ScheduleDAGInstrs.cpp 54.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This implements the ScheduleDAGInstrs class, which implements
/// re-scheduling of MachineInstrs.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDFS.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
    cl::ZeroOrMore, cl::init(false),
    cl::desc("Enable use of AA during MI DAG construction"));

static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
    cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));

// Note: the two options below might be used in tuning compile time vs
// output quality. Setting HugeRegion so large that it will never be
// reached means best-effort, but may be slow.

// When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
// together hold this many SUs, a reduction of maps will be done.
static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
    cl::init(1000), cl::desc("The limit to use while constructing the DAG "
                             "prior to scheduling, at which point a trade-off "
                             "is made to avoid excessive compile time."));

static cl::opt<unsigned> ReductionSize(
    "dag-maps-reduction-size", cl::Hidden,
    cl::desc("A huge scheduling region will have maps reduced by this many "
             "nodes at a time. Defaults to HugeRegion / 2."));

static unsigned getReductionSize() {
  // Always reduce a huge region with half of the elements, except
  // when user sets this number explicitly.
  if (ReductionSize.getNumOccurrences() == 0)
    return HugeRegion / 2;
  return ReductionSize;
}

static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  dbgs() << "{ ";
  for (const SUnit *su : L) {
    dbgs() << "SU(" << su->NodeNum << ")";
    if (su != L.back())
      dbgs() << ", ";
  }
  dbgs() << "}\n";
#endif
}

ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
                                     const MachineLoopInfo *mli,
                                     bool RemoveKillFlags)
    : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
      RemoveKillFlags(RemoveKillFlags),
      UnknownValue(UndefValue::get(
                             Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
  DbgValues.clear();

  const TargetSubtargetInfo &ST = mf.getSubtarget();
  SchedModel.init(&ST);
}

/// If this machine instr has memory reference information and it can be
/// tracked to a normal reference to a known object, return the Value
/// for that object. This function returns false the memory location is
/// unknown or may alias anything.
static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
                                         const MachineFrameInfo &MFI,
                                         UnderlyingObjectsVector &Objects,
                                         const DataLayout &DL) {
  auto allMMOsOkay = [&]() {
    for (const MachineMemOperand *MMO : MI->memoperands()) {
      // TODO: Figure out whether isAtomic is really necessary (see D57601).
      if (MMO->isVolatile() || MMO->isAtomic())
        return false;

      if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
        // Function that contain tail calls don't have unique PseudoSourceValue
        // objects. Two PseudoSourceValues might refer to the same or
        // overlapping locations. The client code calling this function assumes
        // this is not the case. So return a conservative answer of no known
        // object.
        if (MFI.hasTailCall())
          return false;

        // For now, ignore PseudoSourceValues which may alias LLVM IR values
        // because the code that uses this function has no way to cope with
        // such aliases.
        if (PSV->isAliased(&MFI))
          return false;

        bool MayAlias = PSV->mayAlias(&MFI);
        Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
      } else if (const Value *V = MMO->getValue()) {
        SmallVector<Value *, 4> Objs;
        if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
          return false;

        for (Value *V : Objs) {
          assert(isIdentifiedObject(V));
          Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
        }
      } else
        return false;
    }
    return true;
  };

  if (!allMMOsOkay()) {
    Objects.clear();
    return false;
  }

  return true;
}

void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
  BB = bb;
}

void ScheduleDAGInstrs::finishBlock() {
  // Subclasses should no longer refer to the old block.
  BB = nullptr;
}

void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
                                    MachineBasicBlock::iterator begin,
                                    MachineBasicBlock::iterator end,
                                    unsigned regioninstrs) {
  assert(bb == BB && "startBlock should set BB");
  RegionBegin = begin;
  RegionEnd = end;
  NumRegionInstrs = regioninstrs;
}

void ScheduleDAGInstrs::exitRegion() {
  // Nothing to do.
}

void ScheduleDAGInstrs::addSchedBarrierDeps() {
  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
  ExitSU.setInstr(ExitMI);
  // Add dependencies on the defs and uses of the instruction.
  if (ExitMI) {
    for (const MachineOperand &MO : ExitMI->operands()) {
      if (!MO.isReg() || MO.isDef()) continue;
      Register Reg = MO.getReg();
      if (Register::isPhysicalRegister(Reg)) {
        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
      } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
        addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
      }
    }
  }
  if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
    // For others, e.g. fallthrough, conditional branch, assume the exit
    // uses all the registers that are livein to the successor blocks.
    for (const MachineBasicBlock *Succ : BB->successors()) {
      for (const auto &LI : Succ->liveins()) {
        if (!Uses.contains(LI.PhysReg))
          Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
      }
    }
  }
}

/// MO is an operand of SU's instruction that defines a physical register. Adds
/// data dependencies from SU to any uses of the physical register.
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
  assert(MO.isDef() && "expect physreg def");

  // Ask the target if address-backscheduling is desirable, and if so how much.
  const TargetSubtargetInfo &ST = MF.getSubtarget();

  // Only use any non-zero latency for real defs/uses, in contrast to
  // "fake" operands added by regalloc.
  const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
  bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
                            !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
       Alias.isValid(); ++Alias) {
    if (!Uses.contains(*Alias))
      continue;
    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
      SUnit *UseSU = I->SU;
      if (UseSU == SU)
        continue;

