OperationsTest.cpp
14.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//===- OperationsTest.cpp - Tests for fuzzer operations -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/FuzzMutate/OpDescriptor.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <iostream>
// Define some pretty printers to help with debugging failures.
namespace llvm {
void PrintTo(Type *T, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
T->print(ROS);
}
void PrintTo(BasicBlock *BB, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
ROS << BB << " (" << BB->getName() << ")";
}
void PrintTo(Value *V, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
ROS << V << " (";
V->print(ROS);
ROS << ")";
}
void PrintTo(Constant *C, ::std::ostream *OS) { PrintTo(cast<Value>(C), OS); }
} // namespace llvm
using namespace llvm;
using testing::AllOf;
using testing::AnyOf;
using testing::ElementsAre;
using testing::Eq;
using testing::Ge;
using testing::Each;
using testing::Truly;
using testing::NotNull;
using testing::PrintToString;
using testing::SizeIs;
namespace {
std::unique_ptr<Module> parseAssembly(
const char *Assembly, LLVMContext &Context) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
assert(M && !verifyModule(*M, &errs()));
return M;
}
MATCHER_P(TypesMatch, V, "has type " + PrintToString(V->getType())) {
return arg->getType() == V->getType();
}
MATCHER_P(HasType, T, "") { return arg->getType() == T; }
TEST(OperationsTest, SourcePreds) {
using namespace llvm::fuzzerop;
LLVMContext Ctx;
Constant *i1 = ConstantInt::getFalse(Ctx);
Constant *i8 = ConstantInt::get(Type::getInt8Ty(Ctx), 3);
Constant *i16 = ConstantInt::get(Type::getInt16Ty(Ctx), 1 << 15);
Constant *i32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
Constant *i64 = ConstantInt::get(Type::getInt64Ty(Ctx),
std::numeric_limits<uint64_t>::max());
Constant *f16 = ConstantFP::getInfinity(Type::getHalfTy(Ctx));
Constant *f32 = ConstantFP::get(Type::getFloatTy(Ctx), 0.0);
Constant *f64 = ConstantFP::get(Type::getDoubleTy(Ctx), 123.45);
Constant *s =
ConstantStruct::get(StructType::create(Ctx, "OpaqueStruct"));
Constant *a =
ConstantArray::get(ArrayType::get(i32->getType(), 2), {i32, i32});
Constant *v8i8 = ConstantVector::getSplat({8, false}, i8);
Constant *v4f16 = ConstantVector::getSplat({4, false}, f16);
Constant *p0i32 =
ConstantPointerNull::get(PointerType::get(i32->getType(), 0));
auto OnlyI32 = onlyType(i32->getType());
EXPECT_TRUE(OnlyI32.matches({}, i32));
EXPECT_FALSE(OnlyI32.matches({}, i64));
EXPECT_FALSE(OnlyI32.matches({}, p0i32));
EXPECT_FALSE(OnlyI32.matches({}, a));
EXPECT_THAT(OnlyI32.generate({}, {}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
auto AnyType = anyType();
EXPECT_TRUE(AnyType.matches({}, i1));
EXPECT_TRUE(AnyType.matches({}, f64));
EXPECT_TRUE(AnyType.matches({}, s));
EXPECT_TRUE(AnyType.matches({}, v8i8));
EXPECT_TRUE(AnyType.matches({}, p0i32));
EXPECT_THAT(
AnyType.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
Each(AnyOf(TypesMatch(i32), TypesMatch(f16), TypesMatch(v8i8))));
auto AnyInt = anyIntType();
EXPECT_TRUE(AnyInt.matches({}, i1));
EXPECT_TRUE(AnyInt.matches({}, i64));
EXPECT_FALSE(AnyInt.matches({}, f32));
EXPECT_FALSE(AnyInt.matches({}, v4f16));
EXPECT_THAT(
AnyInt.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
auto AnyFP = anyFloatType();
EXPECT_TRUE(AnyFP.matches({}, f16));
EXPECT_TRUE(AnyFP.matches({}, f32));
EXPECT_FALSE(AnyFP.matches({}, i16));
EXPECT_FALSE(AnyFP.matches({}, p0i32));
EXPECT_FALSE(AnyFP.matches({}, v4f16));
EXPECT_THAT(
AnyFP.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(f16))));
auto AnyPtr = anyPtrType();
EXPECT_TRUE(AnyPtr.matches({}, p0i32));
EXPECT_FALSE(AnyPtr.matches({}, i8));
EXPECT_FALSE(AnyPtr.matches({}, a));
EXPECT_FALSE(AnyPtr.matches({}, v8i8));
auto isPointer = [](Value *V) { return V->getType()->isPointerTy(); };
EXPECT_THAT(
