty())
    Changed |= EnforceVector(Vec);
  if (Sub.empty())
    Changed |= EnforceVector(Sub);

  for (unsigned M : union_modes(Vec, Sub)) {
    TypeSetByHwMode::SetType &S = Sub.get(M);
    TypeSetByHwMode::SetType &V = Vec.get(M);

    Changed |= berase_if(S, isScalar);

    // Erase all types from S that are not sub-vectors of a type in V.
    Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));

    // Erase all types from V that are not super-vectors of a type in S.
    Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
  }

  return Changed;
}

/// 1. Ensure that V has a scalar type iff W has a scalar type.
/// 2. Ensure that for each vector type T in V, there exists a vector
///    type U in W, such that T and U have the same number of elements.
/// 3. Ensure that for each vector type U in W, there exists a vector
///    type T in V, such that T and U have the same number of elements
///    (reverse of 2).
bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
  ValidateOnExit _1(V, *this), _2(W, *this);
  if (TP.hasError())
    return false;

  bool Changed = false;
  if (V.empty())
    Changed |= EnforceAny(V);
  if (W.empty())
    Changed |= EnforceAny(W);

  // An actual vector type cannot have 0 elements, so we can treat scalars
  // as zero-length vectors. This way both vectors and scalars can be
  // processed identically.
  auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
    return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
  };

  for (unsigned M : union_modes(V, W)) {
    TypeSetByHwMode::SetType &VS = V.get(M);
    TypeSetByHwMode::SetType &WS = W.get(M);

    SmallSet<unsigned,2> VN, WN;
    for (MVT T : VS)
      VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
    for (MVT T : WS)
      WN.insert(T.isVector() ? T.getVectorNumElements() : 0);

    Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
    Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
  }
  return Changed;
}

/// 1. Ensure that for each type T in A, there exists a type U in B,
///    such that T and U have equal size in bits.
/// 2. Ensure that for each type U in B, there exists a type T in A
///    such that T and U have equal size in bits (reverse of 1).
bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
  ValidateOnExit _1(A, *this), _2(B, *this);
  if (TP.hasError())
    return false;
  bool Changed = false;
  if (A.empty())
    Changed |= EnforceAny(A);
  if (B.empty())
    Changed |= EnforceAny(B);

  auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
    return !Sizes.count(T.getSizeInBits());
  };

  for (unsigned M : union_modes(A, B)) {
    TypeSetByHwMode::SetType &AS = A.get(M);
    TypeSetByHwMode::SetType &BS = B.get(M);
    SmallSet<unsigned,2> AN, BN;

    for (MVT T : AS)
      AN.insert(T.getSizeInBits());
    for (MVT T : BS)
      BN.insert(T.getSizeInBits());

    Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
    Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
  }

  return Changed;
}

void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
  ValidateOnExit _1(VTS, *this);
  const TypeSetByHwMode &Legal = getLegalTypes();
  assert(Legal.isDefaultOnly() && "Default-mode only expected");
  const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);

  for (auto &I : VTS)
    expandOverloads(I.second, LegalTypes);
}

void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
                                const TypeSetByHwMode::SetType &Legal) {
  std::set<MVT> Ovs;
  for (MVT T : Out) {
    if (!T.isOverloaded())
      continue;

    Ovs.insert(T);
    // MachineValueTypeSet allows iteration and erasing.
    Out.erase(T);
  }

  for (MVT Ov : Ovs) {
    switch (Ov.SimpleTy) {
      case MVT::iPTRAny:
        Out.insert(MVT::iPTR);
        return;
      case MVT::iAny:
        for (MVT T : MVT::integer_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::integer_scalable_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      case MVT::fAny:
        for (MVT T : MVT::fp_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::fp_scalable_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      case MVT::vAny:
        for (MVT T : MVT::vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      case MVT::Any:
        for (MVT T : MVT::all_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      default:
        break;
    }
  }
}

const TypeSetByHwMode &TypeInfer::getLegalTypes() {
  if (!LegalTypesCached) {
    TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
    // Stuff all types from all modes into the default mode.
    const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
    for (const auto &I : LTS)
      LegalTypes.insert(I.second);
    LegalTypesCached = true;
  }
  assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
  return LegalCache;
}

#ifndef NDEBUG
TypeInfer::ValidateOnExit::~ValidateOnExit() {
  if (Infer.Validate && !VTS.validate()) {
    dbgs() << "Type set is empty for each HW mode:\n"
              "possible type contradiction in the pattern below "
              "(use -print-records with llvm-tblgen to see all "
              "expanded records).\n";
    Infer.TP.dump();
    llvm_unreachable(nullptr);
  }
}
#endif


//===----------------------------------------------------------------------===//
// ScopedName Implementation
//===----------------------------------------------------------------------===//

bool ScopedName::operator==(const ScopedName &o) const {
  return Scope == o.Scope && Identifier == o.Identifier;
}

bool ScopedName::operator!=(const ScopedName &o) const {
  return !(*this == o);
}


//===----------------------------------------------------------------------===//
// TreePredicateFn Implementation
//===----------------------------------------------------------------------===//

/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
  assert(
      (!hasPredCode() || !hasImmCode()) &&
      ".td file corrupt: can't have a node predicate *and* an imm predicate");
}

bool TreePredicateFn::hasPredCode() const {
  return isLoad() || isStore() || isAtomic() ||
         !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
}

std::string TreePredicateFn::getPredCode() const {
  std::string Code = "";

  if (!isLoad() && !isStore() && !isAtomic()) {
    Record *MemoryVT = getMemoryVT();

    if (MemoryVT)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "MemoryVT requires IsLoad or IsStore");
  }

  if (!isLoad() && !isStore()) {
    if (isUnindexed())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsUnindexed requires IsLoad or IsStore");

    Record *ScalarMemoryVT = getScalarMemoryVT();

    if (ScalarMemoryVT)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "ScalarMemoryVT requires IsLoad or IsStore");
  }

  if (isLoad() + isStore() + isAtomic() > 1)
    PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                    "IsLoad, IsStore, and IsAtomic are mutually exclusive");

  if (isLoad()) {
    if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
        !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
        getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
        getMinAlignment() < 1)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsLoad cannot be used by itself");
  } else {
    if (isNonExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsNonExtLoad requires IsLoad");
    if (isAnyExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAnyExtLoad requires IsLoad");
    if (isSignExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsSignExtLoad requires IsLoad");
    if (isZeroExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsZeroExtLoad requires IsLoad");
  }

  if (isStore()) {
    if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
        getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
        getAddressSpaces() == nullptr && getMinAlignment() < 1)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsStore cannot be used by itself");
  } else {
    if (isNonTruncStore())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsNonTruncStore requires IsStore");
    if (isTruncStore())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsTruncStore requires IsStore");
  }

  if (isAtomic()) {
    if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
        getAddressSpaces() == nullptr &&
        !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
        !isAtomicOrderingAcquireRelease() &&
        !isAtomicOrderingSequentiallyConsistent() &&
        !isAtomicOrderingAcquireOrStronger() &&
        !isAtomicOrderingReleaseOrStronger() &&
        !isAtomicOrderingWeakerThanAcquire() &&
        !isAtomicOrderingWeakerThanRelease())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomic cannot be used by itself");
  } else {
    if (isAtomicOrderingMonotonic())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingMonotonic requires IsAtomic");
    if (isAtomicOrderingAcquire())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingAcquire requires IsAtomic");
    if (isAtomicOrderingRelease())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingRelease requires IsAtomic");
    if (isAtomicOrderingAcquireRelease())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingAcquireRelease requires IsAtomic");
    if (isAtomicOrderingSequentiallyConsistent())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
    if (isAtomicOrderingAcquireOrStronger())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
    if (isAtomicOrderingReleaseOrStronger())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
    if (isAtomicOrderingWeakerThanAcquire())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
  }

  if (isLoad() || isStore() || isAtomic()) {
    if (ListInit *AddressSpaces = getAddressSpaces()) {
      Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
        " if (";

      bool First = true;
      for (Init *Val : AddressSpaces->getValues()) {
        if (First)
          First = false;
        else
          Code += " && ";

        IntInit *IntVal = dyn_cast<IntInit>(Val);
        if (!IntVal) {
          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                          "AddressSpaces element must be integer");
        }

        Code += "AddrSpace != " + utostr(IntVal->getValue());
      }

      Code += ")\nreturn false;\n";
    }

    int64_t MinAlign = getMinAlignment();
    if (MinAlign > 0) {
      Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
      Code += utostr(MinAlign);
      Code += "))\nreturn false;\n";
    }

    Record *MemoryVT = getMemoryVT();

    if (MemoryVT)
      Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
               MemoryVT->getName() + ") return false;\n")
                  .str();
  }

  if (isAtomic() && isAtomicOrderingMonotonic())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::Monotonic) return false;\n";
  if (isAtomic() && isAtomicOrderingAcquire())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::Acquire) return false;\n";
  if (isAtomic() && isAtomicOrderingRelease())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::Release) return false;\n";
  if (isAtomic() && isAtomicOrderingAcquireRelease())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::AcquireRelease) return false;\n";
  if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::SequentiallyConsistent) return false;\n";

  if (isAtomic() && isAtomicOrderingAcquireOrStronger())
    Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";
  if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
    Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";

  if (isAtomic() && isAtomicOrderingReleaseOrStronger())
    Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";
  if (isAtomic() && isAtomicOrderingWeakerThanRelease())
    Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";

  if (isLoad() || isStore()) {
    StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";

    if (isUnindexed())
      Code += ("if (cast<" + SDNodeName +
               ">(N)->getAddressingMode() != ISD::UNINDEXED) "
               "return false;\n")
                  .str();

    if (isLoad()) {
      if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
           isZeroExtLoad()) > 1)
        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                        "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
                        "IsZeroExtLoad are mutually exclusive");
      if (isNonExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
                "ISD::NON_EXTLOAD) return false;\n";
      if (isAnyExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
                "return false;\n";
      if (isSignExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
                "return false;\n";
      if (isZeroExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
                "return false;\n";
    } else {
      if ((isNonTruncStore() + isTruncStore()) > 1)
        PrintFatalError(
            getOrigPatFragRecord()->getRecord()->getLoc(),
            "IsNonTruncStore, and IsTruncStore are mutually exclusive");
      if (isNonTruncStore())
        Code +=
            " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
      if (isTruncStore())
        Code +=
            " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
    }

    Record *ScalarMemoryVT = getScalarMemoryVT();

    if (ScalarMemoryVT)
      Code += ("if (cast<" + SDNodeName +
               ">(N)->getMemoryVT().getScalarType() != MVT::" +
               ScalarMemoryVT->getName() + ") return false;\n")
                  .str();
  }

  std::string PredicateCode =
      std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));

  Code += PredicateCode;

  if (PredicateCode.empty() && !Code.empty())
    Code += "return true;\n";

  return Code;
}

bool TreePredicateFn::hasImmCode() const {
  return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
}

std::string TreePredicateFn::getImmCode() const {
  return std::string(
      PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
}

bool TreePredicateFn::immCodeUsesAPInt() const {
  return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
}

bool TreePredicateFn::immCodeUsesAPFloat() const {
  bool Unset;
  // The return value will be false when IsAPFloat is unset.
  return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
                                                                   Unset);
}

bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
                                                   bool Value) const {
  bool Unset;
  bool Result =
      getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
  if (Unset)
    return false;
  return Result == Value;
}
bool TreePredicateFn::usesOperands() const {
  return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
}
bool TreePredicateFn::isLoad() const {
  return isPredefinedPredicateEqualTo("IsLoad", true);
}
bool TreePredicateFn::isStore() const {
  return isPredefinedPredicateEqualTo("IsStore", true);
}
bool TreePredicateFn::isAtomic() const {
  return isPredefinedPredicateEqualTo("IsAtomic", true);
}
bool TreePredicateFn::isUnindexed() const {
  return isPredefinedPredicateEqualTo("IsUnindexed", true);
}
bool TreePredicateFn::isNonExtLoad() const {
  return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
}
bool TreePredicateFn::isAnyExtLoad() const {
  return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
}
bool TreePredicateFn::isSignExtLoad() const {
  return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
}
bool TreePredicateFn::isZeroExtLoad() const {
  return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
}
bool TreePredicateFn::isNonTruncStore() const {
  return isPredefinedPredicateEqualTo("IsTruncStore", false);
}
bool TreePredicateFn::isTruncStore() const {
  return isPredefinedPredicateEqualTo("IsTruncStore", true);
}
bool TreePredicateFn::isAtomicOrderingMonotonic() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
}
bool TreePredicateFn::isAtomicOrderingAcquire() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
}
bool TreePredicateFn::isAtomicOrderingRelease() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
}
bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
}
bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
                                      true);
}
bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
}
bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
}
bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
}
bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
}
Record *TreePredicateFn::getMemoryVT() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("MemoryVT"))
    return nullptr;
  return R->getValueAsDef("MemoryVT");
}

ListInit *TreePredicateFn::getAddressSpaces() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("AddressSpaces"))
    return nullptr;
  return R->getValueAsListInit("AddressSpaces");
}

int64_t TreePredicateFn::getMinAlignment() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("MinAlignment"))
    return 0;
  return R->getValueAsInt("MinAlignment");
}

Record *TreePredicateFn::getScalarMemoryVT() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("ScalarMemoryVT"))
    return nullptr;
  return R->getValueAsDef("ScalarMemoryVT");
}
bool TreePredicateFn::hasGISelPredicateCode() const {
  return !PatFragRec->getRecord()
              ->getValueAsString("GISelPredicateCode")
              .empty();
}
std::string TreePredicateFn::getGISelPredicateCode() const {
  return std::string(
      PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
}