      // Adjust the dependence latency using operand def/use information,
      // then allow the target to perform its own adjustments.
      int UseOp = I->OpIdx;
      MachineInstr *RegUse = nullptr;
      SDep Dep;
      if (UseOp < 0)
        Dep = SDep(SU, SDep::Artificial);
      else {
        // Set the hasPhysRegDefs only for physreg defs that have a use within
        // the scheduling region.
        SU->hasPhysRegDefs = true;
        Dep = SDep(SU, SDep::Data, *Alias);
        RegUse = UseSU->getInstr();
      }
      const MCInstrDesc *UseMIDesc =
          (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
      bool ImplicitPseudoUse =
          (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
           !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
      if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
        Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
                                                        RegUse, UseOp));
        ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
      } else {
        Dep.setLatency(0);
        // FIXME: We could always let target to adjustSchedDependency(), and
        // remove this condition, but that currently asserts in Hexagon BE.
        if (SU->getInstr()->isBundle() || (RegUse && RegUse->isBundle()))
          ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
      }

      UseSU->addPred(Dep);
    }
  }
}

/// Adds register dependencies (data, anti, and output) from this SUnit
/// to following instructions in the same scheduling region that depend the
/// physical register referenced at OperIdx.
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
  MachineInstr *MI = SU->getInstr();
  MachineOperand &MO = MI->getOperand(OperIdx);
  Register Reg = MO.getReg();
  // We do not need to track any dependencies for constant registers.
  if (MRI.isConstantPhysReg(Reg))
    return;

  const TargetSubtargetInfo &ST = MF.getSubtarget();

  // Optionally add output and anti dependencies. For anti
  // dependencies we use a latency of 0 because for a multi-issue
  // target we want to allow the defining instruction to issue
  // in the same cycle as the using instruction.
  // TODO: Using a latency of 1 here for output dependencies assumes
  //       there's no cost for reusing registers.
  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
  for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
    if (!Defs.contains(*Alias))
      continue;
    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
      SUnit *DefSU = I->SU;
      if (DefSU == &ExitSU)
        continue;
      if (DefSU != SU &&
          (Kind != SDep::Output || !MO.isDead() ||
           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
        SDep Dep(SU, Kind, /*Reg=*/*Alias);
        if (Kind != SDep::Anti)
          Dep.setLatency(
            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
        ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
        DefSU->addPred(Dep);
      }
    }
  }

  if (!MO.isDef()) {
    SU->hasPhysRegUses = true;
    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    // retrieve the existing SUnits list for this register's uses.
    // Push this SUnit on the use list.
    Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
    if (RemoveKillFlags)
      MO.setIsKill(false);
  } else {
    addPhysRegDataDeps(SU, OperIdx);

    // Clear previous uses and defs of this register and its subergisters.
    for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
      if (Uses.contains(*SubReg))
        Uses.eraseAll(*SubReg);
      if (!MO.isDead())
        Defs.eraseAll(*SubReg);
    }
    if (MO.isDead() && SU->isCall) {
      // Calls will not be reordered because of chain dependencies (see
      // below). Since call operands are dead, calls may continue to be added
      // to the DefList making dependence checking quadratic in the size of
      // the block. Instead, we leave only one call at the back of the
      // DefList.
      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
      Reg2SUnitsMap::iterator B = P.first;
      Reg2SUnitsMap::iterator I = P.second;
      for (bool isBegin = I == B; !isBegin; /* empty */) {
        isBegin = (--I) == B;
        if (!I->SU->isCall)
          break;
        I = Defs.erase(I);
      }
    }

    // Defs are pushed in the order they are visited and never reordered.
    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
  }
}

LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
{
  Register Reg = MO.getReg();
  // No point in tracking lanemasks if we don't have interesting subregisters.
  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
  if (!RC.HasDisjunctSubRegs)
    return LaneBitmask::getAll();

  unsigned SubReg = MO.getSubReg();
  if (SubReg == 0)
    return RC.getLaneMask();
  return TRI->getSubRegIndexLaneMask(SubReg);
}

bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
  auto RegUse = CurrentVRegUses.find(MO.getReg());
  if (RegUse == CurrentVRegUses.end())
    return true;
  return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
}

/// Adds register output and data dependencies from this SUnit to instructions
/// that occur later in the same scheduling region if they read from or write to
/// the virtual register defined at OperIdx.
///
/// TODO: Hoist loop induction variable increments. This has to be
/// reevaluated. Generally, IV scheduling should be done before coalescing.
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
  MachineInstr *MI = SU->getInstr();
  MachineOperand &MO = MI->getOperand(OperIdx);
  Register Reg = MO.getReg();

  LaneBitmask DefLaneMask;
  LaneBitmask KillLaneMask;
  if (TrackLaneMasks) {
    bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
    DefLaneMask = getLaneMaskForMO(MO);
    // If we have a <read-undef> flag, none of the lane values comes from an
    // earlier instruction.
    KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;

    if (MO.getSubReg() != 0 && MO.isUndef()) {
      // There may be other subregister defs on the same instruction of the same
      // register in later operands. The lanes of other defs will now be live
      // after this instruction, so these should not be treated as killed by the
      // instruction even though they appear to be killed in this one operand.
      for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) {
        const MachineOperand &OtherMO = MI->getOperand(I);
        if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
          KillLaneMask &= ~getLaneMaskForMO(OtherMO);
      }
    }

