MachineVerifier.cpp 108 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Pass to verify generated machine code. The following is checked:
//
// Operand counts: All explicit operands must be present.
//
// Register classes: All physical and virtual register operands must be
// compatible with the register class required by the instruction descriptor.
//
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
// The machine code verifier is enabled with the command-line option
// -verify-machineinstrs.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalCalc.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>

using namespace llvm;

namespace {

  struct MachineVerifier {
    MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}

    unsigned verify(MachineFunction &MF);

    Pass *const PASS;
    const char *Banner;
    const MachineFunction *MF;
    const TargetMachine *TM;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineRegisterInfo *MRI;

    unsigned foundErrors;

    // Avoid querying the MachineFunctionProperties for each operand.
    bool isFunctionRegBankSelected;
    bool isFunctionSelected;

    using RegVector = SmallVector<unsigned, 16>;
    using RegMaskVector = SmallVector<const uint32_t *, 4>;
    using RegSet = DenseSet<unsigned>;
    using RegMap = DenseMap<unsigned, const MachineInstr *>;
    using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;

    const MachineInstr *FirstNonPHI;
    const MachineInstr *FirstTerminator;
    BlockSet FunctionBlocks;

    BitVector regsReserved;
    RegSet regsLive;
    RegVector regsDefined, regsDead, regsKilled;
    RegMaskVector regMasks;

    SlotIndex lastIndex;

    // Add Reg and any sub-registers to RV
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
      RV.push_back(Reg);
      if (Register::isPhysicalRegister(Reg))
        for (const MCPhysReg &SubReg : TRI->subregs(Reg))
          RV.push_back(SubReg);
    }

    struct BBInfo {
      // Is this MBB reachable from the MF entry point?
      bool reachable = false;

      // Vregs that must be live in because they are used without being
      // defined. Map value is the user.
      RegMap vregsLiveIn;

      // Regs killed in MBB. They may be defined again, and will then be in both
      // regsKilled and regsLiveOut.
      RegSet regsKilled;

      // Regs defined in MBB and live out. Note that vregs passing through may
      // be live out without being mentioned here.
      RegSet regsLiveOut;

      // Vregs that pass through MBB untouched. This set is disjoint from
      // regsKilled and regsLiveOut.
      RegSet vregsPassed;

      // Vregs that must pass through MBB because they are needed by a successor
      // block. This set is disjoint from regsLiveOut.
      RegSet vregsRequired;

      // Set versions of block's predecessor and successor lists.
      BlockSet Preds, Succs;

      BBInfo() = default;

      // Add register to vregsRequired if it belongs there. Return true if
      // anything changed.
      bool addRequired(unsigned Reg) {
        if (!Register::isVirtualRegister(Reg))
          return false;
        if (regsLiveOut.count(Reg))
          return false;
        return vregsRequired.insert(Reg).second;
      }

      // Same for a full set.
      bool addRequired(const RegSet &RS) {
        bool Changed = false;
        for (unsigned Reg : RS)
          Changed |= addRequired(Reg);
        return Changed;
      }

      // Same for a full map.
      bool addRequired(const RegMap &RM) {
        bool Changed = false;
        for (const auto &I : RM)
          Changed |= addRequired(I.first);
        return Changed;
      }

      // Live-out registers are either in regsLiveOut or vregsPassed.
      bool isLiveOut(unsigned Reg) const {
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
      }
    };

    // Extra register info per MBB.
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;

    bool isReserved(unsigned Reg) {
      return Reg < regsReserved.size() && regsReserved.test(Reg);
    }

    bool isAllocatable(unsigned Reg) const {
      return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
             !regsReserved.test(Reg);
    }