StringRef TreePredicateFn::getImmType() const {
  if (immCodeUsesAPInt())
    return "const APInt &";
  if (immCodeUsesAPFloat())
    return "const APFloat &";
  return "int64_t";
}

StringRef TreePredicateFn::getImmTypeIdentifier() const {
  if (immCodeUsesAPInt())
    return "APInt";
  else if (immCodeUsesAPFloat())
    return "APFloat";
  return "I64";
}

/// isAlwaysTrue - Return true if this is a noop predicate.
bool TreePredicateFn::isAlwaysTrue() const {
  return !hasPredCode() && !hasImmCode();
}

/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string TreePredicateFn::getFnName() const {
  return "Predicate_" + PatFragRec->getRecord()->getName().str();
}

/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate.  The argument is expected to be in "Node",
/// not N.  This handles casting and conversion to a concrete node type as
/// appropriate.
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
  // Handle immediate predicates first.
  std::string ImmCode = getImmCode();
  if (!ImmCode.empty()) {
    if (isLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsLoad cannot be used with ImmLeaf or its subclasses");
    if (isStore())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsStore cannot be used with ImmLeaf or its subclasses");
    if (isUnindexed())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsUnindexed cannot be used with ImmLeaf or its subclasses");
    if (isNonExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isAnyExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isSignExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isZeroExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isNonTruncStore())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
    if (isTruncStore())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsTruncStore cannot be used with ImmLeaf or its subclasses");
    if (getMemoryVT())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "MemoryVT cannot be used with ImmLeaf or its subclasses");
    if (getScalarMemoryVT())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");

    std::string Result = ("    " + getImmType() + " Imm = ").str();
    if (immCodeUsesAPFloat())
      Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
    else if (immCodeUsesAPInt())
      Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
    else
      Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
    return Result + ImmCode;
  }

  // Handle arbitrary node predicates.
  assert(hasPredCode() && "Don't have any predicate code!");

  // If this is using PatFrags, there are multiple trees to search. They should
  // all have the same class.  FIXME: Is there a way to find a common
  // superclass?
  StringRef ClassName;
  for (const auto &Tree : PatFragRec->getTrees()) {
    StringRef TreeClassName;
    if (Tree->isLeaf())
      TreeClassName = "SDNode";
    else {
      Record *Op = Tree->getOperator();
      const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
      TreeClassName = Info.getSDClassName();
    }

    if (ClassName.empty())
      ClassName = TreeClassName;
    else if (ClassName != TreeClassName) {
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "PatFrags trees do not have consistent class");
    }
  }

  std::string Result;
  if (ClassName == "SDNode")
    Result = "    SDNode *N = Node;\n";
  else
    Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";

  return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
}

//===----------------------------------------------------------------------===//
// PatternToMatch implementation
//

static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
  if (!P->isLeaf())
    return false;
  DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
  if (!DI)
    return false;

  Record *R = DI->getDef();
  return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
}

/// getPatternSize - Return the 'size' of this pattern.  We want to match large
/// patterns before small ones.  This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(const TreePatternNode *P,
                               const CodeGenDAGPatterns &CGP) {
  unsigned Size = 3;  // The node itself.
  // If the root node is a ConstantSDNode, increases its size.
  // e.g. (set R32:$dst, 0).
  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
    Size += 2;

  if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
    Size += AM->getComplexity();
    // We don't want to count any children twice, so return early.
    return Size;
  }

  // If this node has some predicate function that must match, it adds to the
  // complexity of this node.
  if (!P->getPredicateCalls().empty())
    ++Size;

  // Count children in the count if they are also nodes.
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
    const TreePatternNode *Child = P->getChild(i);
    if (!Child->isLeaf() && Child->getNumTypes()) {
      const TypeSetByHwMode &T0 = Child->getExtType(0);
      // At this point, all variable type sets should be simple, i.e. only
      // have a default mode.
      if (T0.getMachineValueType() != MVT::Other) {
        Size += getPatternSize(Child, CGP);
        continue;
      }
    }
    if (Child->isLeaf()) {
      if (isa<IntInit>(Child->getLeafValue()))
        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
      else if (Child->getComplexPatternInfo(CGP))
        Size += getPatternSize(Child, CGP);
      else if (isImmAllOnesAllZerosMatch(Child))
        Size += 4; // Matches a build_vector(+3) and a predicate (+1).
      else if (!Child->getPredicateCalls().empty())
        ++Size;
    }
  }

  return Size;
}

/// Compute the complexity metric for the input pattern.  This roughly
/// corresponds to the number of nodes that are covered.
int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
}

/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
std::string PatternToMatch::getPredicateCheck() const {
  SmallVector<const Predicate*,4> PredList;
  for (const Predicate &P : Predicates) {
    if (!P.getCondString().empty())
      PredList.push_back(&P);
  }
  llvm::sort(PredList, deref<std::less<>>());

  std::string Check;
  for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
    if (i != 0)
      Check += " && ";
    Check += '(' + PredList[i]->getCondString() + ')';
  }
  return Check;
}

//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//

SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
  OperandNo = R->getValueAsInt("OperandNum");

  if (R->isSubClassOf("SDTCisVT")) {
    ConstraintType = SDTCisVT;
    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
    for (const auto &P : VVT)
      if (P.second == MVT::isVoid)
        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
  } else if (R->isSubClassOf("SDTCisPtrTy")) {
    ConstraintType = SDTCisPtrTy;
  } else if (R->isSubClassOf("SDTCisInt")) {
    ConstraintType = SDTCisInt;
  } else if (R->isSubClassOf("SDTCisFP")) {
    ConstraintType = SDTCisFP;
  } else if (R->isSubClassOf("SDTCisVec")) {
    ConstraintType = SDTCisVec;
  } else if (R->isSubClassOf("SDTCisSameAs")) {
    ConstraintType = SDTCisSameAs;
    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
    ConstraintType = SDTCisVTSmallerThanOp;
    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
      R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
    ConstraintType = SDTCisOpSmallerThanOp;
    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
      R->getValueAsInt("BigOperandNum");
  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
    ConstraintType = SDTCisEltOfVec;
    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
    ConstraintType = SDTCisSubVecOfVec;
    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
      R->getValueAsInt("OtherOpNum");
  } else if (R->isSubClassOf("SDTCVecEltisVT")) {
    ConstraintType = SDTCVecEltisVT;
    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
    for (const auto &P : VVT) {
      MVT T = P.second;
      if (T.isVector())
        PrintFatalError(R->getLoc(),
                        "Cannot use vector type as SDTCVecEltisVT");
      if (!T.isInteger() && !T.isFloatingPoint())
        PrintFatalError(R->getLoc(), "Must use integer or floating point type "
                                     "as SDTCVecEltisVT");
    }
  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
    ConstraintType = SDTCisSameNumEltsAs;
    x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
      R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
    ConstraintType = SDTCisSameSizeAs;
    x.SDTCisSameSizeAs_Info.OtherOperandNum =
      R->getValueAsInt("OtherOperandNum");
  } else {
    PrintFatalError(R->getLoc(),
                    "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
  }
}

/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, and the result number in ResNo.
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
                                      const SDNodeInfo &NodeInfo,
                                      unsigned &ResNo) {
  unsigned NumResults = NodeInfo.getNumResults();
  if (OpNo < NumResults) {
    ResNo = OpNo;
    return N;
  }

  OpNo -= NumResults;

  if (OpNo >= N->getNumChildren()) {
    std::string S;
    raw_string_ostream OS(S);
    OS << "Invalid operand number in type constraint "
           << (OpNo+NumResults) << " ";
    N->print(OS);
    PrintFatalError(OS.str());
  }

  return N->getChild(OpNo);
}

/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, flag an error.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
                                           const SDNodeInfo &NodeInfo,
                                           TreePattern &TP) const {
  if (TP.hasError())
    return false;

  unsigned ResNo = 0; // The result number being referenced.
  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
  TypeInfer &TI = TP.getInfer();

  switch (ConstraintType) {
  case SDTCisVT:
    // Operand must be a particular type.
    return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
  case SDTCisPtrTy:
    // Operand must be same as target pointer type.
    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
  case SDTCisInt:
    // Require it to be one of the legal integer VTs.
     return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
  case SDTCisFP:
    // Require it to be one of the legal fp VTs.
    return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
  case SDTCisVec:
    // Require it to be one of the legal vector VTs.
    return TI.EnforceVector(NodeToApply->getExtType(ResNo));
  case SDTCisSameAs: {
    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
    return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
           OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
  }
  case SDTCisVTSmallerThanOp: {
    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
    // have an integer type that is smaller than the VT.
    if (!NodeToApply->isLeaf() ||
        !isa<DefInit>(NodeToApply->getLeafValue()) ||
        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
               ->isSubClassOf("ValueType")) {
      TP.error(N->getOperator()->getName() + " expects a VT operand!");
      return false;
    }
    DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
    TypeSetByHwMode TypeListTmp(VVT);

    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
                    OResNo);

    return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
  }
  case SDTCisOpSmallerThanOp: {
    unsigned BResNo = 0;
    TreePatternNode *BigOperand =
      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
                    BResNo);
    return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
                                 BigOperand->getExtType(BResNo));
  }
  case SDTCisEltOfVec: {
    unsigned VResNo = 0;
    TreePatternNode *VecOperand =
      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
                    VResNo);
    // Filter vector types out of VecOperand that don't have the right element
    // type.
    return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
                                     NodeToApply->getExtType(ResNo));
  }
  case SDTCisSubVecOfVec: {
    unsigned VResNo = 0;
    TreePatternNode *BigVecOperand =
      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
                    VResNo);

    // Filter vector types out of BigVecOperand that don't have the
    // right subvector type.
    return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
                                           NodeToApply->getExtType(ResNo));
  }
  case SDTCVecEltisVT: {
    return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
  }
  case SDTCisSameNumEltsAs: {
    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
                    N, NodeInfo, OResNo);
    return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
                                 NodeToApply->getExtType(ResNo));
  }
  case SDTCisSameSizeAs: {
    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
                    N, NodeInfo, OResNo);
    return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
                              NodeToApply->getExtType(ResNo));
  }
  }
  llvm_unreachable("Invalid ConstraintType!");
}

// Update the node type to match an instruction operand or result as specified
// in the ins or outs lists on the instruction definition. Return true if the
// type was actually changed.
bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
                                             Record *Operand,
                                             TreePattern &TP) {
  // The 'unknown' operand indicates that types should be inferred from the
  // context.
  if (Operand->isSubClassOf("unknown_class"))
    return false;

  // The Operand class specifies a type directly.
  if (Operand->isSubClassOf("Operand")) {
    Record *R = Operand->getValueAsDef("Type");
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
  }

  // PointerLikeRegClass has a type that is determined at runtime.
  if (Operand->isSubClassOf("PointerLikeRegClass"))
    return UpdateNodeType(ResNo, MVT::iPTR, TP);

  // Both RegisterClass and RegisterOperand operands derive their types from a
  // register class def.
  Record *RC = nullptr;
  if (Operand->isSubClassOf("RegisterClass"))
    RC = Operand;
  else if (Operand->isSubClassOf("RegisterOperand"))
    RC = Operand->getValueAsDef("RegClass");

  assert(RC && "Unknown operand type");
  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
}

bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
  for (unsigned i = 0, e = Types.size(); i != e; ++i)
    if (!TP.getInfer().isConcrete(Types[i], true))
      return true;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (getChild(i)->ContainsUnresolvedType(TP))
      return true;
  return false;
}

bool TreePatternNode::hasProperTypeByHwMode() const {
  for (const TypeSetByHwMode &S : Types)
    if (!S.isDefaultOnly())
      return true;
  for (const TreePatternNodePtr &C : Children)
    if (C->hasProperTypeByHwMode())
      return true;
  return false;
}

bool TreePatternNode::hasPossibleType() const {
  for (const TypeSetByHwMode &S : Types)
    if (!S.isPossible())
      return false;
  for (const TreePatternNodePtr &C : Children)
    if (!C->hasPossibleType())
      return false;
  return true;
}

bool TreePatternNode::setDefaultMode(unsigned Mode) {
  for (TypeSetByHwMode &S : Types) {
    S.makeSimple(Mode);
    // Check if the selected mode had a type conflict.
    if (S.get(DefaultMode).empty())
      return false;
  }
  for (const TreePatternNodePtr &C : Children)
    if (!C->setDefaultMode(Mode))
      return false;
  return true;
}

//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
  EnumName    = R->getValueAsString("Opcode");
  SDClassName = R->getValueAsString("SDClass");
  Record *TypeProfile = R->getValueAsDef("TypeProfile");
  NumResults = TypeProfile->getValueAsInt("NumResults");
  NumOperands = TypeProfile->getValueAsInt("NumOperands");

  // Parse the properties.
  Properties = parseSDPatternOperatorProperties(R);

  // Parse the type constraints.
  std::vector<Record*> ConstraintList =
    TypeProfile->getValueAsListOfDefs("Constraints");
  for (Record *R : ConstraintList)
    TypeConstraints.emplace_back(R, CGH);
}

/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
  unsigned NumResults = getNumResults();
  assert(NumResults <= 1 &&
         "We only work with nodes with zero or one result so far!");
  assert(ResNo == 0 && "Only handles single result nodes so far");

  for (const SDTypeConstraint &Constraint : TypeConstraints) {
    // Make sure that this applies to the correct node result.
    if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
      continue;

    switch (Constraint.ConstraintType) {
    default: break;
    case SDTypeConstraint::SDTCisVT:
      if (Constraint.VVT.isSimple())
        return Constraint.VVT.getSimple().SimpleTy;
      break;
    case SDTypeConstraint::SDTCisPtrTy:
      return MVT::iPTR;
    }
  }
  return MVT::Other;
}

