PerfectShuffle.cpp 17.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
//===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file computes an optimal sequence of instructions for doing all shuffles
// of two 4-element vectors.  With a release build and when configured to emit
// an altivec instruction table, this takes about 30s to run on a 2.7Ghz
// PowerPC G5.
//
//===----------------------------------------------------------------------===//

#include <cassert>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <vector>
struct Operator;

// Masks are 4-nibble hex numbers.  Values 0-7 in any nibble means that it takes
// an element from that value of the input vectors.  A value of 8 means the
// entry is undefined.

// Mask manipulation functions.
static inline unsigned short MakeMask(unsigned V0, unsigned V1,
                                      unsigned V2, unsigned V3) {
  return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4));
}

/// getMaskElt - Return element N of the specified mask.
static unsigned getMaskElt(unsigned Mask, unsigned Elt) {
  return (Mask >> ((3-Elt)*4)) & 0xF;
}

static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) {
  unsigned FieldShift = ((3-Elt)*4);
  return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift);
}

// Reject elements where the values are 9-15.
static bool isValidMask(unsigned short Mask) {
  unsigned short UndefBits = Mask & 0x8888;
  return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0;
}

/// hasUndefElements - Return true if any of the elements in the mask are undefs
///
static bool hasUndefElements(unsigned short Mask) {
  return (Mask & 0x8888) != 0;
}

/// isOnlyLHSMask - Return true if this mask only refers to its LHS, not
/// including undef values..
static bool isOnlyLHSMask(unsigned short Mask) {
  return (Mask & 0x4444) == 0;
}

/// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to
/// refer to the LHS only (for when one argument value is passed into the same
/// function twice).
#if 0
static unsigned short getLHSOnlyMask(unsigned short Mask) {
  return Mask & 0xBBBB;  // Keep only LHS and Undefs.
}
#endif

/// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4
/// bits) into a compressed 13-bit mask, where each elt is multiplied by 9.
static unsigned getCompressedMask(unsigned short Mask) {
  return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 +
         getMaskElt(Mask, 2)*9     + getMaskElt(Mask, 3);
}

static void PrintMask(unsigned i, std::ostream &OS) {
  OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0)))
     << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1)))
     << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2)))
     << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3)))
     << ">";
}

/// ShuffleVal - This represents a shufflevector operation.
struct ShuffleVal {
  Operator *Op;   // The Operation used to generate this value.
  unsigned Cost;  // Number of instrs used to generate this value.
  unsigned short Arg0, Arg1;  // Input operands for this value.

  ShuffleVal() : Cost(1000000) {}
};


/// ShufTab - This is the actual shuffle table that we are trying to generate.
///
static ShuffleVal ShufTab[65536];

/// TheOperators - All of the operators that this target supports.
static std::vector<Operator*> TheOperators;

/// Operator - This is a vector operation that is available for use.
struct Operator {
  const char *Name;
  unsigned short ShuffleMask;
  unsigned short OpNum;
  unsigned Cost;

  Operator(unsigned short shufflemask, const char *name, unsigned opnum,
           unsigned cost = 1)
    :  Name(name), ShuffleMask(shufflemask), OpNum(opnum),Cost(cost) {
    TheOperators.push_back(this);
  }
  ~Operator() {
    assert(TheOperators.back() == this);
    TheOperators.pop_back();
  }

  bool isOnlyLHSOperator() const {
    return isOnlyLHSMask(ShuffleMask);
  }

  const char *getName() const { return Name; }
  unsigned getCost() const { return Cost; }

  unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) {
    // Extract the elements from LHSMask and RHSMask, as appropriate.
    unsigned Result = 0;
    for (unsigned i = 0; i != 4; ++i) {
      unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF;
      unsigned ResElt;
      if (SrcElt < 4)
        ResElt = getMaskElt(LHSMask, SrcElt);
      else if (SrcElt < 8)
        ResElt = getMaskElt(RHSMask, SrcElt-4);
      else {
        assert(SrcElt == 8 && "Bad src elt!");
        ResElt = 8;
      }
      Result |= ResElt << (4*i);
    }
    return Result;
  }
};

static const char *getZeroCostOpName(unsigned short Op) {
  if (ShufTab[Op].Arg0 == 0x0123)
    return "LHS";
  else if (ShufTab[Op].Arg0 == 0x4567)
    return "RHS";
  else {
    assert(0 && "bad zero cost operation");
    abort();
  }
}