    // Clear undef flag, we'll re-add it later once we know which subregister
    // Def is first.
    MO.setIsUndef(false);
  } else {
    DefLaneMask = LaneBitmask::getAll();
    KillLaneMask = LaneBitmask::getAll();
  }

  if (MO.isDead()) {
    assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
  } else {
    // Add data dependence to all uses we found so far.
    const TargetSubtargetInfo &ST = MF.getSubtarget();
    for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
         E = CurrentVRegUses.end(); I != E; /*empty*/) {
      LaneBitmask LaneMask = I->LaneMask;
      // Ignore uses of other lanes.
      if ((LaneMask & KillLaneMask).none()) {
        ++I;
        continue;
      }

      if ((LaneMask & DefLaneMask).any()) {
        SUnit *UseSU = I->SU;
        MachineInstr *Use = UseSU->getInstr();
        SDep Dep(SU, SDep::Data, Reg);
        Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
                                                        I->OperandIndex));
        ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
        UseSU->addPred(Dep);
      }

      LaneMask &= ~KillLaneMask;
      // If we found a Def for all lanes of this use, remove it from the list.
      if (LaneMask.any()) {
        I->LaneMask = LaneMask;
        ++I;
      } else
        I = CurrentVRegUses.erase(I);
    }
  }

  // Shortcut: Singly defined vregs do not have output/anti dependencies.
  if (MRI.hasOneDef(Reg))
    return;

  // Add output dependence to the next nearest defs of this vreg.
  //
  // Unless this definition is dead, the output dependence should be
  // transitively redundant with antidependencies from this definition's
  // uses. We're conservative for now until we have a way to guarantee the uses
  // are not eliminated sometime during scheduling. The output dependence edge
  // is also useful if output latency exceeds def-use latency.
  LaneBitmask LaneMask = DefLaneMask;
  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
                                     CurrentVRegDefs.end())) {
    // Ignore defs for other lanes.
    if ((V2SU.LaneMask & LaneMask).none())
      continue;
    // Add an output dependence.
    SUnit *DefSU = V2SU.SU;
    // Ignore additional defs of the same lanes in one instruction. This can
    // happen because lanemasks are shared for targets with too many
    // subregisters. We also use some representration tricks/hacks where we
    // add super-register defs/uses, to imply that although we only access parts
    // of the reg we care about the full one.
    if (DefSU == SU)
      continue;
    SDep Dep(SU, SDep::Output, Reg);
    Dep.setLatency(
      SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    DefSU->addPred(Dep);

    // Update current definition. This can get tricky if the def was about a
    // bigger lanemask before. We then have to shrink it and create a new
    // VReg2SUnit for the non-overlapping part.
    LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
    LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
    V2SU.SU = SU;
    V2SU.LaneMask = OverlapMask;
    if (NonOverlapMask.any())
      CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
  }
  // If there was no CurrentVRegDefs entry for some lanes yet, create one.
  if (LaneMask.any())
    CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
}

/// Adds a register data dependency if the instruction that defines the
/// virtual register used at OperIdx is mapped to an SUnit. Add a register
/// antidependency from this SUnit to instructions that occur later in the same
/// scheduling region if they write the virtual register.
///
/// TODO: Handle ExitSU "uses" properly.
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
  const MachineInstr *MI = SU->getInstr();
  const MachineOperand &MO = MI->getOperand(OperIdx);
  Register Reg = MO.getReg();

  // Remember the use. Data dependencies will be added when we find the def.
  LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
                                        : LaneBitmask::getAll();
  CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));

  // Add antidependences to the following defs of the vreg.
  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
                                     CurrentVRegDefs.end())) {
    // Ignore defs for unrelated lanes.
    LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
    if ((PrevDefLaneMask & LaneMask).none())
      continue;
    if (V2SU.SU == SU)
      continue;

    V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
  }
}

/// Returns true if MI is an instruction we are unable to reason about
/// (like a call or something with unmodeled side effects).
static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) {
  return MI->isCall() || MI->hasUnmodeledSideEffects() ||
         (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
}

void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
                                            unsigned Latency) {
  if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
    SDep Dep(SUa, SDep::MayAliasMem);
    Dep.setLatency(Latency);
    SUb->addPred(Dep);
  }
}

/// Creates an SUnit for each real instruction, numbered in top-down
/// topological order. The instruction order A < B, implies that no edge exists
/// from B to A.
///
/// Map each real instruction to its SUnit.
///
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
/// instead of pointers.
///
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
/// the original instruction list.
void ScheduleDAGInstrs::initSUnits() {
  // We'll be allocating one SUnit for each real instruction in the region,
  // which is contained within a basic block.
  SUnits.reserve(NumRegionInstrs);

  for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
    if (MI.isDebugInstr())
      continue;

    SUnit *SU = newSUnit(&MI);
    MISUnitMap[&MI] = SU;

    SU->isCall = MI.isCall();
    SU->isCommutable = MI.isCommutable();

    // Assign the Latency field of SU using target-provided information.
    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());