//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//

static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
  if (Operator->getName() == "set" ||
      Operator->getName() == "implicit")
    return 0;  // All return nothing.

  if (Operator->isSubClassOf("Intrinsic"))
    return CDP.getIntrinsic(Operator).IS.RetVTs.size();

  if (Operator->isSubClassOf("SDNode"))
    return CDP.getSDNodeInfo(Operator).getNumResults();

  if (Operator->isSubClassOf("PatFrags")) {
    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
    // the forward reference case where one pattern fragment references another
    // before it is processed.
    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
      // The number of results of a fragment with alternative records is the
      // maximum number of results across all alternatives.
      unsigned NumResults = 0;
      for (auto T : PFRec->getTrees())
        NumResults = std::max(NumResults, T->getNumTypes());
      return NumResults;
    }

    ListInit *LI = Operator->getValueAsListInit("Fragments");
    assert(LI && "Invalid Fragment");
    unsigned NumResults = 0;
    for (Init *I : LI->getValues()) {
      Record *Op = nullptr;
      if (DagInit *Dag = dyn_cast<DagInit>(I))
        if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
          Op = DI->getDef();
      assert(Op && "Invalid Fragment");
      NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
    }
    return NumResults;
  }

  if (Operator->isSubClassOf("Instruction")) {
    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);

    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;

    // Subtract any defaulted outputs.
    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
      Record *OperandNode = InstInfo.Operands[i].Rec;

      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
        --NumDefsToAdd;
    }

    // Add on one implicit def if it has a resolvable type.
    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
      ++NumDefsToAdd;
    return NumDefsToAdd;
  }

  if (Operator->isSubClassOf("SDNodeXForm"))
    return 1;  // FIXME: Generalize SDNodeXForm

  if (Operator->isSubClassOf("ValueType"))
    return 1;  // A type-cast of one result.

  if (Operator->isSubClassOf("ComplexPattern"))
    return 1;

  errs() << *Operator;
  PrintFatalError("Unhandled node in GetNumNodeResults");
}

void TreePatternNode::print(raw_ostream &OS) const {
  if (isLeaf())
    OS << *getLeafValue();
  else
    OS << '(' << getOperator()->getName();

  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    OS << ':';
    getExtType(i).writeToStream(OS);
  }

  if (!isLeaf()) {
    if (getNumChildren() != 0) {
      OS << " ";
      getChild(0)->print(OS);
      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
        OS << ", ";
        getChild(i)->print(OS);
      }
    }
    OS << ")";
  }

  for (const TreePredicateCall &Pred : PredicateCalls) {
    OS << "<<P:";
    if (Pred.Scope)
      OS << Pred.Scope << ":";
    OS << Pred.Fn.getFnName() << ">>";
  }
  if (TransformFn)
    OS << "<<X:" << TransformFn->getName() << ">>";
  if (!getName().empty())
    OS << ":$" << getName();

  for (const ScopedName &Name : NamesAsPredicateArg)
    OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
}
void TreePatternNode::dump() const {
  print(errs());
}

/// isIsomorphicTo - Return true if this node is recursively
/// isomorphic to the specified node.  For this comparison, the node's
/// entire state is considered. The assigned name is ignored, since
/// nodes with differing names are considered isomorphic. However, if
/// the assigned name is present in the dependent variable set, then
/// the assigned name is considered significant and the node is
/// isomorphic if the names match.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
                                     const MultipleUseVarSet &DepVars) const {
  if (N == this) return true;
  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
      getPredicateCalls() != N->getPredicateCalls() ||
      getTransformFn() != N->getTransformFn())
    return false;

  if (isLeaf()) {
    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
        return ((DI->getDef() == NDI->getDef())
                && (DepVars.find(getName()) == DepVars.end()
                    || getName() == N->getName()));
      }
    }
    return getLeafValue() == N->getLeafValue();
  }

  if (N->getOperator() != getOperator() ||
      N->getNumChildren() != getNumChildren()) return false;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
      return false;
  return true;
}

/// clone - Make a copy of this tree and all of its children.
///
TreePatternNodePtr TreePatternNode::clone() const {
  TreePatternNodePtr New;
  if (isLeaf()) {
    New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
  } else {
    std::vector<TreePatternNodePtr> CChildren;
    CChildren.reserve(Children.size());
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      CChildren.push_back(getChild(i)->clone());
    New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
                                            getNumTypes());
  }
  New->setName(getName());
  New->setNamesAsPredicateArg(getNamesAsPredicateArg());
  New->Types = Types;
  New->setPredicateCalls(getPredicateCalls());
  New->setTransformFn(getTransformFn());
  return New;
}

/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
  // Reset to unknown type.
  std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
  if (isLeaf()) return;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    getChild(i)->RemoveAllTypes();
}


/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::SubstituteFormalArguments(
    std::map<std::string, TreePatternNodePtr> &ArgMap) {
  if (isLeaf()) return;

  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = getChild(i);
    if (Child->isLeaf()) {
      Init *Val = Child->getLeafValue();
      // Note that, when substituting into an output pattern, Val might be an
      // UnsetInit.
      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
          cast<DefInit>(Val)->getDef()->getName() == "node")) {
        // We found a use of a formal argument, replace it with its value.
        TreePatternNodePtr NewChild = ArgMap[Child->getName()];
        assert(NewChild && "Couldn't find formal argument!");
        assert((Child->getPredicateCalls().empty() ||
                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
               "Non-empty child predicate clobbered!");
        setChild(i, std::move(NewChild));
      }
    } else {
      getChild(i)->SubstituteFormalArguments(ArgMap);
    }
  }
}


/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, return the set of inlined versions (this can be more than
/// one if a PatFrags record has multiple alternatives).
void TreePatternNode::InlinePatternFragments(
  TreePatternNodePtr T, TreePattern &TP,
  std::vector<TreePatternNodePtr> &OutAlternatives) {

  if (TP.hasError())
    return;

  if (isLeaf()) {
    OutAlternatives.push_back(T);  // nothing to do.
    return;
  }

  Record *Op = getOperator();

  if (!Op->isSubClassOf("PatFrags")) {
    if (getNumChildren() == 0) {
      OutAlternatives.push_back(T);
      return;
    }

    // Recursively inline children nodes.
    std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
    ChildAlternatives.resize(getNumChildren());
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
      TreePatternNodePtr Child = getChildShared(i);
      Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
      // If there are no alternatives for any child, there are no
      // alternatives for this expression as whole.
      if (ChildAlternatives[i].empty())
        return;

      for (auto NewChild : ChildAlternatives[i])
        assert((Child->getPredicateCalls().empty() ||
                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
               "Non-empty child predicate clobbered!");
    }

    // The end result is an all-pairs construction of the resultant pattern.
    std::vector<unsigned> Idxs;
    Idxs.resize(ChildAlternatives.size());
    bool NotDone;
    do {
      // Create the variant and add it to the output list.
      std::vector<TreePatternNodePtr> NewChildren;
      for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
        NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
      TreePatternNodePtr R = std::make_shared<TreePatternNode>(
          getOperator(), std::move(NewChildren), getNumTypes());

      // Copy over properties.
      R->setName(getName());
      R->setNamesAsPredicateArg(getNamesAsPredicateArg());
      R->setPredicateCalls(getPredicateCalls());
      R->setTransformFn(getTransformFn());
      for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
        R->setType(i, getExtType(i));
      for (unsigned i = 0, e = getNumResults(); i != e; ++i)
        R->setResultIndex(i, getResultIndex(i));

      // Register alternative.
      OutAlternatives.push_back(R);

      // Increment indices to the next permutation by incrementing the
      // indices from last index backward, e.g., generate the sequence
      // [0, 0], [0, 1], [1, 0], [1, 1].
      int IdxsIdx;
      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
        if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
          Idxs[IdxsIdx] = 0;
        else
          break;
      }
      NotDone = (IdxsIdx >= 0);
    } while (NotDone);

    return;
  }

  // Otherwise, we found a reference to a fragment.  First, look up its
  // TreePattern record.
  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);

  // Verify that we are passing the right number of operands.
  if (Frag->getNumArgs() != Children.size()) {
    TP.error("'" + Op->getName() + "' fragment requires " +
             Twine(Frag->getNumArgs()) + " operands!");
    return;
  }

  TreePredicateFn PredFn(Frag);
  unsigned Scope = 0;
  if (TreePredicateFn(Frag).usesOperands())
    Scope = TP.getDAGPatterns().allocateScope();

  // Compute the map of formal to actual arguments.
  std::map<std::string, TreePatternNodePtr> ArgMap;
  for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
    TreePatternNodePtr Child = getChildShared(i);
    if (Scope != 0) {
      Child = Child->clone();
      Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
    }
    ArgMap[Frag->getArgName(i)] = Child;
  }

  // Loop over all fragment alternatives.
  for (auto Alternative : Frag->getTrees()) {
    TreePatternNodePtr FragTree = Alternative->clone();

    if (!PredFn.isAlwaysTrue())
      FragTree->addPredicateCall(PredFn, Scope);

    // Resolve formal arguments to their actual value.
    if (Frag->getNumArgs())
      FragTree->SubstituteFormalArguments(ArgMap);

    // Transfer types.  Note that the resolved alternative may have fewer
    // (but not more) results than the PatFrags node.
    FragTree->setName(getName());
    for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
      FragTree->UpdateNodeType(i, getExtType(i), TP);

    // Transfer in the old predicates.
    for (const TreePredicateCall &Pred : getPredicateCalls())
      FragTree->addPredicateCall(Pred);

    // The fragment we inlined could have recursive inlining that is needed.  See
    // if there are any pattern fragments in it and inline them as needed.
    FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
  }
}

/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it.  This will infer the type of register
/// references from the register file information, for example.
///
/// When Unnamed is set, return the type of a DAG operand with no name, such as
/// the F8RC register class argument in:
///
///   (COPY_TO_REGCLASS GPR:$src, F8RC)
///
/// When Unnamed is false, return the type of a named DAG operand such as the
/// GPR:$src operand above.
///
static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
                                       bool NotRegisters,
                                       bool Unnamed,
                                       TreePattern &TP) {
  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();

  // Check to see if this is a register operand.
  if (R->isSubClassOf("RegisterOperand")) {
    assert(ResNo == 0 && "Regoperand ref only has one result!");
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    Record *RegClass = R->getValueAsDef("RegClass");
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
  }

  // Check to see if this is a register or a register class.
  if (R->isSubClassOf("RegisterClass")) {
    assert(ResNo == 0 && "Regclass ref only has one result!");
    // An unnamed register class represents itself as an i32 immediate, for
    // example on a COPY_TO_REGCLASS instruction.
    if (Unnamed)
      return TypeSetByHwMode(MVT::i32);

    // In a named operand, the register class provides the possible set of
    // types.
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
  }

  if (R->isSubClassOf("PatFrags")) {
    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
    // Pattern fragment types will be resolved when they are inlined.
    return TypeSetByHwMode(); // Unknown.
  }

  if (R->isSubClassOf("Register")) {
    assert(ResNo == 0 && "Registers only produce one result!");
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return TypeSetByHwMode(T.getRegisterVTs(R));
  }

  if (R->isSubClassOf("SubRegIndex")) {
    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
    return TypeSetByHwMode(MVT::i32);
  }

  if (R->isSubClassOf("ValueType")) {
    assert(ResNo == 0 && "This node only has one result!");
    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
    //
    //   (sext_inreg GPR:$src, i16)
    //                         ~~~
    if (Unnamed)
      return TypeSetByHwMode(MVT::Other);
    // With a name, the ValueType simply provides the type of the named
    // variable.
    //
    //   (sext_inreg i32:$src, i16)
    //               ~~~~~~~~
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
    return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
  }

  if (R->isSubClassOf("CondCode")) {
    assert(ResNo == 0 && "This node only has one result!");
    // Using a CondCodeSDNode.
    return TypeSetByHwMode(MVT::Other);
  }

  if (R->isSubClassOf("ComplexPattern")) {
    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
  }
  if (R->isSubClassOf("PointerLikeRegClass")) {
    assert(ResNo == 0 && "Regclass can only have one result!");
    TypeSetByHwMode VTS(MVT::iPTR);
    TP.getInfer().expandOverloads(VTS);
    return VTS;
  }

  if (R->getName() == "node" || R->getName() == "srcvalue" ||
      R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
      R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
    // Placeholder.
    return TypeSetByHwMode(); // Unknown.
  }

  if (R->isSubClassOf("Operand")) {
    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
    Record *T = R->getValueAsDef("Type");
    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
  }

  TP.error("Unknown node flavor used in pattern: " + R->getName());
  return TypeSetByHwMode(MVT::Other);
}


/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
    return nullptr;

  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
  return &CDP.getIntrinsicInfo(IID);
}

/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
  Record *Rec;
  if (isLeaf()) {
    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
    if (!DI)
      return nullptr;
    Rec = DI->getDef();
  } else
    Rec = getOperator();

  if (!Rec->isSubClassOf("ComplexPattern"))
    return nullptr;
  return &CGP.getComplexPattern(Rec);
}

unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
  // A ComplexPattern specifically declares how many results it fills in.
  if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
    return CP->getNumOperands();

  // If MIOperandInfo is specified, that gives the count.
  if (isLeaf()) {
    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
    if (DI && DI->getDef()->isSubClassOf("Operand")) {
      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
      if (MIOps->getNumArgs())
        return MIOps->getNumArgs();
    }
  }