    // Analysis information if available
    LiveVariables *LiveVars;
    LiveIntervals *LiveInts;
    LiveStacks *LiveStks;
    SlotIndexes *Indexes;

    void visitMachineFunctionBefore();
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    void visitMachineBundleBefore(const MachineInstr *MI);

    bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
    void verifyPreISelGenericInstruction(const MachineInstr *MI);
    void visitMachineInstrBefore(const MachineInstr *MI);
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    void visitMachineBundleAfter(const MachineInstr *MI);
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    void visitMachineFunctionAfter();

    void report(const char *msg, const MachineFunction *MF);
    void report(const char *msg, const MachineBasicBlock *MBB);
    void report(const char *msg, const MachineInstr *MI);
    void report(const char *msg, const MachineOperand *MO, unsigned MONum,
                LLT MOVRegType = LLT{});

    void report_context(const LiveInterval &LI) const;
    void report_context(const LiveRange &LR, unsigned VRegUnit,
                        LaneBitmask LaneMask) const;
    void report_context(const LiveRange::Segment &S) const;
    void report_context(const VNInfo &VNI) const;
    void report_context(SlotIndex Pos) const;
    void report_context(MCPhysReg PhysReg) const;
    void report_context_liverange(const LiveRange &LR) const;
    void report_context_lanemask(LaneBitmask LaneMask) const;
    void report_context_vreg(unsigned VReg) const;
    void report_context_vreg_regunit(unsigned VRegOrUnit) const;

    void verifyInlineAsm(const MachineInstr *MI);

    void checkLiveness(const MachineOperand *MO, unsigned MONum);
    void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
                            SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
                            LaneBitmask LaneMask = LaneBitmask::getNone());
    void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
                            SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
                            bool SubRangeCheck = false,
                            LaneBitmask LaneMask = LaneBitmask::getNone());

    void markReachable(const MachineBasicBlock *MBB);
    void calcRegsPassed();
    void checkPHIOps(const MachineBasicBlock &MBB);

    void calcRegsRequired();
    void verifyLiveVariables();
    void verifyLiveIntervals();
    void verifyLiveInterval(const LiveInterval&);
    void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
                              LaneBitmask);
    void verifyLiveRangeSegment(const LiveRange&,
                                const LiveRange::const_iterator I, unsigned,
                                LaneBitmask);
    void verifyLiveRange(const LiveRange&, unsigned,
                         LaneBitmask LaneMask = LaneBitmask::getNone());

    void verifyStackFrame();

    void verifySlotIndexes() const;
    void verifyProperties(const MachineFunction &MF);
  };

  struct MachineVerifierPass : public MachineFunctionPass {
    static char ID; // Pass ID, replacement for typeid

    const std::string Banner;

    MachineVerifierPass(std::string banner = std::string())
      : MachineFunctionPass(ID), Banner(std::move(banner)) {
        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
      }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
      if (FoundErrors)
        report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
      return false;
    }
  };

} // end anonymous namespace

char MachineVerifierPass::ID = 0;

INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
                "Verify generated machine code", false, false)

FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
  return new MachineVerifierPass(Banner);
}

bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
    const {
  MachineFunction &MF = const_cast<MachineFunction&>(*this);
  unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
  if (AbortOnErrors && FoundErrors)
    report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
  return FoundErrors == 0;
}

void MachineVerifier::verifySlotIndexes() const {
  if (Indexes == nullptr)
    return;

  // Ensure the IdxMBB list is sorted by slot indexes.
  SlotIndex Last;
  for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
       E = Indexes->MBBIndexEnd(); I != E; ++I) {
    assert(!Last.isValid() || I->first > Last);
    Last = I->first;
  }
}

void MachineVerifier::verifyProperties(const MachineFunction &MF) {
  // If a pass has introduced virtual registers without clearing the
  // NoVRegs property (or set it without allocating the vregs)
  // then report an error.
  if (MF.getProperties().hasProperty(
          MachineFunctionProperties::Property::NoVRegs) &&
      MRI->getNumVirtRegs())
    report("Function has NoVRegs property but there are VReg operands", &MF);
}

unsigned MachineVerifier::verify(MachineFunction &MF) {
  foundErrors = 0;

  this->MF = &MF;
  TM = &MF.getTarget();
  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();

  const bool isFunctionFailedISel = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::FailedISel);

  // If we're mid-GlobalISel and we already triggered the fallback path then
  // it's expected that the MIR is somewhat broken but that's ok since we'll
  // reset it and clear the FailedISel attribute in ResetMachineFunctions.
  if (isFunctionFailedISel)
    return foundErrors;

  isFunctionRegBankSelected = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::RegBankSelected);
  isFunctionSelected = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::Selected);