static void PrintOperation(unsigned ValNo, unsigned short Vals[]) {
  unsigned short ThisOp = Vals[ValNo];
  std::cerr << "t" << ValNo;
  PrintMask(ThisOp, std::cerr);
  std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "(";

  if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) {
    std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0);
    PrintMask(ShufTab[ThisOp].Arg0, std::cerr);
  } else {
    // Figure out what tmp # it is.
    for (unsigned i = 0; ; ++i)
      if (Vals[i] == ShufTab[ThisOp].Arg0) {
        std::cerr << "t" << i;
        break;
      }
  }

  if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) {
    std::cerr << ", ";
    if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) {
      std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1);
      PrintMask(ShufTab[ThisOp].Arg1, std::cerr);
    } else {
      // Figure out what tmp # it is.
      for (unsigned i = 0; ; ++i)
        if (Vals[i] == ShufTab[ThisOp].Arg1) {
          std::cerr << "t" << i;
          break;
        }
    }
  }
  std::cerr << ")  ";
}

static unsigned getNumEntered() {
  unsigned Count = 0;
  for (unsigned i = 0; i != 65536; ++i)
    Count += ShufTab[i].Cost < 100;
  return Count;
}

static void EvaluateOps(unsigned short Elt, unsigned short Vals[],
                        unsigned &NumVals) {
  if (ShufTab[Elt].Cost == 0) return;

  // If this value has already been evaluated, it is free.  FIXME: match undefs.
  for (unsigned i = 0, e = NumVals; i != e; ++i)
    if (Vals[i] == Elt) return;

  // Otherwise, get the operands of the value, then add it.
  unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1;
  if (ShufTab[Arg0].Cost)
    EvaluateOps(Arg0, Vals, NumVals);
  if (Arg0 != Arg1 && ShufTab[Arg1].Cost)
    EvaluateOps(Arg1, Vals, NumVals);

  Vals[NumVals++] = Elt;
}


int main() {
  // Seed the table with accesses to the LHS and RHS.
  ShufTab[0x0123].Cost = 0;
  ShufTab[0x0123].Op = nullptr;
  ShufTab[0x0123].Arg0 = 0x0123;
  ShufTab[0x4567].Cost = 0;
  ShufTab[0x4567].Op = nullptr;
  ShufTab[0x4567].Arg0 = 0x4567;

  // Seed the first-level of shuffles, shuffles whose inputs are the input to
  // the vectorshuffle operation.
  bool MadeChange = true;
  unsigned OpCount = 0;
  while (MadeChange) {
    MadeChange = false;
    ++OpCount;
    std::cerr << "Starting iteration #" << OpCount << " with "
              << getNumEntered() << " entries established.\n";

    // Scan the table for two reasons: First, compute the maximum cost of any
    // operation left in the table.  Second, make sure that values with undefs
    // have the cheapest alternative that they match.
    unsigned MaxCost = ShufTab[0].Cost;
    for (unsigned i = 1; i != 0x8889; ++i) {
      if (!isValidMask(i)) continue;
      if (ShufTab[i].Cost > MaxCost)
        MaxCost = ShufTab[i].Cost;

      // If this value has an undef, make it be computed the cheapest possible
      // way of any of the things that it matches.
      if (hasUndefElements(i)) {
        // This code is a little bit tricky, so here's the idea: consider some
        // permutation, like 7u4u.  To compute the lowest cost for 7u4u, we
        // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries.  If
        // there are 3 undefs, the number rises to 729 entries we have to scan,
        // and for the 4 undef case, we have to scan the whole table.
        //
        // Instead of doing this huge amount of scanning, we process the table
        // entries *in order*, and use the fact that 'u' is 8, larger than any
        // valid index.  Given an entry like 7u4u then, we only need to scan
        // 7[0-7]4u - 8 entries.  We can get away with this, because we already
        // know that each of 704u, 714u, 724u, etc contain the minimum value of
        // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively.
        unsigned UndefIdx;
        if (i & 0x8000)
          UndefIdx = 0;
        else if (i & 0x0800)
          UndefIdx = 1;
        else if (i & 0x0080)
          UndefIdx = 2;
        else if (i & 0x0008)
          UndefIdx = 3;
        else
          abort();

        unsigned MinVal  = i;
        unsigned MinCost = ShufTab[i].Cost;

        // Scan the 8 entries.
        for (unsigned j = 0; j != 8; ++j) {
          unsigned NewElt = setMaskElt(i, UndefIdx, j);
          if (ShufTab[NewElt].Cost < MinCost) {
            MinCost = ShufTab[NewElt].Cost;
            MinVal = NewElt;
          }
        }