  // Otherwise there is just one result.
  return 1;
}

/// NodeHasProperty - Return true if this node has the specified property.
bool TreePatternNode::NodeHasProperty(SDNP Property,
                                      const CodeGenDAGPatterns &CGP) const {
  if (isLeaf()) {
    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
      return CP->hasProperty(Property);

    return false;
  }

  if (Property != SDNPHasChain) {
    // The chain proprety is already present on the different intrinsic node
    // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
    // on the intrinsic. Anything else is specific to the individual intrinsic.
    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
      return Int->hasProperty(Property);
  }

  if (!Operator->isSubClassOf("SDPatternOperator"))
    return false;

  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}




/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreePatternNode::TreeHasProperty(SDNP Property,
                                      const CodeGenDAGPatterns &CGP) const {
  if (NodeHasProperty(Property, CGP))
    return true;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (getChild(i)->TreeHasProperty(Property, CGP))
      return true;
  return false;
}

/// isCommutativeIntrinsic - Return true if the node corresponds to a
/// commutative intrinsic.
bool
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
    return Int->isCommutative;
  return false;
}

static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
  if (!N->isLeaf())
    return N->getOperator()->isSubClassOf(Class);

  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
  if (DI && DI->getDef()->isSubClassOf(Class))
    return true;

  return false;
}

static void emitTooManyOperandsError(TreePattern &TP,
                                     StringRef InstName,
                                     unsigned Expected,
                                     unsigned Actual) {
  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
           " operands but expected only " + Twine(Expected) + "!");
}

static void emitTooFewOperandsError(TreePattern &TP,
                                    StringRef InstName,
                                    unsigned Actual) {
  TP.error("Instruction '" + InstName +
           "' expects more than the provided " + Twine(Actual) + " operands!");
}

/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, flag an error.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
  if (TP.hasError())
    return false;

  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
  if (isLeaf()) {
    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
      // If it's a regclass or something else known, include the type.
      bool MadeChange = false;
      for (unsigned i = 0, e = Types.size(); i != e; ++i)
        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
                                                        NotRegisters,
                                                        !hasName(), TP), TP);
      return MadeChange;
    }

    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
      assert(Types.size() == 1 && "Invalid IntInit");

      // Int inits are always integers. :)
      bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);

      if (!TP.getInfer().isConcrete(Types[0], false))
        return MadeChange;

      ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
      for (auto &P : VVT) {
        MVT::SimpleValueType VT = P.second.SimpleTy;
        if (VT == MVT::iPTR || VT == MVT::iPTRAny)
          continue;
        unsigned Size = MVT(VT).getSizeInBits();
        // Make sure that the value is representable for this type.
        if (Size >= 32)
          continue;
        // Check that the value doesn't use more bits than we have. It must
        // either be a sign- or zero-extended equivalent of the original.
        int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
            SignBitAndAbove == 1)
          continue;

        TP.error("Integer value '" + Twine(II->getValue()) +
                 "' is out of range for type '" + getEnumName(VT) + "'!");
        break;
      }
      return MadeChange;
    }

    return false;
  }

  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
    bool MadeChange = false;

    // Apply the result type to the node.
    unsigned NumRetVTs = Int->IS.RetVTs.size();
    unsigned NumParamVTs = Int->IS.ParamVTs.size();

    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);

    if (getNumChildren() != NumParamVTs + 1) {
      TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
               " operands, not " + Twine(getNumChildren() - 1) + " operands!");
      return false;
    }

    // Apply type info to the intrinsic ID.
    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);

    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);

      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
    }
    return MadeChange;
  }

  if (getOperator()->isSubClassOf("SDNode")) {
    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());

    // Check that the number of operands is sane.  Negative operands -> varargs.
    if (NI.getNumOperands() >= 0 &&
        getNumChildren() != (unsigned)NI.getNumOperands()) {
      TP.error(getOperator()->getName() + " node requires exactly " +
               Twine(NI.getNumOperands()) + " operands!");
      return false;
    }

    bool MadeChange = false;
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    MadeChange |= NI.ApplyTypeConstraints(this, TP);
    return MadeChange;
  }

  if (getOperator()->isSubClassOf("Instruction")) {
    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
    CodeGenInstruction &InstInfo =
      CDP.getTargetInfo().getInstruction(getOperator());

    bool MadeChange = false;

    // Apply the result types to the node, these come from the things in the
    // (outs) list of the instruction.
    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
                                        Inst.getNumResults());
    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);

    // If the instruction has implicit defs, we apply the first one as a result.
    // FIXME: This sucks, it should apply all implicit defs.
    if (!InstInfo.ImplicitDefs.empty()) {
      unsigned ResNo = NumResultsToAdd;

      // FIXME: Generalize to multiple possible types and multiple possible
      // ImplicitDefs.
      MVT::SimpleValueType VT =
        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());

      if (VT != MVT::Other)
        MadeChange |= UpdateNodeType(ResNo, VT, TP);
    }

    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
    // be the same.
    if (getOperator()->getName() == "INSERT_SUBREG") {
      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
    } else if (getOperator()->getName() == "REG_SEQUENCE") {
      // We need to do extra, custom typechecking for REG_SEQUENCE since it is
      // variadic.

      unsigned NChild = getNumChildren();
      if (NChild < 3) {
        TP.error("REG_SEQUENCE requires at least 3 operands!");
        return false;
      }

      if (NChild % 2 == 0) {
        TP.error("REG_SEQUENCE requires an odd number of operands!");
        return false;
      }

      if (!isOperandClass(getChild(0), "RegisterClass")) {
        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
        return false;
      }

      for (unsigned I = 1; I < NChild; I += 2) {
        TreePatternNode *SubIdxChild = getChild(I + 1);
        if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
                   Twine(I + 1) + "!");
          return false;
        }
      }
    }

    unsigned NumResults = Inst.getNumResults();
    unsigned NumFixedOperands = InstInfo.Operands.size();

    // If one or more operands with a default value appear at the end of the
    // formal operand list for an instruction, we allow them to be overridden
    // by optional operands provided in the pattern.
    //
    // But if an operand B without a default appears at any point after an
    // operand A with a default, then we don't allow A to be overridden,
    // because there would be no way to specify whether the next operand in
    // the pattern was intended to override A or skip it.
    unsigned NonOverridableOperands = NumFixedOperands;
    while (NonOverridableOperands > NumResults &&
           CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
      --NonOverridableOperands;

    unsigned ChildNo = 0;
    assert(NumResults <= NumFixedOperands);
    for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
      Record *OperandNode = InstInfo.Operands[i].Rec;

      // If the operand has a default value, do we use it? We must use the
      // default if we've run out of children of the pattern DAG to consume,
      // or if the operand is followed by a non-defaulted one.
      if (CDP.operandHasDefault(OperandNode) &&
          (i < NonOverridableOperands || ChildNo >= getNumChildren()))
        continue;

      // If we have run out of child nodes and there _isn't_ a default
      // value we can use for the next operand, give an error.
      if (ChildNo >= getNumChildren()) {
        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
        return false;
      }

      TreePatternNode *Child = getChild(ChildNo++);
      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.

      // If the operand has sub-operands, they may be provided by distinct
      // child patterns, so attempt to match each sub-operand separately.
      if (OperandNode->isSubClassOf("Operand")) {
        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
          // But don't do that if the whole operand is being provided by
          // a single ComplexPattern-related Operand.

          if (Child->getNumMIResults(CDP) < NumArgs) {
            // Match first sub-operand against the child we already have.
            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
            MadeChange |=
              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);

            // And the remaining sub-operands against subsequent children.
            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
              if (ChildNo >= getNumChildren()) {
                emitTooFewOperandsError(TP, getOperator()->getName(),
                                        getNumChildren());
                return false;
              }
              Child = getChild(ChildNo++);

              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
              MadeChange |=
                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
            }
            continue;
          }
        }
      }

      // If we didn't match by pieces above, attempt to match the whole
      // operand now.
      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
    }

    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
      emitTooManyOperandsError(TP, getOperator()->getName(),
                               ChildNo, getNumChildren());
      return false;
    }

    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    return MadeChange;
  }

  if (getOperator()->isSubClassOf("ComplexPattern")) {
    bool MadeChange = false;

    for (unsigned i = 0; i < getNumChildren(); ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);

    return MadeChange;
  }

  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");

  // Node transforms always take one operand.
  if (getNumChildren() != 1) {
    TP.error("Node transform '" + getOperator()->getName() +
             "' requires one operand!");
    return false;
  }

  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
  return MadeChange;
}

/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
    return true;
  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
    return true;
  return false;
}


/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false.  Otherwise, return true.  This is
/// used as a sanity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason,
                                      const CodeGenDAGPatterns &CDP) {
  if (isLeaf()) return true;

  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->canPatternMatch(Reason, CDP))
      return false;

  // If this is an intrinsic, handle cases that would make it not match.  For
  // example, if an operand is required to be an immediate.
  if (getOperator()->isSubClassOf("Intrinsic")) {
    // TODO:
    return true;
  }

  if (getOperator()->isSubClassOf("ComplexPattern"))
    return true;

  // If this node is a commutative operator, check that the LHS isn't an
  // immediate.
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
    // Scan all of the operands of the node and make sure that only the last one
    // is a constant node, unless the RHS also is.
    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
        if (OnlyOnRHSOfCommutative(getChild(i))) {
          Reason="Immediate value must be on the RHS of commutative operators!";
          return false;
        }
    }
  }

  return true;
}

//===----------------------------------------------------------------------===//
// TreePattern implementation
//

TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
                         isInputPattern(isInput), HasError(false),
                         Infer(*this) {
  for (Init *I : RawPat->getValues())
    Trees.push_back(ParseTreePattern(I, ""));
}

TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
                         isInputPattern(isInput), HasError(false),
                         Infer(*this) {
  Trees.push_back(ParseTreePattern(Pat, ""));
}

TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
                         CodeGenDAGPatterns &cdp)
    : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
      Infer(*this) {
  Trees.push_back(Pat);
}

void TreePattern::error(const Twine &Msg) {
  if (HasError)
    return;
  dump();
  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
  HasError = true;
}

void TreePattern::ComputeNamedNodes() {
  for (TreePatternNodePtr &Tree : Trees)
    ComputeNamedNodes(Tree.get());
}

void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
  if (!N->getName().empty())
    NamedNodes[N->getName()].push_back(N);

  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    ComputeNamedNodes(N->getChild(i));
}

TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
                                                 StringRef OpName) {
  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
    Record *R = DI->getDef();

    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
    // TreePatternNode of its own.  For example:
    ///   (foo GPR, imm) -> (foo GPR, (imm))
    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
      return ParseTreePattern(
        DagInit::get(DI, nullptr,
                     std::vector<std::pair<Init*, StringInit*> >()),
        OpName);

    // Input argument?
    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
    if (R->getName() == "node" && !OpName.empty()) {
      if (OpName.empty())
        error("'node' argument requires a name to match with operand list");
      Args.push_back(std::string(OpName));
    }

    Res->setName(OpName);
    return Res;
  }

  // ?:$name or just $name.
  if (isa<UnsetInit>(TheInit)) {
    if (OpName.empty())
      error("'?' argument requires a name to match with operand list");
    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
    Args.push_back(std::string(OpName));
    Res->setName(OpName);
    return Res;
  }

  if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
    if (!OpName.empty())
      error("Constant int or bit argument should not have a name!");
    if (isa<BitInit>(TheInit))
      TheInit = TheInit->convertInitializerTo(IntRecTy::get());
    return std::make_shared<TreePatternNode>(TheInit, 1);
  }

  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
    // Turn this into an IntInit.
    Init *II = BI->convertInitializerTo(IntRecTy::get());
    if (!II || !isa<IntInit>(II))
      error("Bits value must be constants!");
    return ParseTreePattern(II, OpName);
  }

  DagInit *Dag = dyn_cast<DagInit>(TheInit);
  if (!Dag) {
    TheInit->print(errs());
    error("Pattern has unexpected init kind!");
  }
  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
  if (!OpDef) error("Pattern has unexpected operator type!");
  Record *Operator = OpDef->getDef();

  if (Operator->isSubClassOf("ValueType")) {
    // If the operator is a ValueType, then this must be "type cast" of a leaf
    // node.
    if (Dag->getNumArgs() != 1)
      error("Type cast only takes one operand!");

    TreePatternNodePtr New =
        ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));

    // Apply the type cast.
    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
    const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
    New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);

    if (!OpName.empty())
      error("ValueType cast should not have a name!");
    return New;
  }

  // Verify that this is something that makes sense for an operator.
  if (!Operator->isSubClassOf("PatFrags") &&
      !Operator->isSubClassOf("SDNode") &&
      !Operator->isSubClassOf("Instruction") &&
      !Operator->isSubClassOf("SDNodeXForm") &&
      !Operator->isSubClassOf("Intrinsic") &&
      !Operator->isSubClassOf("ComplexPattern") &&
      Operator->getName() != "set" &&
      Operator->getName() != "implicit")
    error("Unrecognized node '" + Operator->getName() + "'!");

  //  Check to see if this is something that is illegal in an input pattern.
  if (isInputPattern) {
    if (Operator->isSubClassOf("Instruction") ||
        Operator->isSubClassOf("SDNodeXForm"))
      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
  } else {
    if (Operator->isSubClassOf("Intrinsic"))
      error("Cannot use '" + Operator->getName() + "' in an output pattern!");

    if (Operator->isSubClassOf("SDNode") &&
        Operator->getName() != "imm" &&
        Operator->getName() != "timm" &&
        Operator->getName() != "fpimm" &&
        Operator->getName() != "tglobaltlsaddr" &&
        Operator->getName() != "tconstpool" &&
        Operator->getName() != "tjumptable" &&
        Operator->getName() != "tframeindex" &&
        Operator->getName() != "texternalsym" &&
        Operator->getName() != "tblockaddress" &&
        Operator->getName() != "tglobaladdr" &&
        Operator->getName() != "bb" &&
        Operator->getName() != "vt" &&
        Operator->getName() != "mcsym")
      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
  }

  std::vector<TreePatternNodePtr> Children;