  LiveVars = nullptr;
  LiveInts = nullptr;
  LiveStks = nullptr;
  Indexes = nullptr;
  if (PASS) {
    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    // We don't want to verify LiveVariables if LiveIntervals is available.
    if (!LiveInts)
      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
  }

  verifySlotIndexes();

  verifyProperties(MF);

  visitMachineFunctionBefore();
  for (const MachineBasicBlock &MBB : MF) {
    visitMachineBasicBlockBefore(&MBB);
    // Keep track of the current bundle header.
    const MachineInstr *CurBundle = nullptr;
    // Do we expect the next instruction to be part of the same bundle?
    bool InBundle = false;

    for (const MachineInstr &MI : MBB.instrs()) {
      if (MI.getParent() != &MBB) {
        report("Bad instruction parent pointer", &MBB);
        errs() << "Instruction: " << MI;
        continue;
      }

      // Check for consistent bundle flags.
      if (InBundle && !MI.isBundledWithPred())
        report("Missing BundledPred flag, "
               "BundledSucc was set on predecessor",
               &MI);
      if (!InBundle && MI.isBundledWithPred())
        report("BundledPred flag is set, "
               "but BundledSucc not set on predecessor",
               &MI);

      // Is this a bundle header?
      if (!MI.isInsideBundle()) {
        if (CurBundle)
          visitMachineBundleAfter(CurBundle);
        CurBundle = &MI;
        visitMachineBundleBefore(CurBundle);
      } else if (!CurBundle)
        report("No bundle header", &MI);
      visitMachineInstrBefore(&MI);
      for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
        const MachineOperand &Op = MI.getOperand(I);
        if (Op.getParent() != &MI) {
          // Make sure to use correct addOperand / RemoveOperand / ChangeTo
          // functions when replacing operands of a MachineInstr.
          report("Instruction has operand with wrong parent set", &MI);
        }

        visitMachineOperand(&Op, I);
      }

      // Was this the last bundled instruction?
      InBundle = MI.isBundledWithSucc();
    }
    if (CurBundle)
      visitMachineBundleAfter(CurBundle);
    if (InBundle)
      report("BundledSucc flag set on last instruction in block", &MBB.back());
    visitMachineBasicBlockAfter(&MBB);
  }
  visitMachineFunctionAfter();

  // Clean up.
  regsLive.clear();
  regsDefined.clear();
  regsDead.clear();
  regsKilled.clear();
  regMasks.clear();
  MBBInfoMap.clear();

  return foundErrors;
}

void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
  assert(MF);
  errs() << '\n';
  if (!foundErrors++) {
    if (Banner)
      errs() << "# " << Banner << '\n';
    if (LiveInts != nullptr)
      LiveInts->print(errs());
    else
      MF->print(errs(), Indexes);
  }
  errs() << "*** Bad machine code: " << msg << " ***\n"
      << "- function:    " << MF->getName() << "\n";
}

void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
  assert(MBB);
  report(msg, MBB->getParent());
  errs() << "- basic block: " << printMBBReference(*MBB) << ' '
         << MBB->getName() << " (" << (const void *)MBB << ')';
  if (Indexes)
    errs() << " [" << Indexes->getMBBStartIdx(MBB)
        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
  errs() << '\n';
}

void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
  assert(MI);
  report(msg, MI->getParent());
  errs() << "- instruction: ";
  if (Indexes && Indexes->hasIndex(*MI))
    errs() << Indexes->getInstructionIndex(*MI) << '\t';
  MI->print(errs(), /*SkipOpers=*/true);
}

void MachineVerifier::report(const char *msg, const MachineOperand *MO,
                             unsigned MONum, LLT MOVRegType) {
  assert(MO);
  report(msg, MO->getParent());
  errs() << "- operand " << MONum << ":   ";
  MO->print(errs(), MOVRegType, TRI);
  errs() << "\n";
}