AnyPtr.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(3u)), Each(Truly(isPointer))));
auto AnyVec = anyVectorType();
EXPECT_TRUE(AnyVec.matches({}, v8i8));
EXPECT_TRUE(AnyVec.matches({}, v4f16));
EXPECT_FALSE(AnyVec.matches({}, i8));
EXPECT_FALSE(AnyVec.matches({}, a));
EXPECT_FALSE(AnyVec.matches({}, s));
EXPECT_THAT(AnyVec.generate({}, {v8i8->getType()}),
ElementsAre(TypesMatch(v8i8)));
auto First = matchFirstType();
EXPECT_TRUE(First.matches({i8}, i8));
EXPECT_TRUE(First.matches({s, a}, s));
EXPECT_FALSE(First.matches({f16}, f32));
EXPECT_FALSE(First.matches({v4f16, f64}, f64));
EXPECT_THAT(First.generate({i8}, {}), Each(TypesMatch(i8)));
EXPECT_THAT(First.generate({f16}, {i8->getType()}),
Each(TypesMatch(f16)));
EXPECT_THAT(First.generate({v8i8, i32}, {}), Each(TypesMatch(v8i8)));
}
TEST(OperationsTest, SplitBlock) {
LLVMContext Ctx;
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto SBOp = fuzzerop::splitBlockDescriptor(1);
// Create a block with only a return and split it on the return.
auto *BB = BasicBlock::Create(Ctx, "BB", F);
auto *RI = ReturnInst::Create(Ctx, BB);
SBOp.BuilderFunc({UndefValue::get(Type::getInt1Ty(Ctx))}, RI);
// We should end up with an unconditional branch from BB to BB1, and the
// return ends up in BB1.
auto *UncondBr = cast<BranchInst>(BB->getTerminator());
ASSERT_TRUE(UncondBr->isUnconditional());
auto *BB1 = UncondBr->getSuccessor(0);
ASSERT_THAT(RI->getParent(), Eq(BB1));
// Now add an instruction to BB1 and split on that.
auto *AI = new AllocaInst(Type::getInt8Ty(Ctx), 0, "a", RI);
Value *Cond = ConstantInt::getFalse(Ctx);
SBOp.BuilderFunc({Cond}, AI);
// We should end up with a loop back on BB1 and the instruction we split on
// moves to BB2.
auto *CondBr = cast<BranchInst>(BB1->getTerminator());
EXPECT_THAT(CondBr->getCondition(), Eq(Cond));
ASSERT_THAT(CondBr->getNumSuccessors(), Eq(2u));
ASSERT_THAT(CondBr->getSuccessor(0), Eq(BB1));
auto *BB2 = CondBr->getSuccessor(1);
EXPECT_THAT(AI->getParent(), Eq(BB2));
EXPECT_THAT(RI->getParent(), Eq(BB2));
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, SplitEHBlock) {
// Check that we will not try to branch back to the landingpad block using
// regular branch instruction
LLVMContext Ctx;
const char *SourceCode =
"declare i32* @f()"
"declare i32 @personality_function()"
"define i32* @test() personality i32 ()* @personality_function {\n"
"entry:\n"
" %val = invoke i32* @f()\n"
" to label %normal unwind label %exceptional\n"
"normal:\n"
" ret i32* %val\n"
"exceptional:\n"
" %landing_pad4 = landingpad token cleanup\n"
" ret i32* undef\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
// Get the landingpad block
BasicBlock &BB = *std::next(M->getFunction("test")->begin(), 2);
fuzzerop::OpDescriptor Descr = fuzzerop::splitBlockDescriptor(1);
Descr.BuilderFunc({ConstantInt::getTrue(Ctx)},&*BB.getFirstInsertionPt());
ASSERT_TRUE(!verifyModule(*M, &errs()));
}
TEST(OperationsTest, SplitBlockWithPhis) {
LLVMContext Ctx;
Type *Int8Ty = Type::getInt8Ty(Ctx);
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto SBOp = fuzzerop::splitBlockDescriptor(1);
// Create 3 blocks with an if-then branch.
auto *BB1 = BasicBlock::Create(Ctx, "BB1", F);
auto *BB2 = BasicBlock::Create(Ctx, "BB2", F);
auto *BB3 = BasicBlock::Create(Ctx, "BB3", F);
BranchInst::Create(BB2, BB3, ConstantInt::getFalse(Ctx), BB1);
BranchInst::Create(BB3, BB2);
// Set up phi nodes selecting values for the incoming edges.
auto *PHI1 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p1", BB3);
PHI1->addIncoming(ConstantInt::get(Int8Ty, 0), BB1);
PHI1->addIncoming(ConstantInt::get(Int8Ty, 1), BB2);
auto *PHI2 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p2", BB3);
PHI2->addIncoming(ConstantInt::get(Int8Ty, 1), BB1);
PHI2->addIncoming(ConstantInt::get(Int8Ty, 0), BB2);
auto *RI = ReturnInst::Create(Ctx, BB3);
// Now we split the block with PHI nodes, making sure they're all updated.