  // Parse all the operands.
  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));

  // Get the actual number of results before Operator is converted to an intrinsic
  // node (which is hard-coded to have either zero or one result).
  unsigned NumResults = GetNumNodeResults(Operator, CDP);

  // If the operator is an intrinsic, then this is just syntactic sugar for
  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
  // convert the intrinsic name to a number.
  if (Operator->isSubClassOf("Intrinsic")) {
    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;

    // If this intrinsic returns void, it must have side-effects and thus a
    // chain.
    if (Int.IS.RetVTs.empty())
      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
    else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
      // Has side-effects, requires chain.
      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
    else // Otherwise, no chain.
      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();

    Children.insert(Children.begin(),
                    std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
  }

  if (Operator->isSubClassOf("ComplexPattern")) {
    for (unsigned i = 0; i < Children.size(); ++i) {
      TreePatternNodePtr Child = Children[i];

      if (Child->getName().empty())
        error("All arguments to a ComplexPattern must be named");

      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
      auto OperandId = std::make_pair(Operator, i);
      auto PrevOp = ComplexPatternOperands.find(Child->getName());
      if (PrevOp != ComplexPatternOperands.end()) {
        if (PrevOp->getValue() != OperandId)
          error("All ComplexPattern operands must appear consistently: "
                "in the same order in just one ComplexPattern instance.");
      } else
        ComplexPatternOperands[Child->getName()] = OperandId;
    }
  }

  TreePatternNodePtr Result =
      std::make_shared<TreePatternNode>(Operator, std::move(Children),
                                        NumResults);
  Result->setName(OpName);

  if (Dag->getName()) {
    assert(Result->getName().empty());
    Result->setName(Dag->getNameStr());
  }
  return Result;
}

/// SimplifyTree - See if we can simplify this tree to eliminate something that
/// will never match in favor of something obvious that will.  This is here
/// strictly as a convenience to target authors because it allows them to write
/// more type generic things and have useless type casts fold away.
///
/// This returns true if any change is made.
static bool SimplifyTree(TreePatternNodePtr &N) {
  if (N->isLeaf())
    return false;

  // If we have a bitconvert with a resolved type and if the source and
  // destination types are the same, then the bitconvert is useless, remove it.
  //
  // We make an exception if the types are completely empty. This can come up
  // when the pattern being simplified is in the Fragments list of a PatFrags,
  // so that the operand is just an untyped "node". In that situation we leave
  // bitconverts unsimplified, and simplify them later once the fragment is
  // expanded into its true context.
  if (N->getOperator()->getName() == "bitconvert" &&
      N->getExtType(0).isValueTypeByHwMode(false) &&
      !N->getExtType(0).empty() &&
      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
      N->getName().empty()) {
    N = N->getChildShared(0);
    SimplifyTree(N);
    return true;
  }

  // Walk all children.
  bool MadeChange = false;
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
    TreePatternNodePtr Child = N->getChildShared(i);
    MadeChange |= SimplifyTree(Child);
    N->setChild(i, std::move(Child));
  }
  return MadeChange;
}



/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible.  Return true if all types are inferred, false
/// otherwise.  Flags an error if a type contradiction is found.
bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
  if (NamedNodes.empty())
    ComputeNamedNodes();

  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    for (TreePatternNodePtr &Tree : Trees) {
      MadeChange |= Tree->ApplyTypeConstraints(*this, false);
      MadeChange |= SimplifyTree(Tree);
    }

    // If there are constraints on our named nodes, apply them.
    for (auto &Entry : NamedNodes) {
      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;

      // If we have input named node types, propagate their types to the named
      // values here.
      if (InNamedTypes) {
        if (!InNamedTypes->count(Entry.getKey())) {
          error("Node '" + std::string(Entry.getKey()) +
                "' in output pattern but not input pattern");
          return true;
        }

        const SmallVectorImpl<TreePatternNode*> &InNodes =
          InNamedTypes->find(Entry.getKey())->second;

        // The input types should be fully resolved by now.
        for (TreePatternNode *Node : Nodes) {
          // If this node is a register class, and it is the root of the pattern
          // then we're mapping something onto an input register.  We allow
          // changing the type of the input register in this case.  This allows
          // us to match things like:
          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
          if (Node == Trees[0].get() && Node->isLeaf()) {
            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
                       DI->getDef()->isSubClassOf("RegisterOperand")))
              continue;
          }

          assert(Node->getNumTypes() == 1 &&
                 InNodes[0]->getNumTypes() == 1 &&
                 "FIXME: cannot name multiple result nodes yet");
          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
                                             *this);
        }
      }

      // If there are multiple nodes with the same name, they must all have the
      // same type.
      if (Entry.second.size() > 1) {
        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
                 "FIXME: cannot name multiple result nodes yet");

          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
        }
      }
    }
  }

  bool HasUnresolvedTypes = false;
  for (const TreePatternNodePtr &Tree : Trees)
    HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
  return !HasUnresolvedTypes;
}

void TreePattern::print(raw_ostream &OS) const {
  OS << getRecord()->getName();
  if (!Args.empty()) {
    OS << "(" << Args[0];
    for (unsigned i = 1, e = Args.size(); i != e; ++i)
      OS << ", " << Args[i];
    OS << ")";
  }
  OS << ": ";

  if (Trees.size() > 1)
    OS << "[\n";
  for (const TreePatternNodePtr &Tree : Trees) {
    OS << "\t";
    Tree->print(OS);
    OS << "\n";
  }

  if (Trees.size() > 1)
    OS << "]\n";
}

void TreePattern::dump() const { print(errs()); }

//===----------------------------------------------------------------------===//
// CodeGenDAGPatterns implementation
//

CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
                                       PatternRewriterFn PatternRewriter)
    : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
      PatternRewriter(PatternRewriter) {

  Intrinsics = CodeGenIntrinsicTable(Records);
  ParseNodeInfo();
  ParseNodeTransforms();
  ParseComplexPatterns();
  ParsePatternFragments();
  ParseDefaultOperands();
  ParseInstructions();
  ParsePatternFragments(/*OutFrags*/true);
  ParsePatterns();

  // Break patterns with parameterized types into a series of patterns,
  // where each one has a fixed type and is predicated on the conditions
  // of the associated HW mode.
  ExpandHwModeBasedTypes();

  // Generate variants.  For example, commutative patterns can match
  // multiple ways.  Add them to PatternsToMatch as well.
  GenerateVariants();

  // Infer instruction flags.  For example, we can detect loads,
  // stores, and side effects in many cases by examining an
  // instruction's pattern.
  InferInstructionFlags();

  // Verify that instruction flags match the patterns.
  VerifyInstructionFlags();
}

Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
  Record *N = Records.getDef(Name);
  if (!N || !N->isSubClassOf("SDNode"))
    PrintFatalError("Error getting SDNode '" + Name + "'!");

  return N;
}

// Parse all of the SDNode definitions for the target, populating SDNodes.
void CodeGenDAGPatterns::ParseNodeInfo() {
  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();

  while (!Nodes.empty()) {
    Record *R = Nodes.back();
    SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
    Nodes.pop_back();
  }

  // Get the builtin intrinsic nodes.
  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}

/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void CodeGenDAGPatterns::ParseNodeTransforms() {
  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
  while (!Xforms.empty()) {
    Record *XFormNode = Xforms.back();
    Record *SDNode = XFormNode->getValueAsDef("Opcode");
    StringRef Code = XFormNode->getValueAsString("XFormFunction");
    SDNodeXForms.insert(
        std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));

    Xforms.pop_back();
  }
}

void CodeGenDAGPatterns::ParseComplexPatterns() {
  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
  while (!AMs.empty()) {
    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
    AMs.pop_back();
  }
}


/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map.  After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");

  // First step, parse all of the fragments.
  for (Record *Frag : Fragments) {
    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
      continue;

    ListInit *LI = Frag->getValueAsListInit("Fragments");
    TreePattern *P =
        (PatternFragments[Frag] = std::make_unique<TreePattern>(
             Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
             *this)).get();

    // Validate the argument list, converting it to set, to discard duplicates.
    std::vector<std::string> &Args = P->getArgList();
    // Copy the args so we can take StringRefs to them.
    auto ArgsCopy = Args;
    SmallDenseSet<StringRef, 4> OperandsSet;
    OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());

    if (OperandsSet.count(""))
      P->error("Cannot have unnamed 'node' values in pattern fragment!");

    // Parse the operands list.
    DagInit *OpsList = Frag->getValueAsDag("Operands");
    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
    // Special cases: ops == outs == ins. Different names are used to
    // improve readability.
    if (!OpsOp ||
        (OpsOp->getDef()->getName() != "ops" &&
         OpsOp->getDef()->getName() != "outs" &&
         OpsOp->getDef()->getName() != "ins"))
      P->error("Operands list should start with '(ops ... '!");

    // Copy over the arguments.
    Args.clear();
    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
      if (!isa<DefInit>(OpsList->getArg(j)) ||
          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
        P->error("Operands list should all be 'node' values.");
      if (!OpsList->getArgName(j))
        P->error("Operands list should have names for each operand!");
      StringRef ArgNameStr = OpsList->getArgNameStr(j);
      if (!OperandsSet.count(ArgNameStr))
        P->error("'" + ArgNameStr +
                 "' does not occur in pattern or was multiply specified!");
      OperandsSet.erase(ArgNameStr);
      Args.push_back(std::string(ArgNameStr));
    }

    if (!OperandsSet.empty())
      P->error("Operands list does not contain an entry for operand '" +
               *OperandsSet.begin() + "'!");

    // If there is a node transformation corresponding to this, keep track of
    // it.
    Record *Transform = Frag->getValueAsDef("OperandTransform");
    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
      for (auto T : P->getTrees())
        T->setTransformFn(Transform);
  }

  // Now that we've parsed all of the tree fragments, do a closure on them so
  // that there are not references to PatFrags left inside of them.
  for (Record *Frag : Fragments) {
    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
      continue;

    TreePattern &ThePat = *PatternFragments[Frag];
    ThePat.InlinePatternFragments();

    // Infer as many types as possible.  Don't worry about it if we don't infer
    // all of them, some may depend on the inputs of the pattern.  Also, don't
    // validate type sets; validation may cause spurious failures e.g. if a
    // fragment needs floating-point types but the current target does not have
    // any (this is only an error if that fragment is ever used!).
    {
      TypeInfer::SuppressValidation SV(ThePat.getInfer());
      ThePat.InferAllTypes();
      ThePat.resetError();
    }

    // If debugging, print out the pattern fragment result.
    LLVM_DEBUG(ThePat.dump());
  }
}

void CodeGenDAGPatterns::ParseDefaultOperands() {
  std::vector<Record*> DefaultOps;
  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");

  // Find some SDNode.
  assert(!SDNodes.empty() && "No SDNodes parsed?");
  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);

  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");

    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
    // SomeSDnode so that we can parse this.
    std::vector<std::pair<Init*, StringInit*> > Ops;
    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
                                   DefaultInfo->getArgName(op)));
    DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);

    // Create a TreePattern to parse this.
    TreePattern P(DefaultOps[i], DI, false, *this);
    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");

    // Copy the operands over into a DAGDefaultOperand.
    DAGDefaultOperand DefaultOpInfo;

    const TreePatternNodePtr &T = P.getTree(0);
    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
      TreePatternNodePtr TPN = T->getChildShared(op);
      while (TPN->ApplyTypeConstraints(P, false))
        /* Resolve all types */;

      if (TPN->ContainsUnresolvedType(P)) {
        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
                        DefaultOps[i]->getName() +
                        "' doesn't have a concrete type!");
      }
      DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
    }

    // Insert it into the DefaultOperands map so we can find it later.
    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
  }
}

/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input.  Return true if this is a real use.
static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
                      std::map<std::string, TreePatternNodePtr> &InstInputs) {
  // No name -> not interesting.
  if (Pat->getName().empty()) {
    if (Pat->isLeaf()) {
      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
                 DI->getDef()->isSubClassOf("RegisterOperand")))
        I.error("Input " + DI->getDef()->getName() + " must be named!");
    }
    return false;
  }

  Record *Rec;
  if (Pat->isLeaf()) {
    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
    if (!DI)
      I.error("Input $" + Pat->getName() + " must be an identifier!");
    Rec = DI->getDef();
  } else {
    Rec = Pat->getOperator();
  }

  // SRCVALUE nodes are ignored.
  if (Rec->getName() == "srcvalue")
    return false;

  TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
  if (!Slot) {
    Slot = Pat;
    return true;
  }
  Record *SlotRec;
  if (Slot->isLeaf()) {
    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
  } else {
    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
    SlotRec = Slot->getOperator();
  }

  // Ensure that the inputs agree if we've already seen this input.
  if (Rec != SlotRec)
    I.error("All $" + Pat->getName() + " inputs must agree with each other");
  // Ensure that the types can agree as well.
  Slot->UpdateNodeType(0, Pat->getExtType(0), I);
  Pat->UpdateNodeType(0, Slot->getExtType(0), I);
  if (Slot->getExtTypes() != Pat->getExtTypes())
    I.error("All $" + Pat->getName() + " inputs must agree with each other");
  return true;
}

/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern.  Report errors if we see anything naughty.
void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
    TreePattern &I, TreePatternNodePtr Pat,
    std::map<std::string, TreePatternNodePtr> &InstInputs,
    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
        &InstResults,
    std::vector<Record *> &InstImpResults) {