    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
    //
    // Reserved resources block an instruction from issuing and stall the
    // entire pipeline. These are identified by BufferSize=0.
    //
    // Unbuffered resources prevent execution of subsequent instructions that
    // require the same resources. This is used for in-order execution pipelines
    // within an out-of-order core. These are identified by BufferSize=1.
    if (SchedModel.hasInstrSchedModel()) {
      const MCSchedClassDesc *SC = getSchedClass(SU);
      for (const MCWriteProcResEntry &PRE :
           make_range(SchedModel.getWriteProcResBegin(SC),
                      SchedModel.getWriteProcResEnd(SC))) {
        switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
        case 0:
          SU->hasReservedResource = true;
          break;
        case 1:
          SU->isUnbuffered = true;
          break;
        default:
          break;
        }
      }
    }
  }
}

class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
  /// Current total number of SUs in map.
  unsigned NumNodes = 0;

  /// 1 for loads, 0 for stores. (see comment in SUList)
  unsigned TrueMemOrderLatency;

public:
  Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}

  /// To keep NumNodes up to date, insert() is used instead of
  /// this operator w/ push_back().
  ValueType &operator[](const SUList &Key) {
    llvm_unreachable("Don't use. Use insert() instead."); };

  /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
  /// reduce().
  void inline insert(SUnit *SU, ValueType V) {
    MapVector::operator[](V).push_back(SU);
    NumNodes++;
  }

  /// Clears the list of SUs mapped to V.
  void inline clearList(ValueType V) {
    iterator Itr = find(V);
    if (Itr != end()) {
      assert(NumNodes >= Itr->second.size());
      NumNodes -= Itr->second.size();

      Itr->second.clear();
    }
  }

  /// Clears map from all contents.
  void clear() {
    MapVector<ValueType, SUList>::clear();
    NumNodes = 0;
  }

  unsigned inline size() const { return NumNodes; }

  /// Counts the number of SUs in this map after a reduction.
  void reComputeSize() {
    NumNodes = 0;
    for (auto &I : *this)
      NumNodes += I.second.size();
  }

  unsigned inline getTrueMemOrderLatency() const {
    return TrueMemOrderLatency;
  }

  void dump();
};

void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
                                             Value2SUsMap &Val2SUsMap) {
  for (auto &I : Val2SUsMap)
    addChainDependencies(SU, I.second,
                         Val2SUsMap.getTrueMemOrderLatency());
}

void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
                                             Value2SUsMap &Val2SUsMap,
                                             ValueType V) {
  Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
  if (Itr != Val2SUsMap.end())
    addChainDependencies(SU, Itr->second,
                         Val2SUsMap.getTrueMemOrderLatency());
}

void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
  assert(BarrierChain != nullptr);

  for (auto &I : map) {
    SUList &sus = I.second;
    for (auto *SU : sus)
      SU->addPredBarrier(BarrierChain);
  }
  map.clear();
}

void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
  assert(BarrierChain != nullptr);

  // Go through all lists of SUs.
  for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
    Value2SUsMap::iterator CurrItr = I++;
    SUList &sus = CurrItr->second;
    SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
    for (; SUItr != SUEE; ++SUItr) {
      // Stop on BarrierChain or any instruction above it.
      if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
        break;

      (*SUItr)->addPredBarrier(BarrierChain);
    }

    // Remove also the BarrierChain from list if present.
    if (SUItr != SUEE && *SUItr == BarrierChain)
      SUItr++;

    // Remove all SUs that are now successors of BarrierChain.
    if (SUItr != sus.begin())
      sus.erase(sus.begin(), SUItr);
  }

  // Remove all entries with empty su lists.
  map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
      return (mapEntry.second.empty()); });

  // Recompute the size of the map (NumNodes).
  map.reComputeSize();
}

void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
                                        RegPressureTracker *RPTracker,
                                        PressureDiffs *PDiffs,
                                        LiveIntervals *LIS,
                                        bool TrackLaneMasks) {
  const TargetSubtargetInfo &ST = MF.getSubtarget();
  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
                                                       : ST.useAA();
  AAForDep = UseAA ? AA : nullptr;

  BarrierChain = nullptr;

  this->TrackLaneMasks = TrackLaneMasks;
  MISUnitMap.clear();
  ScheduleDAG::clearDAG();

  // Create an SUnit for each real instruction.
  initSUnits();

  if (PDiffs)
    PDiffs->init(SUnits.size());

  // We build scheduling units by walking a block's instruction list
  // from bottom to top.

  // Each MIs' memory operand(s) is analyzed to a list of underlying
  // objects. The SU is then inserted in the SUList(s) mapped from the
  // Value(s). Each Value thus gets mapped to lists of SUs depending
  // on it, stores and loads kept separately. Two SUs are trivially
  // non-aliasing if they both depend on only identified Values and do
  // not share any common Value.
  Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);

  // Certain memory accesses are known to not alias any SU in Stores
  // or Loads, and have therefore their own 'NonAlias'
  // domain. E.g. spill / reload instructions never alias LLVM I/R
  // Values. It would be nice to assume that this type of memory
  // accesses always have a proper memory operand modelling, and are
  // therefore never unanalyzable, but this is conservatively not
  // done.
  Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);

  // Track all instructions that may raise floating-point exceptions.
  // These do not depend on one other (or normal loads or stores), but
  // must not be rescheduled across global barriers.  Note that we don't
  // really need a "map" here since we don't track those MIs by value;
  // using the same Value2SUsMap data type here is simply a matter of
  // convenience.
  Value2SUsMap FPExceptions;