void MachineVerifier::report_context(SlotIndex Pos) const {
  errs() << "- at:          " << Pos << '\n';
}

void MachineVerifier::report_context(const LiveInterval &LI) const {
  errs() << "- interval:    " << LI << '\n';
}

void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
                                     LaneBitmask LaneMask) const {
  report_context_liverange(LR);
  report_context_vreg_regunit(VRegUnit);
  if (LaneMask.any())
    report_context_lanemask(LaneMask);
}

void MachineVerifier::report_context(const LiveRange::Segment &S) const {
  errs() << "- segment:     " << S << '\n';
}

void MachineVerifier::report_context(const VNInfo &VNI) const {
  errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
}

void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
  errs() << "- liverange:   " << LR << '\n';
}

void MachineVerifier::report_context(MCPhysReg PReg) const {
  errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
}

void MachineVerifier::report_context_vreg(unsigned VReg) const {
  errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
}

void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
  if (Register::isVirtualRegister(VRegOrUnit)) {
    report_context_vreg(VRegOrUnit);
  } else {
    errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
  }
}

void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
  errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
}

void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
  BBInfo &MInfo = MBBInfoMap[MBB];
  if (!MInfo.reachable) {
    MInfo.reachable = true;
    for (const MachineBasicBlock *Succ : MBB->successors())
      markReachable(Succ);
  }
}

void MachineVerifier::visitMachineFunctionBefore() {
  lastIndex = SlotIndex();
  regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
                                           : TRI->getReservedRegs(*MF);

  if (!MF->empty())
    markReachable(&MF->front());

  // Build a set of the basic blocks in the function.
  FunctionBlocks.clear();
  for (const auto &MBB : *MF) {
    FunctionBlocks.insert(&MBB);
    BBInfo &MInfo = MBBInfoMap[&MBB];

    MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
    if (MInfo.Preds.size() != MBB.pred_size())
      report("MBB has duplicate entries in its predecessor list.", &MBB);

    MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
    if (MInfo.Succs.size() != MBB.succ_size())
      report("MBB has duplicate entries in its successor list.", &MBB);
  }

  // Check that the register use lists are sane.
  MRI->verifyUseLists();

  if (!MF->empty())
    verifyStackFrame();
}

void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
  FirstTerminator = nullptr;
  FirstNonPHI = nullptr;

  if (!MF->getProperties().hasProperty(
      MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
    // If this block has allocatable physical registers live-in, check that
    // it is an entry block or landing pad.
    for (const auto &LI : MBB->liveins()) {
      if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
          MBB->getIterator() != MBB->getParent()->begin()) {
        report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
        report_context(LI.PhysReg);
      }
    }
  }

  // Count the number of landing pad successors.
  SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
  for (const auto *succ : MBB->successors()) {
    if (succ->isEHPad())
      LandingPadSuccs.insert(succ);
    if (!FunctionBlocks.count(succ))
      report("MBB has successor that isn't part of the function.", MBB);
    if (!MBBInfoMap[succ].Preds.count(MBB)) {
      report("Inconsistent CFG", MBB);
      errs() << "MBB is not in the predecessor list of the successor "
             << printMBBReference(*succ) << ".\n";
    }
  }

  // Check the predecessor list.
  for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    if (!FunctionBlocks.count(Pred))
      report("MBB has predecessor that isn't part of the function.", MBB);
    if (!MBBInfoMap[Pred].Succs.count(MBB)) {
      report("Inconsistent CFG", MBB);
      errs() << "MBB is not in the successor list of the predecessor "
             << printMBBReference(*Pred) << ".\n";
    }
  }

  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
  const BasicBlock *BB = MBB->getBasicBlock();
  const Function &F = MF->getFunction();
  if (LandingPadSuccs.size() > 1 &&
      !(AsmInfo &&
        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
        BB && isa<SwitchInst>(BB->getTerminator())) &&
      !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
    report("MBB has more than one landing pad successor", MBB);