        // If we found something cheaper than what was here before, use it.
        if (i != MinVal) {
          MadeChange = true;
          ShufTab[i] = ShufTab[MinVal];
        }
      }
    }

    for (unsigned LHS = 0; LHS != 0x8889; ++LHS) {
      if (!isValidMask(LHS)) continue;
      if (ShufTab[LHS].Cost > 1000) continue;

      // If nothing involving this operand could possibly be cheaper than what
      // we already have, don't consider it.
      if (ShufTab[LHS].Cost + 1 >= MaxCost)
        continue;

      for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) {
        Operator *Op = TheOperators[opnum];

        // Evaluate op(LHS,LHS)
        unsigned ResultMask = Op->getTransformedMask(LHS, LHS);

        unsigned Cost = ShufTab[LHS].Cost + Op->getCost();
        if (Cost < ShufTab[ResultMask].Cost) {
          ShufTab[ResultMask].Cost = Cost;
          ShufTab[ResultMask].Op = Op;
          ShufTab[ResultMask].Arg0 = LHS;
          ShufTab[ResultMask].Arg1 = LHS;
          MadeChange = true;
        }

        // If this is a two input instruction, include the op(x,y) cases.  If
        // this is a one input instruction, skip this.
        if (Op->isOnlyLHSOperator()) continue;

        for (unsigned RHS = 0; RHS != 0x8889; ++RHS) {
          if (!isValidMask(RHS)) continue;
          if (ShufTab[RHS].Cost > 1000) continue;

          // If nothing involving this operand could possibly be cheaper than
          // what we already have, don't consider it.
          if (ShufTab[RHS].Cost + 1 >= MaxCost)
            continue;


          // Evaluate op(LHS,RHS)
          unsigned ResultMask = Op->getTransformedMask(LHS, RHS);

          if (ShufTab[ResultMask].Cost <= OpCount ||
              ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost ||
              ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost)
            continue;

          // Figure out the cost to evaluate this, knowing that CSE's only need
          // to be evaluated once.
          unsigned short Vals[30];
          unsigned NumVals = 0;
          EvaluateOps(LHS, Vals, NumVals);
          EvaluateOps(RHS, Vals, NumVals);

          unsigned Cost = NumVals + Op->getCost();
          if (Cost < ShufTab[ResultMask].Cost) {
            ShufTab[ResultMask].Cost = Cost;
            ShufTab[ResultMask].Op = Op;
            ShufTab[ResultMask].Arg0 = LHS;
            ShufTab[ResultMask].Arg1 = RHS;
            MadeChange = true;
          }
        }
      }
    }
  }

  std::cerr << "Finished Table has " << getNumEntered()
            << " entries established.\n";

  unsigned CostArray[10] = { 0 };

  // Compute a cost histogram.
  for (unsigned i = 0; i != 65536; ++i) {
    if (!isValidMask(i)) continue;
    if (ShufTab[i].Cost > 9)
      ++CostArray[9];
    else
      ++CostArray[ShufTab[i].Cost];
  }

  for (unsigned i = 0; i != 9; ++i)
    if (CostArray[i])
      std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n";
  if (CostArray[9])
    std::cout << "// " << CostArray[9] << " entries have higher cost!\n";


  // Build up the table to emit.
  std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n";
  std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n";

  for (unsigned i = 0; i != 0x8889; ++i) {
    if (!isValidMask(i)) continue;

    // CostSat - The cost of this operation saturated to two bits.
    unsigned CostSat = ShufTab[i].Cost;
    if (CostSat > 4) CostSat = 4;
    if (CostSat == 0) CostSat = 1;
    --CostSat;  // Cost is now between 0-3.

    unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0;
    assert(OpNum < 16 && "Too few bits to encode operation!");

    unsigned LHS = getCompressedMask(ShufTab[i].Arg0);
    unsigned RHS = getCompressedMask(ShufTab[i].Arg1);

    // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of
    // LHS, and 13 bits of RHS = 32 bits.
    unsigned Val = (CostSat << 30) | (OpNum << 26) | (LHS << 13) | RHS;

    std::cout << "  " << std::setw(10) << Val << "U, // ";
    PrintMask(i, std::cout);
    std::cout << ": Cost " << ShufTab[i].Cost;
    std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy");
    std::cout << " ";
    if (ShufTab[ShufTab[i].Arg0].Cost == 0) {
      std::cout << getZeroCostOpName(ShufTab[i].Arg0);
    } else {
      PrintMask(ShufTab[i].Arg0, std::cout);
    }

    if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) {
      std::cout << ", ";
      if (ShufTab[ShufTab[i].Arg1].Cost == 0) {
        std::cout << getZeroCostOpName(ShufTab[i].Arg1);
      } else {
        PrintMask(ShufTab[i].Arg1, std::cout);
      }
    }
    std::cout << "\n";
  }
  std::cout << "  0\n};\n";

  if (0) {
    // Print out the table.
    for (unsigned i = 0; i != 0x8889; ++i) {
      if (!isValidMask(i)) continue;
      if (ShufTab[i].Cost < 1000) {
        PrintMask(i, std::cerr);
        std::cerr << " - Cost " << ShufTab[i].Cost << " - ";

        unsigned short Vals[30];
        unsigned NumVals = 0;
        EvaluateOps(i, Vals, NumVals);

        for (unsigned j = 0, e = NumVals; j != e; ++j)
          PrintOperation(j, Vals);
        std::cerr << "\n";
      }
    }
  }
}


#ifdef GENERATE_ALTIVEC

///===---------------------------------------------------------------------===//
/// The altivec instruction definitions.  This is the altivec-specific part of
/// this file.
///===---------------------------------------------------------------------===//

// Note that the opcode numbers here must match those in the PPC backend.
enum {
  OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
  OP_VMRGHW,
  OP_VMRGLW,
  OP_VSPLTISW0,
  OP_VSPLTISW1,
  OP_VSPLTISW2,
  OP_VSPLTISW3,
  OP_VSLDOI4,
  OP_VSLDOI8,
  OP_VSLDOI12
};

struct vmrghw : public Operator {
  vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {}
} the_vmrghw;

struct vmrglw : public Operator {
  vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {}
} the_vmrglw;

template<unsigned Elt>
struct vspltisw : public Operator {
  vspltisw(const char *N, unsigned Opc)
    : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
};

vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0);
vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1);
vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2);
vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3);

template<unsigned N>
struct vsldoi : public Operator {
  vsldoi(const char *Name, unsigned Opc)
    : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
  }
};

vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4);
vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8);
vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12);

#endif

#define GENERATE_NEON

#ifdef GENERATE_NEON
enum {
  OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
  OP_VREV,
  OP_VDUP0,
  OP_VDUP1,
  OP_VDUP2,
  OP_VDUP3,
  OP_VEXT1,
  OP_VEXT2,
  OP_VEXT3,
  OP_VUZPL, // VUZP, left result
  OP_VUZPR, // VUZP, right result
  OP_VZIPL, // VZIP, left result
  OP_VZIPR, // VZIP, right result
  OP_VTRNL, // VTRN, left result
  OP_VTRNR  // VTRN, right result
};

struct vrev : public Operator {
  vrev() : Operator(0x1032, "vrev", OP_VREV) {}
} the_vrev;

template<unsigned Elt>
struct vdup : public Operator {
  vdup(const char *N, unsigned Opc)
    : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
};

vdup<0> the_vdup0("vdup0", OP_VDUP0);
vdup<1> the_vdup1("vdup1", OP_VDUP1);
vdup<2> the_vdup2("vdup2", OP_VDUP2);
vdup<3> the_vdup3("vdup3", OP_VDUP3);

template<unsigned N>
struct vext : public Operator {
  vext(const char *Name, unsigned Opc)
    : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
  }
};

vext<1> the_vext1("vext1", OP_VEXT1);
vext<2> the_vext2("vext2", OP_VEXT2);
vext<3> the_vext3("vext3", OP_VEXT3);

struct vuzpl : public Operator {
  vuzpl() : Operator(0x0246, "vuzpl", OP_VUZPL, 2) {}
} the_vuzpl;

struct vuzpr : public Operator {
  vuzpr() : Operator(0x1357, "vuzpr", OP_VUZPR, 2) {}
} the_vuzpr;

struct vzipl : public Operator {
  vzipl() : Operator(0x0415, "vzipl", OP_VZIPL, 2) {}
} the_vzipl;

struct vzipr : public Operator {
  vzipr() : Operator(0x2637, "vzipr", OP_VZIPR, 2) {}
} the_vzipr;

struct vtrnl : public Operator {
  vtrnl() : Operator(0x0426, "vtrnl", OP_VTRNL, 2) {}
} the_vtrnl;

struct vtrnr : public Operator {
  vtrnr() : Operator(0x1537, "vtrnr", OP_VTRNR, 2) {}
} the_vtrnr;

#endif