  // Remove any stale debug info; sometimes BuildSchedGraph is called again
  // without emitting the info from the previous call.
  DbgValues.clear();
  FirstDbgValue = nullptr;

  assert(Defs.empty() && Uses.empty() &&
         "Only BuildGraph should update Defs/Uses");
  Defs.setUniverse(TRI->getNumRegs());
  Uses.setUniverse(TRI->getNumRegs());

  assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
  assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
  unsigned NumVirtRegs = MRI.getNumVirtRegs();
  CurrentVRegDefs.setUniverse(NumVirtRegs);
  CurrentVRegUses.setUniverse(NumVirtRegs);

  // Model data dependencies between instructions being scheduled and the
  // ExitSU.
  addSchedBarrierDeps();

  // Walk the list of instructions, from bottom moving up.
  MachineInstr *DbgMI = nullptr;
  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
       MII != MIE; --MII) {
    MachineInstr &MI = *std::prev(MII);
    if (DbgMI) {
      DbgValues.push_back(std::make_pair(DbgMI, &MI));
      DbgMI = nullptr;
    }

    if (MI.isDebugValue()) {
      DbgMI = &MI;
      continue;
    }
    if (MI.isDebugLabel())
      continue;

    SUnit *SU = MISUnitMap[&MI];
    assert(SU && "No SUnit mapped to this MI");

    if (RPTracker) {
      RegisterOperands RegOpers;
      RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
      if (TrackLaneMasks) {
        SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
        RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
      }
      if (PDiffs != nullptr)
        PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);

      if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
        RPTracker->recedeSkipDebugValues();
      assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
      RPTracker->recede(RegOpers);
    }

    assert(
        (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
        "Cannot schedule terminators or labels!");

    // Add register-based dependencies (data, anti, and output).
    // For some instructions (calls, returns, inline-asm, etc.) there can
    // be explicit uses and implicit defs, in which case the use will appear
    // on the operand list before the def. Do two passes over the operand
    // list to make sure that defs are processed before any uses.
    bool HasVRegDef = false;
    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
      const MachineOperand &MO = MI.getOperand(j);
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register Reg = MO.getReg();
      if (Register::isPhysicalRegister(Reg)) {
        addPhysRegDeps(SU, j);
      } else if (Register::isVirtualRegister(Reg)) {
        HasVRegDef = true;
        addVRegDefDeps(SU, j);
      }
    }
    // Now process all uses.
    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
      const MachineOperand &MO = MI.getOperand(j);
      // Only look at use operands.
      // We do not need to check for MO.readsReg() here because subsequent
      // subregister defs will get output dependence edges and need no
      // additional use dependencies.
      if (!MO.isReg() || !MO.isUse())
        continue;
      Register Reg = MO.getReg();
      if (Register::isPhysicalRegister(Reg)) {
        addPhysRegDeps(SU, j);
      } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
        addVRegUseDeps(SU, j);
      }
    }

    // If we haven't seen any uses in this scheduling region, create a
    // dependence edge to ExitSU to model the live-out latency. This is required
    // for vreg defs with no in-region use, and prefetches with no vreg def.
    //
    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
    // check currently relies on being called before adding chain deps.
    if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
      SDep Dep(SU, SDep::Artificial);
      Dep.setLatency(SU->Latency - 1);
      ExitSU.addPred(Dep);
    }

    // Add memory dependencies (Note: isStoreToStackSlot and
    // isLoadFromStackSLot are not usable after stack slots are lowered to
    // actual addresses).

    // This is a barrier event that acts as a pivotal node in the DAG.
    if (isGlobalMemoryObject(AA, &MI)) {

      // Become the barrier chain.
      if (BarrierChain)
        BarrierChain->addPredBarrier(SU);
      BarrierChain = SU;

      LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
                        << BarrierChain->NodeNum << ").\n";);

      // Add dependencies against everything below it and clear maps.
      addBarrierChain(Stores);
      addBarrierChain(Loads);
      addBarrierChain(NonAliasStores);
      addBarrierChain(NonAliasLoads);
      addBarrierChain(FPExceptions);

      continue;
    }

    // Instructions that may raise FP exceptions may not be moved
    // across any global barriers.
    if (MI.mayRaiseFPException()) {
      if (BarrierChain)
        BarrierChain->addPredBarrier(SU);

      FPExceptions.insert(SU, UnknownValue);

      if (FPExceptions.size() >= HugeRegion) {
        LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
        Value2SUsMap empty;
        reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
      }
    }

    // If it's not a store or a variant load, we're done.
    if (!MI.mayStore() &&
        !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
      continue;

    // Always add dependecy edge to BarrierChain if present.
    if (BarrierChain)
      BarrierChain->addPredBarrier(SU);

    // Find the underlying objects for MI. The Objs vector is either
    // empty, or filled with the Values of memory locations which this
    // SU depends on.
    UnderlyingObjectsVector Objs;
    bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
                                                  MF.getDataLayout());

    if (MI.mayStore()) {
      if (!ObjsFound) {
        // An unknown store depends on all stores and loads.
        addChainDependencies(SU, Stores);
        addChainDependencies(SU, NonAliasStores);
        addChainDependencies(SU, Loads);
        addChainDependencies(SU, NonAliasLoads);