  // The instruction pattern still has unresolved fragments.  For *named*
  // nodes we must resolve those here.  This may not result in multiple
  // alternatives.
  if (!Pat->getName().empty()) {
    TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
    SrcPattern.InlinePatternFragments();
    SrcPattern.InferAllTypes();
    Pat = SrcPattern.getOnlyTree();
  }

  if (Pat->isLeaf()) {
    bool isUse = HandleUse(I, Pat, InstInputs);
    if (!isUse && Pat->getTransformFn())
      I.error("Cannot specify a transform function for a non-input value!");
    return;
  }

  if (Pat->getOperator()->getName() == "implicit") {
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
      TreePatternNode *Dest = Pat->getChild(i);
      if (!Dest->isLeaf())
        I.error("implicitly defined value should be a register!");

      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
      if (!Val || !Val->getDef()->isSubClassOf("Register"))
        I.error("implicitly defined value should be a register!");
      InstImpResults.push_back(Val->getDef());
    }
    return;
  }

  if (Pat->getOperator()->getName() != "set") {
    // If this is not a set, verify that the children nodes are not void typed,
    // and recurse.
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
      if (Pat->getChild(i)->getNumTypes() == 0)
        I.error("Cannot have void nodes inside of patterns!");
      FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
                                  InstResults, InstImpResults);
    }

    // If this is a non-leaf node with no children, treat it basically as if
    // it were a leaf.  This handles nodes like (imm).
    bool isUse = HandleUse(I, Pat, InstInputs);

    if (!isUse && Pat->getTransformFn())
      I.error("Cannot specify a transform function for a non-input value!");
    return;
  }

  // Otherwise, this is a set, validate and collect instruction results.
  if (Pat->getNumChildren() == 0)
    I.error("set requires operands!");

  if (Pat->getTransformFn())
    I.error("Cannot specify a transform function on a set node!");

  // Check the set destinations.
  unsigned NumDests = Pat->getNumChildren()-1;
  for (unsigned i = 0; i != NumDests; ++i) {
    TreePatternNodePtr Dest = Pat->getChildShared(i);
    // For set destinations we also must resolve fragments here.
    TreePattern DestPattern(I.getRecord(), Dest, false, *this);
    DestPattern.InlinePatternFragments();
    DestPattern.InferAllTypes();
    Dest = DestPattern.getOnlyTree();

    if (!Dest->isLeaf())
      I.error("set destination should be a register!");

    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
    if (!Val) {
      I.error("set destination should be a register!");
      continue;
    }

    if (Val->getDef()->isSubClassOf("RegisterClass") ||
        Val->getDef()->isSubClassOf("ValueType") ||
        Val->getDef()->isSubClassOf("RegisterOperand") ||
        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
      if (Dest->getName().empty())
        I.error("set destination must have a name!");
      if (InstResults.count(Dest->getName()))
        I.error("cannot set '" + Dest->getName() + "' multiple times");
      InstResults[Dest->getName()] = Dest;
    } else if (Val->getDef()->isSubClassOf("Register")) {
      InstImpResults.push_back(Val->getDef());
    } else {
      I.error("set destination should be a register!");
    }
  }

  // Verify and collect info from the computation.
  FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
                              InstResults, InstImpResults);
}

//===----------------------------------------------------------------------===//
// Instruction Analysis
//===----------------------------------------------------------------------===//

class InstAnalyzer {
  const CodeGenDAGPatterns &CDP;
public:
  bool hasSideEffects;
  bool mayStore;
  bool mayLoad;
  bool isBitcast;
  bool isVariadic;
  bool hasChain;

  InstAnalyzer(const CodeGenDAGPatterns &cdp)
    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
      isBitcast(false), isVariadic(false), hasChain(false) {}

  void Analyze(const PatternToMatch &Pat) {
    const TreePatternNode *N = Pat.getSrcPattern();
    AnalyzeNode(N);
    // These properties are detected only on the root node.
    isBitcast = IsNodeBitcast(N);
  }

private:
  bool IsNodeBitcast(const TreePatternNode *N) const {
    if (hasSideEffects || mayLoad || mayStore || isVariadic)
      return false;

    if (N->isLeaf())
      return false;
    if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
      return false;

    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
      return false;
    return OpInfo.getEnumName() == "ISD::BITCAST";
  }

public:
  void AnalyzeNode(const TreePatternNode *N) {
    if (N->isLeaf()) {
      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
        Record *LeafRec = DI->getDef();
        // Handle ComplexPattern leaves.
        if (LeafRec->isSubClassOf("ComplexPattern")) {
          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
        }
      }
      return;
    }

    // Analyze children.
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
      AnalyzeNode(N->getChild(i));

    // Notice properties of the node.
    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
    if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;

    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
      // If this is an intrinsic, analyze it.
      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
        mayLoad = true;// These may load memory.

      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.

      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
          IntInfo->hasSideEffects)
        // ReadWriteMem intrinsics can have other strange effects.
        hasSideEffects = true;
    }
  }

};

static bool InferFromPattern(CodeGenInstruction &InstInfo,
                             const InstAnalyzer &PatInfo,
                             Record *PatDef) {
  bool Error = false;

  // Remember where InstInfo got its flags.
  if (InstInfo.hasUndefFlags())
      InstInfo.InferredFrom = PatDef;

  // Check explicitly set flags for consistency.
  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
      !InstInfo.hasSideEffects_Unset) {
    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
    // the pattern has no side effects. That could be useful for div/rem
    // instructions that may trap.
    if (!InstInfo.hasSideEffects) {
      Error = true;
      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
                 Twine(InstInfo.hasSideEffects));
    }
  }

  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
    Error = true;
    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
               Twine(InstInfo.mayStore));
  }

  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
    // Some targets translate immediates to loads.
    if (!InstInfo.mayLoad) {
      Error = true;
      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
                 Twine(InstInfo.mayLoad));
    }
  }

  // Transfer inferred flags.
  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
  InstInfo.mayStore |= PatInfo.mayStore;
  InstInfo.mayLoad |= PatInfo.mayLoad;

  // These flags are silently added without any verification.
  // FIXME: To match historical behavior of TableGen, for now add those flags
  // only when we're inferring from the primary instruction pattern.
  if (PatDef->isSubClassOf("Instruction")) {
    InstInfo.isBitcast |= PatInfo.isBitcast;
    InstInfo.hasChain |= PatInfo.hasChain;
    InstInfo.hasChain_Inferred = true;
  }

  // Don't infer isVariadic. This flag means something different on SDNodes and
  // instructions. For example, a CALL SDNode is variadic because it has the
  // call arguments as operands, but a CALL instruction is not variadic - it
  // has argument registers as implicit, not explicit uses.

  return Error;
}

/// hasNullFragReference - Return true if the DAG has any reference to the
/// null_frag operator.
static bool hasNullFragReference(DagInit *DI) {
  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
  if (!OpDef) return false;
  Record *Operator = OpDef->getDef();

  // If this is the null fragment, return true.
  if (Operator->getName() == "null_frag") return true;
  // If any of the arguments reference the null fragment, return true.
  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
    if (Arg && hasNullFragReference(Arg))
      return true;
  }

  return false;
}

/// hasNullFragReference - Return true if any DAG in the list references
/// the null_frag operator.
static bool hasNullFragReference(ListInit *LI) {
  for (Init *I : LI->getValues()) {
    DagInit *DI = dyn_cast<DagInit>(I);
    assert(DI && "non-dag in an instruction Pattern list?!");
    if (hasNullFragReference(DI))
      return true;
  }
  return false;
}

/// Get all the instructions in a tree.
static void
getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
  if (Tree->isLeaf())
    return;
  if (Tree->getOperator()->isSubClassOf("Instruction"))
    Instrs.push_back(Tree->getOperator());
  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
    getInstructionsInTree(Tree->getChild(i), Instrs);
}

/// Check the class of a pattern leaf node against the instruction operand it
/// represents.
static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
                              Record *Leaf) {
  if (OI.Rec == Leaf)
    return true;

  // Allow direct value types to be used in instruction set patterns.
  // The type will be checked later.
  if (Leaf->isSubClassOf("ValueType"))
    return true;

  // Patterns can also be ComplexPattern instances.
  if (Leaf->isSubClassOf("ComplexPattern"))
    return true;

  return false;
}

void CodeGenDAGPatterns::parseInstructionPattern(
    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {

  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");

  // Parse the instruction.
  TreePattern I(CGI.TheDef, Pat, true, *this);

  // InstInputs - Keep track of all of the inputs of the instruction, along
  // with the record they are declared as.
  std::map<std::string, TreePatternNodePtr> InstInputs;

  // InstResults - Keep track of all the virtual registers that are 'set'
  // in the instruction, including what reg class they are.
  MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
      InstResults;

  std::vector<Record*> InstImpResults;

  // Verify that the top-level forms in the instruction are of void type, and
  // fill in the InstResults map.
  SmallString<32> TypesString;
  for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
    TypesString.clear();
    TreePatternNodePtr Pat = I.getTree(j);
    if (Pat->getNumTypes() != 0) {
      raw_svector_ostream OS(TypesString);
      for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
        if (k > 0)
          OS << ", ";
        Pat->getExtType(k).writeToStream(OS);
      }
      I.error("Top-level forms in instruction pattern should have"
               " void types, has types " +
               OS.str());
    }

    // Find inputs and outputs, and verify the structure of the uses/defs.
    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
                                InstImpResults);
  }

  // Now that we have inputs and outputs of the pattern, inspect the operands
  // list for the instruction.  This determines the order that operands are
  // added to the machine instruction the node corresponds to.
  unsigned NumResults = InstResults.size();

  // Parse the operands list from the (ops) list, validating it.
  assert(I.getArgList().empty() && "Args list should still be empty here!");

  // Check that all of the results occur first in the list.
  std::vector<Record*> Results;
  std::vector<unsigned> ResultIndices;
  SmallVector<TreePatternNodePtr, 2> ResNodes;
  for (unsigned i = 0; i != NumResults; ++i) {
    if (i == CGI.Operands.size()) {
      const std::string &OpName =
          std::find_if(InstResults.begin(), InstResults.end(),
                       [](const std::pair<std::string, TreePatternNodePtr> &P) {
                         return P.second;
                       })
              ->first;

      I.error("'" + OpName + "' set but does not appear in operand list!");
    }

    const std::string &OpName = CGI.Operands[i].Name;

    // Check that it exists in InstResults.
    auto InstResultIter = InstResults.find(OpName);
    if (InstResultIter == InstResults.end() || !InstResultIter->second)
      I.error("Operand $" + OpName + " does not exist in operand list!");

    TreePatternNodePtr RNode = InstResultIter->second;
    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
    ResNodes.push_back(std::move(RNode));
    if (!R)
      I.error("Operand $" + OpName + " should be a set destination: all "
               "outputs must occur before inputs in operand list!");

    if (!checkOperandClass(CGI.Operands[i], R))
      I.error("Operand $" + OpName + " class mismatch!");

    // Remember the return type.
    Results.push_back(CGI.Operands[i].Rec);

    // Remember the result index.
    ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));

    // Okay, this one checks out.
    InstResultIter->second = nullptr;
  }

  // Loop over the inputs next.
  std::vector<TreePatternNodePtr> ResultNodeOperands;
  std::vector<Record*> Operands;
  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
    CGIOperandList::OperandInfo &Op = CGI.Operands[i];
    const std::string &OpName = Op.Name;
    if (OpName.empty())
      I.error("Operand #" + Twine(i) + " in operands list has no name!");

    if (!InstInputs.count(OpName)) {
      // If this is an operand with a DefaultOps set filled in, we can ignore
      // this.  When we codegen it, we will do so as always executed.
      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
        // Does it have a non-empty DefaultOps field?  If so, ignore this
        // operand.
        if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
          continue;
      }
      I.error("Operand $" + OpName +
               " does not appear in the instruction pattern");
    }
    TreePatternNodePtr InVal = InstInputs[OpName];
    InstInputs.erase(OpName);   // It occurred, remove from map.