Value *Cond = ConstantInt::getFalse(Ctx);
SBOp.BuilderFunc({Cond}, RI);
// Make sure the PHIs are updated with a value for the third incoming edge.
EXPECT_THAT(PHI1->getNumIncomingValues(), Eq(3u));
EXPECT_THAT(PHI2->getNumIncomingValues(), Eq(3u));
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, GEP) {
LLVMContext Ctx;
Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
Type *Int32Ty = Type::getInt32Ty(Ctx);
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto *BB = BasicBlock::Create(Ctx, "BB", F);
auto *RI = ReturnInst::Create(Ctx, BB);
auto GEPOp = fuzzerop::gepDescriptor(1);
EXPECT_TRUE(GEPOp.SourcePreds[0].matches({}, UndefValue::get(Int8PtrTy)));
EXPECT_TRUE(GEPOp.SourcePreds[1].matches({UndefValue::get(Int8PtrTy)},
ConstantInt::get(Int32Ty, 0)));
GEPOp.BuilderFunc({UndefValue::get(Int8PtrTy), ConstantInt::get(Int32Ty, 0)},
RI);
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, GEPPointerOperand) {
// Check that we only pick sized pointers for the GEP instructions
LLVMContext Ctx;
const char *SourceCode =
"declare void @f()\n"
"define void @test() {\n"
" %v = bitcast void ()* @f to i64 (i8 addrspace(4)*)*\n"
" %a = alloca i64, i32 10\n"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1);
// Get first basic block of the test function
Function &F = *M->getFunction("test");
BasicBlock &BB = *F.begin();
// Don't match %v
ASSERT_FALSE(Descr.SourcePreds[0].matches({}, &*BB.begin()));
// Match %a
ASSERT_TRUE(Descr.SourcePreds[0].matches({}, &*std::next(BB.begin())));
}
TEST(OperationsTest, ExtractAndInsertValue) {
LLVMContext Ctx;
Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
Type *Int32Ty = Type::getInt32Ty(Ctx);
Type *Int64Ty = Type::getInt64Ty(Ctx);
Type *StructTy = StructType::create(Ctx, {Int8PtrTy, Int32Ty});
Type *OpaqueTy = StructType::create(Ctx, "OpaqueStruct");
Type *ZeroSizedArrayTy = ArrayType::get(Int64Ty, 0);
Type *ArrayTy = ArrayType::get(Int64Ty, 4);
Type *VectorTy = FixedVectorType::get(Int32Ty, 2);
auto EVOp = fuzzerop::extractValueDescriptor(1);
auto IVOp = fuzzerop::insertValueDescriptor(1);
// Sanity check the source preds.
Constant *SVal = UndefValue::get(StructTy);
Constant *OVal = UndefValue::get(OpaqueTy);
Constant *AVal = UndefValue::get(ArrayTy);
Constant *ZAVal = UndefValue::get(ZeroSizedArrayTy);
Constant *VVal = UndefValue::get(VectorTy);
EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, SVal));
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, OVal));
EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, AVal));
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, VVal));
EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, SVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, OVal));
EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, AVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, VVal));
// Don't consider zero sized arrays as viable sources
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, ZAVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, ZAVal));
// Make sure we're range checking appropriately.
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 1)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 2)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 65536)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 3)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 4)));
EXPECT_THAT(
EVOp.SourcePreds[1].generate({SVal}, {}),
ElementsAre(ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1)));
// InsertValue should accept any type in the struct, but only in positions
// where it makes sense.
EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int8PtrTy)));
EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int32Ty)));
EXPECT_FALSE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int64Ty)));
EXPECT_FALSE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
ConstantInt::get(Int32Ty, 1)));
EXPECT_THAT(IVOp.SourcePreds[1].generate({SVal}, {}),
Each(AnyOf(HasType(Int32Ty), HasType(Int8PtrTy))));
EXPECT_THAT(
IVOp.SourcePreds[2].generate({SVal, ConstantInt::get(Int32Ty, 0)}, {}),
ElementsAre(ConstantInt::get(Int32Ty, 1)));
}
}