        // Map this store to 'UnknownValue'.
        Stores.insert(SU, UnknownValue);
      } else {
        // Add precise dependencies against all previously seen memory
        // accesses mapped to the same Value(s).
        for (const UnderlyingObject &UnderlObj : Objs) {
          ValueType V = UnderlObj.getValue();
          bool ThisMayAlias = UnderlObj.mayAlias();

          // Add dependencies to previous stores and loads mapped to V.
          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
          addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
        }
        // Update the store map after all chains have been added to avoid adding
        // self-loop edge if multiple underlying objects are present.
        for (const UnderlyingObject &UnderlObj : Objs) {
          ValueType V = UnderlObj.getValue();
          bool ThisMayAlias = UnderlObj.mayAlias();

          // Map this store to V.
          (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
        }
        // The store may have dependencies to unanalyzable loads and
        // stores.
        addChainDependencies(SU, Loads, UnknownValue);
        addChainDependencies(SU, Stores, UnknownValue);
      }
    } else { // SU is a load.
      if (!ObjsFound) {
        // An unknown load depends on all stores.
        addChainDependencies(SU, Stores);
        addChainDependencies(SU, NonAliasStores);

        Loads.insert(SU, UnknownValue);
      } else {
        for (const UnderlyingObject &UnderlObj : Objs) {
          ValueType V = UnderlObj.getValue();
          bool ThisMayAlias = UnderlObj.mayAlias();

          // Add precise dependencies against all previously seen stores
          // mapping to the same Value(s).
          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);

          // Map this load to V.
          (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
        }
        // The load may have dependencies to unanalyzable stores.
        addChainDependencies(SU, Stores, UnknownValue);
      }
    }

    // Reduce maps if they grow huge.
    if (Stores.size() + Loads.size() >= HugeRegion) {
      LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
      reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
    }
    if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
      LLVM_DEBUG(
          dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
      reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
    }
  }

  if (DbgMI)
    FirstDbgValue = DbgMI;

  Defs.clear();
  Uses.clear();
  CurrentVRegDefs.clear();
  CurrentVRegUses.clear();

  Topo.MarkDirty();
}

raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
  PSV->printCustom(OS);
  return OS;
}

void ScheduleDAGInstrs::Value2SUsMap::dump() {
  for (auto &Itr : *this) {
    if (Itr.first.is<const Value*>()) {
      const Value *V = Itr.first.get<const Value*>();
      if (isa<UndefValue>(V))
        dbgs() << "Unknown";
      else
        V->printAsOperand(dbgs());
    }
    else if (Itr.first.is<const PseudoSourceValue*>())
      dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
    else
      llvm_unreachable("Unknown Value type.");

    dbgs() << " : ";
    dumpSUList(Itr.second);
  }
}

void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
                                              Value2SUsMap &loads, unsigned N) {
  LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
             dbgs() << "Loading SUnits:\n"; loads.dump());

  // Insert all SU's NodeNums into a vector and sort it.
  std::vector<unsigned> NodeNums;
  NodeNums.reserve(stores.size() + loads.size());
  for (auto &I : stores)
    for (auto *SU : I.second)
      NodeNums.push_back(SU->NodeNum);
  for (auto &I : loads)
    for (auto *SU : I.second)
      NodeNums.push_back(SU->NodeNum);
  llvm::sort(NodeNums);

  // The N last elements in NodeNums will be removed, and the SU with
  // the lowest NodeNum of them will become the new BarrierChain to
  // let the not yet seen SUs have a dependency to the removed SUs.
  assert(N <= NodeNums.size());
  SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
  if (BarrierChain) {
    // The aliasing and non-aliasing maps reduce independently of each
    // other, but share a common BarrierChain. Check if the
    // newBarrierChain is above the former one. If it is not, it may
    // introduce a loop to use newBarrierChain, so keep the old one.
    if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
      BarrierChain->addPredBarrier(newBarrierChain);
      BarrierChain = newBarrierChain;
      LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
                        << BarrierChain->NodeNum << ").\n";);
    }
    else
      LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
                        << BarrierChain->NodeNum << ").\n";);
  }
  else
    BarrierChain = newBarrierChain;

  insertBarrierChain(stores);
  insertBarrierChain(loads);

  LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
             dbgs() << "Loading SUnits:\n"; loads.dump());
}

static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
                        MachineInstr &MI, bool addToLiveRegs) {
  for (MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.readsReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;

    // Things that are available after the instruction are killed by it.
    bool IsKill = LiveRegs.available(MRI, Reg);
    MO.setIsKill(IsKill);
    if (addToLiveRegs)
      LiveRegs.addReg(Reg);
  }
}

void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
  LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');

  LiveRegs.init(*TRI);
  LiveRegs.addLiveOuts(MBB);

  // Examine block from end to start...
  for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
    if (MI.isDebugInstr())
      continue;

    // Update liveness.  Registers that are defed but not used in this
    // instruction are now dead. Mark register and all subregs as they
    // are completely defined.
    for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
      const MachineOperand &MO = *O;
      if (MO.isReg()) {
        if (!MO.isDef())
          continue;
        Register Reg = MO.getReg();
        if (!Reg)
          continue;
        LiveRegs.removeReg(Reg);
      } else if (MO.isRegMask()) {
        LiveRegs.removeRegsInMask(MO);
      }
    }