    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
      Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
      if (!checkOperandClass(Op, InRec))
        I.error("Operand $" + OpName + "'s register class disagrees"
                 " between the operand and pattern");
    }
    Operands.push_back(Op.Rec);

    // Construct the result for the dest-pattern operand list.
    TreePatternNodePtr OpNode = InVal->clone();

    // No predicate is useful on the result.
    OpNode->clearPredicateCalls();

    // Promote the xform function to be an explicit node if set.
    if (Record *Xform = OpNode->getTransformFn()) {
      OpNode->setTransformFn(nullptr);
      std::vector<TreePatternNodePtr> Children;
      Children.push_back(OpNode);
      OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
                                                 OpNode->getNumTypes());
    }

    ResultNodeOperands.push_back(std::move(OpNode));
  }

  if (!InstInputs.empty())
    I.error("Input operand $" + InstInputs.begin()->first +
            " occurs in pattern but not in operands list!");

  TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
      I.getRecord(), std::move(ResultNodeOperands),
      GetNumNodeResults(I.getRecord(), *this));
  // Copy fully inferred output node types to instruction result pattern.
  for (unsigned i = 0; i != NumResults; ++i) {
    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
    ResultPattern->setType(i, ResNodes[i]->getExtType(0));
    ResultPattern->setResultIndex(i, ResultIndices[i]);
  }

  // FIXME: Assume only the first tree is the pattern. The others are clobber
  // nodes.
  TreePatternNodePtr Pattern = I.getTree(0);
  TreePatternNodePtr SrcPattern;
  if (Pattern->getOperator()->getName() == "set") {
    SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
  } else{
    // Not a set (store or something?)
    SrcPattern = Pattern;
  }

  // Create and insert the instruction.
  // FIXME: InstImpResults should not be part of DAGInstruction.
  Record *R = I.getRecord();
  DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
                   std::forward_as_tuple(Results, Operands, InstImpResults,
                                         SrcPattern, ResultPattern));

  LLVM_DEBUG(I.dump());
}

/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved.  This populates the Instructions list with fully
/// resolved instructions.
void CodeGenDAGPatterns::ParseInstructions() {
  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");

  for (Record *Instr : Instrs) {
    ListInit *LI = nullptr;

    if (isa<ListInit>(Instr->getValueInit("Pattern")))
      LI = Instr->getValueAsListInit("Pattern");

    // If there is no pattern, only collect minimal information about the
    // instruction for its operand list.  We have to assume that there is one
    // result, as we have no detailed info. A pattern which references the
    // null_frag operator is as-if no pattern were specified. Normally this
    // is from a multiclass expansion w/ a SDPatternOperator passed in as
    // null_frag.
    if (!LI || LI->empty() || hasNullFragReference(LI)) {
      std::vector<Record*> Results;
      std::vector<Record*> Operands;

      CodeGenInstruction &InstInfo = Target.getInstruction(Instr);

      if (InstInfo.Operands.size() != 0) {
        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
          Results.push_back(InstInfo.Operands[j].Rec);

        // The rest are inputs.
        for (unsigned j = InstInfo.Operands.NumDefs,
               e = InstInfo.Operands.size(); j < e; ++j)
          Operands.push_back(InstInfo.Operands[j].Rec);
      }

      // Create and insert the instruction.
      std::vector<Record*> ImpResults;
      Instructions.insert(std::make_pair(Instr,
                            DAGInstruction(Results, Operands, ImpResults)));
      continue;  // no pattern.
    }

    CodeGenInstruction &CGI = Target.getInstruction(Instr);
    parseInstructionPattern(CGI, LI, Instructions);
  }

  // If we can, convert the instructions to be patterns that are matched!
  for (auto &Entry : Instructions) {
    Record *Instr = Entry.first;
    DAGInstruction &TheInst = Entry.second;
    TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
    TreePatternNodePtr ResultPattern = TheInst.getResultPattern();

    if (SrcPattern && ResultPattern) {
      TreePattern Pattern(Instr, SrcPattern, true, *this);
      TreePattern Result(Instr, ResultPattern, false, *this);
      ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
    }
  }
}

typedef std::pair<TreePatternNode *, unsigned> NameRecord;

static void FindNames(TreePatternNode *P,
                      std::map<std::string, NameRecord> &Names,
                      TreePattern *PatternTop) {
  if (!P->getName().empty()) {
    NameRecord &Rec = Names[P->getName()];
    // If this is the first instance of the name, remember the node.
    if (Rec.second++ == 0)
      Rec.first = P;
    else if (Rec.first->getExtTypes() != P->getExtTypes())
      PatternTop->error("repetition of value: $" + P->getName() +
                        " where different uses have different types!");
  }

  if (!P->isLeaf()) {
    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
      FindNames(P->getChild(i), Names, PatternTop);
  }
}

std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
  std::vector<Predicate> Preds;
  for (Init *I : L->getValues()) {
    if (DefInit *Pred = dyn_cast<DefInit>(I))
      Preds.push_back(Pred->getDef());
    else
      llvm_unreachable("Non-def on the list");
  }

  // Sort so that different orders get canonicalized to the same string.
  llvm::sort(Preds);
  return Preds;
}

void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
                                           PatternToMatch &&PTM) {
  // Do some sanity checking on the pattern we're about to match.
  std::string Reason;
  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
    PrintWarning(Pattern->getRecord()->getLoc(),
      Twine("Pattern can never match: ") + Reason);
    return;
  }

  // If the source pattern's root is a complex pattern, that complex pattern
  // must specify the nodes it can potentially match.
  if (const ComplexPattern *CP =
        PTM.getSrcPattern()->getComplexPatternInfo(*this))
    if (CP->getRootNodes().empty())
      Pattern->error("ComplexPattern at root must specify list of opcodes it"
                     " could match");


  // Find all of the named values in the input and output, ensure they have the
  // same type.
  std::map<std::string, NameRecord> SrcNames, DstNames;
  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
  FindNames(PTM.getDstPattern(), DstNames, Pattern);

  // Scan all of the named values in the destination pattern, rejecting them if
  // they don't exist in the input pattern.
  for (const auto &Entry : DstNames) {
    if (SrcNames[Entry.first].first == nullptr)
      Pattern->error("Pattern has input without matching name in output: $" +
                     Entry.first);
  }

  // Scan all of the named values in the source pattern, rejecting them if the
  // name isn't used in the dest, and isn't used to tie two values together.
  for (const auto &Entry : SrcNames)
    if (DstNames[Entry.first].first == nullptr &&
        SrcNames[Entry.first].second == 1)
      Pattern->error("Pattern has dead named input: $" + Entry.first);

  PatternsToMatch.push_back(PTM);
}

void CodeGenDAGPatterns::InferInstructionFlags() {
  ArrayRef<const CodeGenInstruction*> Instructions =
    Target.getInstructionsByEnumValue();

  unsigned Errors = 0;

  // Try to infer flags from all patterns in PatternToMatch.  These include
  // both the primary instruction patterns (which always come first) and
  // patterns defined outside the instruction.
  for (const PatternToMatch &PTM : ptms()) {
    // We can only infer from single-instruction patterns, otherwise we won't
    // know which instruction should get the flags.
    SmallVector<Record*, 8> PatInstrs;
    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
    if (PatInstrs.size() != 1)
      continue;

    // Get the single instruction.
    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());

    // Only infer properties from the first pattern. We'll verify the others.
    if (InstInfo.InferredFrom)
      continue;

    InstAnalyzer PatInfo(*this);
    PatInfo.Analyze(PTM);
    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
  }

  if (Errors)
    PrintFatalError("pattern conflicts");

  // If requested by the target, guess any undefined properties.
  if (Target.guessInstructionProperties()) {
    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
      CodeGenInstruction *InstInfo =
        const_cast<CodeGenInstruction *>(Instructions[i]);
      if (InstInfo->InferredFrom)
        continue;
      // The mayLoad and mayStore flags default to false.
      // Conservatively assume hasSideEffects if it wasn't explicit.
      if (InstInfo->hasSideEffects_Unset)
        InstInfo->hasSideEffects = true;
    }
    return;
  }

  // Complain about any flags that are still undefined.
  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
    CodeGenInstruction *InstInfo =
      const_cast<CodeGenInstruction *>(Instructions[i]);
    if (InstInfo->InferredFrom)
      continue;
    if (InstInfo->hasSideEffects_Unset)
      PrintError(InstInfo->TheDef->getLoc(),
                 "Can't infer hasSideEffects from patterns");
    if (InstInfo->mayStore_Unset)
      PrintError(InstInfo->TheDef->getLoc(),
                 "Can't infer mayStore from patterns");
    if (InstInfo->mayLoad_Unset)
      PrintError(InstInfo->TheDef->getLoc(),
                 "Can't infer mayLoad from patterns");
  }
}


/// Verify instruction flags against pattern node properties.
void CodeGenDAGPatterns::VerifyInstructionFlags() {
  unsigned Errors = 0;
  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
    const PatternToMatch &PTM = *I;
    SmallVector<Record*, 8> Instrs;
    getInstructionsInTree(PTM.getDstPattern(), Instrs);
    if (Instrs.empty())
      continue;

    // Count the number of instructions with each flag set.
    unsigned NumSideEffects = 0;
    unsigned NumStores = 0;
    unsigned NumLoads = 0;
    for (const Record *Instr : Instrs) {
      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
      NumSideEffects += InstInfo.hasSideEffects;
      NumStores += InstInfo.mayStore;
      NumLoads += InstInfo.mayLoad;
    }

    // Analyze the source pattern.
    InstAnalyzer PatInfo(*this);
    PatInfo.Analyze(PTM);

    // Collect error messages.
    SmallVector<std::string, 4> Msgs;

    // Check for missing flags in the output.
    // Permit extra flags for now at least.
    if (PatInfo.hasSideEffects && !NumSideEffects)
      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");

    // Don't verify store flags on instructions with side effects. At least for
    // intrinsics, side effects implies mayStore.
    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
      Msgs.push_back("pattern may store, but mayStore isn't set");

    // Similarly, mayStore implies mayLoad on intrinsics.
    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
      Msgs.push_back("pattern may load, but mayLoad isn't set");

    // Print error messages.
    if (Msgs.empty())
      continue;
    ++Errors;

    for (const std::string &Msg : Msgs)
      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
                 (Instrs.size() == 1 ?
                  "instruction" : "output instructions"));
    // Provide the location of the relevant instruction definitions.
    for (const Record *Instr : Instrs) {
      if (Instr != PTM.getSrcRecord())
        PrintError(Instr->getLoc(), "defined here");
      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
      if (InstInfo.InferredFrom &&
          InstInfo.InferredFrom != InstInfo.TheDef &&
          InstInfo.InferredFrom != PTM.getSrcRecord())
        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
    }
  }
  if (Errors)
    PrintFatalError("Errors in DAG patterns");
}

/// Given a pattern result with an unresolved type, see if we can find one
/// instruction with an unresolved result type.  Force this result type to an
/// arbitrary element if it's possible types to converge results.
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
  if (N->isLeaf())
    return false;

  // Analyze children.
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    if (ForceArbitraryInstResultType(N->getChild(i), TP))
      return true;

  if (!N->getOperator()->isSubClassOf("Instruction"))
    return false;

  // If this type is already concrete or completely unknown we can't do
  // anything.
  TypeInfer &TI = TP.getInfer();
  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
    if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
      continue;

    // Otherwise, force its type to an arbitrary choice.
    if (TI.forceArbitrary(N->getExtType(i)))
      return true;
  }

  return false;
}

// Promote xform function to be an explicit node wherever set.
static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
  if (Record *Xform = N->getTransformFn()) {
      N->setTransformFn(nullptr);
      std::vector<TreePatternNodePtr> Children;
      Children.push_back(PromoteXForms(N));
      return std::make_shared<TreePatternNode>(Xform, std::move(Children),
                                               N->getNumTypes());
  }

  if (!N->isLeaf())
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
      TreePatternNodePtr Child = N->getChildShared(i);
      N->setChild(i, PromoteXForms(Child));
    }
  return N;
}

void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
       TreePattern &Pattern, TreePattern &Result,
       const std::vector<Record *> &InstImpResults) {

  // Inline pattern fragments and expand multiple alternatives.
  Pattern.InlinePatternFragments();
  Result.InlinePatternFragments();

  if (Result.getNumTrees() != 1)
    Result.error("Cannot use multi-alternative fragments in result pattern!");

  // Infer types.
  bool IterateInference;
  bool InferredAllPatternTypes, InferredAllResultTypes;
  do {
    // Infer as many types as possible.  If we cannot infer all of them, we
    // can never do anything with this pattern: report it to the user.
    InferredAllPatternTypes =
        Pattern.InferAllTypes(&Pattern.getNamedNodesMap());

    // Infer as many types as possible.  If we cannot infer all of them, we
    // can never do anything with this pattern: report it to the user.
    InferredAllResultTypes =
        Result.InferAllTypes(&Pattern.getNamedNodesMap());

    IterateInference = false;

    // Apply the type of the result to the source pattern.  This helps us
    // resolve cases where the input type is known to be a pointer type (which
    // is considered resolved), but the result knows it needs to be 32- or
    // 64-bits.  Infer the other way for good measure.
    for (auto T : Pattern.getTrees())
      for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
                                        T->getNumTypes());
         i != e; ++i) {
        IterateInference |= T->UpdateNodeType(
            i, Result.getOnlyTree()->getExtType(i), Result);
        IterateInference |= Result.getOnlyTree()->UpdateNodeType(
            i, T->getExtType(i), Result);
      }

    // If our iteration has converged and the input pattern's types are fully
    // resolved but the result pattern is not fully resolved, we may have a
    // situation where we have two instructions in the result pattern and
    // the instructions require a common register class, but don't care about
    // what actual MVT is used.  This is actually a bug in our modelling:
    // output patterns should have register classes, not MVTs.
    //
    // In any case, to handle this, we just go through and disambiguate some
    // arbitrary types to the result pattern's nodes.
    if (!IterateInference && InferredAllPatternTypes &&
        !InferredAllResultTypes)
      IterateInference =
          ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
  } while (IterateInference);

  // Verify that we inferred enough types that we can do something with the
  // pattern and result.  If these fire the user has to add type casts.
  if (!InferredAllPatternTypes)
    Pattern.error("Could not infer all types in pattern!");
  if (!InferredAllResultTypes) {
    Pattern.dump();
    Result.error("Could not infer all types in pattern result!");
  }

  // Promote xform function to be an explicit node wherever set.
  TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());

  TreePattern Temp(Result.getRecord(), DstShared, false, *this);
  Temp.InferAllTypes();

  ListInit *Preds = TheDef->getValueAsListInit("Predicates");
  int Complexity = TheDef->getValueAsInt("AddedComplexity");

  if (PatternRewriter)
    PatternRewriter(&Pattern);

  // A pattern may end up with an "impossible" type, i.e. a situation
  // where all types have been eliminated for some node in this pattern.
  // This could occur for intrinsics that only make sense for a specific
  // value type, and use a specific register class. If, for some mode,
  // that register class does not accept that type, the type inference
  // will lead to a contradiction, which is not an error however, but
  // a sign that this pattern will simply never match.
  if (Temp.getOnlyTree()->hasPossibleType())
    for (auto T : Pattern.getTrees())
      if (T->hasPossibleType())
        AddPatternToMatch(&Pattern,
                          PatternToMatch(TheDef, makePredList(Preds),
                                         T, Temp.getOnlyTree(),
                                         InstImpResults, Complexity,
                                         TheDef->getID()));
}

void CodeGenDAGPatterns::ParsePatterns() {
  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");

  for (Record *CurPattern : Patterns) {
    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");

    // If the pattern references the null_frag, there's nothing to do.
    if (hasNullFragReference(Tree))
      continue;

    TreePattern Pattern(CurPattern, Tree, true, *this);

    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
    if (LI->empty()) continue;  // no pattern.