    // If there is a bundle header fix it up first.
    if (!MI.isBundled()) {
      toggleKills(MRI, LiveRegs, MI, true);
    } else {
      MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
      if (MI.isBundle())
        toggleKills(MRI, LiveRegs, MI, false);

      // Some targets make the (questionable) assumtion that the instructions
      // inside the bundle are ordered and consequently only the last use of
      // a register inside the bundle can kill it.
      MachineBasicBlock::instr_iterator I = std::next(Bundle);
      while (I->isBundledWithSucc())
        ++I;
      do {
        if (!I->isDebugInstr())
          toggleKills(MRI, LiveRegs, *I, true);
        --I;
      } while (I != Bundle);
    }
  }
}

void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  dumpNodeName(SU);
  dbgs() << ": ";
  SU.getInstr()->dump();
#endif
}

void ScheduleDAGInstrs::dump() const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  if (EntrySU.getInstr() != nullptr)
    dumpNodeAll(EntrySU);
  for (const SUnit &SU : SUnits)
    dumpNodeAll(SU);
  if (ExitSU.getInstr() != nullptr)
    dumpNodeAll(ExitSU);
#endif
}

std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
  std::string s;
  raw_string_ostream oss(s);
  if (SU == &EntrySU)
    oss << "<entry>";
  else if (SU == &ExitSU)
    oss << "<exit>";
  else
    SU->getInstr()->print(oss, /*SkipOpers=*/true);
  return oss.str();
}

/// Return the basic block label. It is not necessarilly unique because a block
/// contains multiple scheduling regions. But it is fine for visualization.
std::string ScheduleDAGInstrs::getDAGName() const {
  return "dag." + BB->getFullName();
}

bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
}

bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
  if (SuccSU != &ExitSU) {
    // Do not use WillCreateCycle, it assumes SD scheduling.
    // If Pred is reachable from Succ, then the edge creates a cycle.
    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
      return false;
    Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
  }
  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
  // Return true regardless of whether a new edge needed to be inserted.
  return true;
}

//===----------------------------------------------------------------------===//
// SchedDFSResult Implementation
//===----------------------------------------------------------------------===//

namespace llvm {

/// Internal state used to compute SchedDFSResult.
class SchedDFSImpl {
  SchedDFSResult &R;

  /// Join DAG nodes into equivalence classes by their subtree.
  IntEqClasses SubtreeClasses;
  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
  std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;

  struct RootData {
    unsigned NodeID;
    unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
    unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
                                /// children.

    RootData(unsigned id): NodeID(id),
                           ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}

    unsigned getSparseSetIndex() const { return NodeID; }
  };

  SparseSet<RootData> RootSet;

public:
  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
    RootSet.setUniverse(R.DFSNodeData.size());
  }

  /// Returns true if this node been visited by the DFS traversal.
  ///
  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
  /// ID. Later, SubtreeID is updated but remains valid.
  bool isVisited(const SUnit *SU) const {
    return R.DFSNodeData[SU->NodeNum].SubtreeID
      != SchedDFSResult::InvalidSubtreeID;
  }

  /// Initializes this node's instruction count. We don't need to flag the node
  /// visited until visitPostorder because the DAG cannot have cycles.
  void visitPreorder(const SUnit *SU) {
    R.DFSNodeData[SU->NodeNum].InstrCount =
      SU->getInstr()->isTransient() ? 0 : 1;
  }

  /// Called once for each node after all predecessors are visited. Revisit this
  /// node's predecessors and potentially join them now that we know the ILP of
  /// the other predecessors.
  void visitPostorderNode(const SUnit *SU) {
    // Mark this node as the root of a subtree. It may be joined with its
    // successors later.
    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
    RootData RData(SU->NodeNum);
    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;

    // If any predecessors are still in their own subtree, they either cannot be
    // joined or are large enough to remain separate. If this parent node's
    // total instruction count is not greater than a child subtree by at least
    // the subtree limit, then try to join it now since splitting subtrees is
    // only useful if multiple high-pressure paths are possible.
    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
    for (const SDep &PredDep : SU->Preds) {
      if (PredDep.getKind() != SDep::Data)
        continue;
      unsigned PredNum = PredDep.getSUnit()->NodeNum;
      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
        joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);

      // Either link or merge the TreeData entry from the child to the parent.
      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
        // If the predecessor's parent is invalid, this is a tree edge and the
        // current node is the parent.
        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
          RootSet[PredNum].ParentNodeID = SU->NodeNum;
      }
      else if (RootSet.count(PredNum)) {
        // The predecessor is not a root, but is still in the root set. This
        // must be the new parent that it was just joined to. Note that
        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
        // set to the original parent.
        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
        RootSet.erase(PredNum);
      }
    }
    RootSet[SU->NodeNum] = RData;
  }

  /// Called once for each tree edge after calling visitPostOrderNode on
  /// the predecessor. Increment the parent node's instruction count and
  /// preemptively join this subtree to its parent's if it is small enough.
  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
    R.DFSNodeData[Succ->NodeNum].InstrCount
      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
    joinPredSubtree(PredDep, Succ);
  }

  /// Adds a connection for cross edges.
  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
  }

  /// Sets each node's subtree ID to the representative ID and record
  /// connections between trees.
  void finalize() {
    SubtreeClasses.compress();
    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
    assert(SubtreeClasses.getNumClasses() == RootSet.size()
           && "number of roots should match trees");
    for (const RootData &Root : RootSet) {
      unsigned TreeID = SubtreeClasses[Root.NodeID];
      if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
      R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
      // Note that SubInstrCount may be greater than InstrCount if we joined
      // subtrees across a cross edge. InstrCount will be attributed to the
      // original parent, while SubInstrCount will be attributed to the joined
      // parent.
    }
    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
    LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
      LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
                        << R.DFSNodeData[Idx].SubtreeID << '\n');
    }
    for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
      unsigned PredTree = SubtreeClasses[P.first->NodeNum];
      unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
      if (PredTree == SuccTree)
        continue;
      unsigned Depth = P.first->getDepth();
      addConnection(PredTree, SuccTree, Depth);
      addConnection(SuccTree, PredTree, Depth);
    }
  }

protected:
  /// Joins the predecessor subtree with the successor that is its DFS parent.
  /// Applies some heuristics before joining.
  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
                       bool CheckLimit = true) {
    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");

    // Check if the predecessor is already joined.
    const SUnit *PredSU = PredDep.getSUnit();
    unsigned PredNum = PredSU->NodeNum;
    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
      return false;

    // Four is the magic number of successors before a node is considered a
    // pinch point.
    unsigned NumDataSucs = 0;
    for (const SDep &SuccDep : PredSU->Succs) {
      if (SuccDep.getKind() == SDep::Data) {
        if (++NumDataSucs >= 4)
          return false;
      }
    }
    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
      return false;
    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
    SubtreeClasses.join(Succ->NodeNum, PredNum);
    return true;
  }

  /// Called by finalize() to record a connection between trees.
  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
    if (!Depth)
      return;

    do {
      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
        R.SubtreeConnections[FromTree];
      for (SchedDFSResult::Connection &C : Connections) {
        if (C.TreeID == ToTree) {
          C.Level = std::max(C.Level, Depth);
          return;
        }
      }
      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
  }
};

} // end namespace llvm

namespace {

/// Manage the stack used by a reverse depth-first search over the DAG.
class SchedDAGReverseDFS {
  std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;

public:
  bool isComplete() const { return DFSStack.empty(); }

  void follow(const SUnit *SU) {
    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
  }
  void advance() { ++DFSStack.back().second; }

  const SDep *backtrack() {
    DFSStack.pop_back();
    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
  }

  const SUnit *getCurr() const { return DFSStack.back().first; }

  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }

  SUnit::const_pred_iterator getPredEnd() const {
    return getCurr()->Preds.end();
  }
};

} // end anonymous namespace

static bool hasDataSucc(const SUnit *SU) {
  for (const SDep &SuccDep : SU->Succs) {
    if (SuccDep.getKind() == SDep::Data &&
        !SuccDep.getSUnit()->isBoundaryNode())
      return true;
  }
  return false;
}

/// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
/// search from this root.
void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
  if (!IsBottomUp)
    llvm_unreachable("Top-down ILP metric is unimplemented");

  SchedDFSImpl Impl(*this);
  for (const SUnit &SU : SUnits) {
    if (Impl.isVisited(&SU) || hasDataSucc(&SU))
      continue;

    SchedDAGReverseDFS DFS;
    Impl.visitPreorder(&SU);
    DFS.follow(&SU);
    while (true) {
      // Traverse the leftmost path as far as possible.
      while (DFS.getPred() != DFS.getPredEnd()) {
        const SDep &PredDep = *DFS.getPred();
        DFS.advance();
        // Ignore non-data edges.
        if (PredDep.getKind() != SDep::Data
            || PredDep.getSUnit()->isBoundaryNode()) {
          continue;
        }
        // An already visited edge is a cross edge, assuming an acyclic DAG.
        if (Impl.isVisited(PredDep.getSUnit())) {
          Impl.visitCrossEdge(PredDep, DFS.getCurr());
          continue;
        }
        Impl.visitPreorder(PredDep.getSUnit());
        DFS.follow(PredDep.getSUnit());
      }
      // Visit the top of the stack in postorder and backtrack.
      const SUnit *Child = DFS.getCurr();
      const SDep *PredDep = DFS.backtrack();
      Impl.visitPostorderNode(Child);
      if (PredDep)
        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
      if (DFS.isComplete())
        break;
    }
  }
  Impl.finalize();
}

/// The root of the given SubtreeID was just scheduled. For all subtrees
/// connected to this tree, record the depth of the connection so that the
/// nearest connected subtrees can be prioritized.
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
  for (const Connection &C : SubtreeConnections[SubtreeID]) {
    SubtreeConnectLevels[C.TreeID] =
      std::max(SubtreeConnectLevels[C.TreeID], C.Level);
    LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
                      << SubtreeConnectLevels[C.TreeID] << '\n');
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
  OS << InstrCount << " / " << Length << " = ";
  if (!Length)
    OS << "BADILP";
  else
    OS << format("%g", ((double)InstrCount / Length));
}

LLVM_DUMP_METHOD void ILPValue::dump() const {
  dbgs() << *this << '\n';
}

namespace llvm {

LLVM_DUMP_METHOD
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
  Val.print(OS);
  return OS;
}

} // end namespace llvm

#endif