    // Parse the instruction.
    TreePattern Result(CurPattern, LI, false, *this);

    if (Result.getNumTrees() != 1)
      Result.error("Cannot handle instructions producing instructions "
                   "with temporaries yet!");

    // Validate that the input pattern is correct.
    std::map<std::string, TreePatternNodePtr> InstInputs;
    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
        InstResults;
    std::vector<Record*> InstImpResults;
    for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
      FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
                                  InstResults, InstImpResults);

    ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
  }
}

static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
  for (const TypeSetByHwMode &VTS : N->getExtTypes())
    for (const auto &I : VTS)
      Modes.insert(I.first);

  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    collectModes(Modes, N->getChild(i));
}

void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
  std::map<unsigned,std::vector<Predicate>> ModeChecks;
  std::vector<PatternToMatch> Copy = PatternsToMatch;
  PatternsToMatch.clear();

  auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
    TreePatternNodePtr NewSrc = P.SrcPattern->clone();
    TreePatternNodePtr NewDst = P.DstPattern->clone();
    if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
      return;
    }

    std::vector<Predicate> Preds = P.Predicates;
    const std::vector<Predicate> &MC = ModeChecks[Mode];
    Preds.insert(Preds.end(), MC.begin(), MC.end());
    PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
                                 std::move(NewDst), P.getDstRegs(),
                                 P.getAddedComplexity(), Record::getNewUID(),
                                 Mode);
  };

  for (PatternToMatch &P : Copy) {
    TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
    if (P.SrcPattern->hasProperTypeByHwMode())
      SrcP = P.SrcPattern;
    if (P.DstPattern->hasProperTypeByHwMode())
      DstP = P.DstPattern;
    if (!SrcP && !DstP) {
      PatternsToMatch.push_back(P);
      continue;
    }

    std::set<unsigned> Modes;
    if (SrcP)
      collectModes(Modes, SrcP.get());
    if (DstP)
      collectModes(Modes, DstP.get());

    // The predicate for the default mode needs to be constructed for each
    // pattern separately.
    // Since not all modes must be present in each pattern, if a mode m is
    // absent, then there is no point in constructing a check for m. If such
    // a check was created, it would be equivalent to checking the default
    // mode, except not all modes' predicates would be a part of the checking
    // code. The subsequently generated check for the default mode would then
    // have the exact same patterns, but a different predicate code. To avoid
    // duplicated patterns with different predicate checks, construct the
    // default check as a negation of all predicates that are actually present
    // in the source/destination patterns.
    std::vector<Predicate> DefaultPred;

    for (unsigned M : Modes) {
      if (M == DefaultMode)
        continue;
      if (ModeChecks.find(M) != ModeChecks.end())
        continue;

      // Fill the map entry for this mode.
      const HwMode &HM = CGH.getMode(M);
      ModeChecks[M].emplace_back(Predicate(HM.Features, true));

      // Add negations of the HM's predicates to the default predicate.
      DefaultPred.emplace_back(Predicate(HM.Features, false));
    }

    for (unsigned M : Modes) {
      if (M == DefaultMode)
        continue;
      AppendPattern(P, M);
    }

    bool HasDefault = Modes.count(DefaultMode);
    if (HasDefault)
      AppendPattern(P, DefaultMode);
  }
}

/// Dependent variable map for CodeGenDAGPattern variant generation
typedef StringMap<int> DepVarMap;

static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
  if (N->isLeaf()) {
    if (N->hasName() && isa<DefInit>(N->getLeafValue()))
      DepMap[N->getName()]++;
  } else {
    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
      FindDepVarsOf(N->getChild(i), DepMap);
  }
}

/// Find dependent variables within child patterns
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
  DepVarMap depcounts;
  FindDepVarsOf(N, depcounts);
  for (const auto &Pair : depcounts) {
    if (Pair.getValue() > 1)
      DepVars.insert(Pair.getKey());
  }
}

#ifndef NDEBUG
/// Dump the dependent variable set:
static void DumpDepVars(MultipleUseVarSet &DepVars) {
  if (DepVars.empty()) {
    LLVM_DEBUG(errs() << "<empty set>");
  } else {
    LLVM_DEBUG(errs() << "[ ");
    for (const auto &DepVar : DepVars) {
      LLVM_DEBUG(errs() << DepVar.getKey() << " ");
    }
    LLVM_DEBUG(errs() << "]");
  }
}
#endif


/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(
    TreePatternNodePtr Orig,
    const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
    std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
    const MultipleUseVarSet &DepVars) {
  // Make sure that each operand has at least one variant to choose from.
  for (const auto &Variants : ChildVariants)
    if (Variants.empty())
      return;

  // The end result is an all-pairs construction of the resultant pattern.
  std::vector<unsigned> Idxs;
  Idxs.resize(ChildVariants.size());
  bool NotDone;
  do {
#ifndef NDEBUG
    LLVM_DEBUG(if (!Idxs.empty()) {
      errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
      for (unsigned Idx : Idxs) {
        errs() << Idx << " ";
      }
      errs() << "]\n";
    });
#endif
    // Create the variant and add it to the output list.
    std::vector<TreePatternNodePtr> NewChildren;
    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
    TreePatternNodePtr R = std::make_shared<TreePatternNode>(
        Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());

    // Copy over properties.
    R->setName(Orig->getName());
    R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
    R->setPredicateCalls(Orig->getPredicateCalls());
    R->setTransformFn(Orig->getTransformFn());
    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
      R->setType(i, Orig->getExtType(i));

    // If this pattern cannot match, do not include it as a variant.
    std::string ErrString;
    // Scan to see if this pattern has already been emitted.  We can get
    // duplication due to things like commuting:
    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
    // which are the same pattern.  Ignore the dups.
    if (R->canPatternMatch(ErrString, CDP) &&
        none_of(OutVariants, [&](TreePatternNodePtr Variant) {
          return R->isIsomorphicTo(Variant.get(), DepVars);
        }))
      OutVariants.push_back(R);

    // Increment indices to the next permutation by incrementing the
    // indices from last index backward, e.g., generate the sequence
    // [0, 0], [0, 1], [1, 0], [1, 1].
    int IdxsIdx;
    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
        Idxs[IdxsIdx] = 0;
      else
        break;
    }
    NotDone = (IdxsIdx >= 0);
  } while (NotDone);
}

/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNodePtr Orig,
                                 const std::vector<TreePatternNodePtr> &LHS,
                                 const std::vector<TreePatternNodePtr> &RHS,
                                 std::vector<TreePatternNodePtr> &OutVariants,
                                 CodeGenDAGPatterns &CDP,
                                 const MultipleUseVarSet &DepVars) {
  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
  ChildVariants.push_back(LHS);
  ChildVariants.push_back(RHS);
  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
}

static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
                                  std::vector<TreePatternNodePtr> &Children) {
  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
  Record *Operator = N->getOperator();

  // Only permit raw nodes.
  if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
      N->getTransformFn()) {
    Children.push_back(N);
    return;
  }

  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
    Children.push_back(N->getChildShared(0));
  else
    GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);

  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
    Children.push_back(N->getChildShared(1));
  else
    GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
}

/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNodePtr N,
                               std::vector<TreePatternNodePtr> &OutVariants,
                               CodeGenDAGPatterns &CDP,
                               const MultipleUseVarSet &DepVars) {
  // We cannot permute leaves or ComplexPattern uses.
  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
    OutVariants.push_back(N);
    return;
  }

  // Look up interesting info about the node.
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());

  // If this node is associative, re-associate.
  if (NodeInfo.hasProperty(SDNPAssociative)) {
    // Re-associate by pulling together all of the linked operators
    std::vector<TreePatternNodePtr> MaximalChildren;
    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);

    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
    // permutations.
    if (MaximalChildren.size() == 3) {
      // Find the variants of all of our maximal children.
      std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);

      // There are only two ways we can permute the tree:
      //   (A op B) op C    and    A op (B op C)
      // Within these forms, we can also permute A/B/C.

      // Generate legal pair permutations of A/B/C.
      std::vector<TreePatternNodePtr> ABVariants;
      std::vector<TreePatternNodePtr> BAVariants;
      std::vector<TreePatternNodePtr> ACVariants;
      std::vector<TreePatternNodePtr> CAVariants;
      std::vector<TreePatternNodePtr> BCVariants;
      std::vector<TreePatternNodePtr> CBVariants;
      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);

      // Combine those into the result: (x op x) op x
      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);

      // Combine those into the result: x op (x op x)
      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
      return;
    }
  }

  // Compute permutations of all children.
  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
  ChildVariants.resize(N->getNumChildren());
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);

  // Build all permutations based on how the children were formed.
  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);

  // If this node is commutative, consider the commuted order.
  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
    assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
           "Commutative but doesn't have 2 children!");
    // Don't count children which are actually register references.
    unsigned NC = 0;
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
      TreePatternNode *Child = N->getChild(i);
      if (Child->isLeaf())
        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
          Record *RR = DI->getDef();
          if (RR->isSubClassOf("Register"))
            continue;
        }
      NC++;
    }
    // Consider the commuted order.
    if (isCommIntrinsic) {
      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
      // operands are the commutative operands, and there might be more operands
      // after those.
      assert(NC >= 3 &&
             "Commutative intrinsic should have at least 3 children!");
      std::vector<std::vector<TreePatternNodePtr>> Variants;
      Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
      Variants.push_back(std::move(ChildVariants[2]));
      Variants.push_back(std::move(ChildVariants[1]));
      for (unsigned i = 3; i != NC; ++i)
        Variants.push_back(std::move(ChildVariants[i]));
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
    } else if (NC == N->getNumChildren()) {
      std::vector<std::vector<TreePatternNodePtr>> Variants;
      Variants.push_back(std::move(ChildVariants[1]));
      Variants.push_back(std::move(ChildVariants[0]));
      for (unsigned i = 2; i != NC; ++i)
        Variants.push_back(std::move(ChildVariants[i]));
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
    }
  }
}


// GenerateVariants - Generate variants.  For example, commutative patterns can
// match multiple ways.  Add them to PatternsToMatch as well.
void CodeGenDAGPatterns::GenerateVariants() {
  LLVM_DEBUG(errs() << "Generating instruction variants.\n");

  // Loop over all of the patterns we've collected, checking to see if we can
  // generate variants of the instruction, through the exploitation of
  // identities.  This permits the target to provide aggressive matching without
  // the .td file having to contain tons of variants of instructions.
  //
  // Note that this loop adds new patterns to the PatternsToMatch list, but we
  // intentionally do not reconsider these.  Any variants of added patterns have
  // already been added.
  //
  const unsigned NumOriginalPatterns = PatternsToMatch.size();
  BitVector MatchedPatterns(NumOriginalPatterns);
  std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
                                           BitVector(NumOriginalPatterns));

  typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
      DepsAndVariants;
  std::map<unsigned, DepsAndVariants> PatternsWithVariants;

  // Collect patterns with more than one variant.
  for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
    MultipleUseVarSet DepVars;
    std::vector<TreePatternNodePtr> Variants;
    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
    LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
    LLVM_DEBUG(DumpDepVars(DepVars));
    LLVM_DEBUG(errs() << "\n");
    GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
                       *this, DepVars);

    assert(!Variants.empty() && "Must create at least original variant!");
    if (Variants.size() == 1) // No additional variants for this pattern.
      continue;

    LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
               PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");

    PatternsWithVariants[i] = std::make_pair(DepVars, Variants);

    // Cache matching predicates.
    if (MatchedPatterns[i])
      continue;

    const std::vector<Predicate> &Predicates =
        PatternsToMatch[i].getPredicates();

    BitVector &Matches = MatchedPredicates[i];
    MatchedPatterns.set(i);
    Matches.set(i);

    // Don't test patterns that have already been cached - it won't match.
    for (unsigned p = 0; p != NumOriginalPatterns; ++p)
      if (!MatchedPatterns[p])
        Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());

    // Copy this to all the matching patterns.
    for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
      if (p != (int)i) {
        MatchedPatterns.set(p);
        MatchedPredicates[p] = Matches;
      }
  }

  for (auto it : PatternsWithVariants) {
    unsigned i = it.first;
    const MultipleUseVarSet &DepVars = it.second.first;
    const std::vector<TreePatternNodePtr> &Variants = it.second.second;

    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
      TreePatternNodePtr Variant = Variants[v];
      BitVector &Matches = MatchedPredicates[i];

      LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
                 errs() << "\n");

      // Scan to see if an instruction or explicit pattern already matches this.
      bool AlreadyExists = false;
      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
        // Skip if the top level predicates do not match.
        if (!Matches[p])
          continue;
        // Check to see if this variant already exists.
        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
                                    DepVars)) {
          LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
          AlreadyExists = true;
          break;
        }
      }
      // If we already have it, ignore the variant.
      if (AlreadyExists) continue;

      // Otherwise, add it to the list of patterns we have.
      PatternsToMatch.push_back(PatternToMatch(
          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
          Variant, PatternsToMatch[i].getDstPatternShared(),
          PatternsToMatch[i].getDstRegs(),
          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
      MatchedPredicates.push_back(Matches);

      // Add a new match the same as this pattern.
      for (auto &P : MatchedPredicates)
        P.push_back(P[i]);
    }

    LLVM_DEBUG(errs() << "\n");
  }
}