  // Call analyzeBranch. If it succeeds, there several more conditions to check.
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
                          Cond)) {
    // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
    // check whether its answers match up with reality.
    if (!TBB && !FBB) {
      // Block falls through to its successor.
      if (!MBB->empty() && MBB->back().isBarrier() &&
          !TII->isPredicated(MBB->back())) {
        report("MBB exits via unconditional fall-through but ends with a "
               "barrier instruction!", MBB);
      }
      if (!Cond.empty()) {
        report("MBB exits via unconditional fall-through but has a condition!",
               MBB);
      }
    } else if (TBB && !FBB && Cond.empty()) {
      // Block unconditionally branches somewhere.
      if (MBB->empty()) {
        report("MBB exits via unconditional branch but doesn't contain "
               "any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via unconditional branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via unconditional branch but the branch isn't a "
               "terminator instruction!", MBB);
      }
    } else if (TBB && !FBB && !Cond.empty()) {
      // Block conditionally branches somewhere, otherwise falls through.
      if (MBB->empty()) {
        report("MBB exits via conditional branch/fall-through but doesn't "
               "contain any instructions!", MBB);
      } else if (MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/fall-through but ends with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/fall-through but the branch "
               "isn't a terminator instruction!", MBB);
      }
    } else if (TBB && FBB) {
      // Block conditionally branches somewhere, otherwise branches
      // somewhere else.
      if (MBB->empty()) {
        report("MBB exits via conditional branch/branch but doesn't "
               "contain any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/branch but the branch "
               "isn't a terminator instruction!", MBB);
      }
      if (Cond.empty()) {
        report("MBB exits via conditional branch/branch but there's no "
               "condition!", MBB);
      }
    } else {
      report("analyzeBranch returned invalid data!", MBB);
    }

    // Now check that the successors match up with the answers reported by
    // analyzeBranch.
    if (TBB && !MBB->isSuccessor(TBB))
      report("MBB exits via jump or conditional branch, but its target isn't a "
             "CFG successor!",
             MBB);
    if (FBB && !MBB->isSuccessor(FBB))
      report("MBB exits via conditional branch, but its target isn't a CFG "
             "successor!",
             MBB);

    // There might be a fallthrough to the next block if there's either no
    // unconditional true branch, or if there's a condition, and one of the
    // branches is missing.
    bool Fallthrough = !TBB || (!Cond.empty() && !FBB);

    // A conditional fallthrough must be an actual CFG successor, not
    // unreachable. (Conversely, an unconditional fallthrough might not really
    // be a successor, because the block might end in unreachable.)
    if (!Cond.empty() && !FBB) {
      MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
      if (MBBI == MF->end()) {
        report("MBB conditionally falls through out of function!", MBB);
      } else if (!MBB->isSuccessor(&*MBBI))
        report("MBB exits via conditional branch/fall-through but the CFG "
               "successors don't match the actual successors!",
               MBB);
    }

    // Verify that there aren't any extra un-accounted-for successors.
    for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
      // If this successor is one of the branch targets, it's okay.
      if (SuccMBB == TBB || SuccMBB == FBB)
        continue;
      // If we might have a fallthrough, and the successor is the fallthrough
      // block, that's also ok.
      if (Fallthrough && SuccMBB == MBB->getNextNode())
        continue;
      // Also accept successors which are for exception-handling or might be
      // inlineasm_br targets.
      if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
        continue;
      report("MBB has unexpected successors which are not branch targets, "
             "fallthrough, EHPads, or inlineasm_br targets.",
             MBB);
    }
  }

  regsLive.clear();
  if (MRI->tracksLiveness()) {
    for (const auto &LI : MBB->liveins()) {
      if (!Register::isPhysicalRegister(LI.PhysReg)) {
        report("MBB live-in list contains non-physical register", MBB);
        continue;
      }
      for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
        regsLive.insert(SubReg);
    }
  }

  const MachineFrameInfo &MFI = MF->getFrameInfo();
  BitVector PR = MFI.getPristineRegs(*MF);
  for (unsigned I : PR.set_bits()) {
    for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
      regsLive.insert(SubReg);
  }

  regsKilled.clear();
  regsDefined.clear();

  if (Indexes)
    lastIndex = Indexes->getMBBStartIdx(MBB);
}

// This function gets called for all bundle headers, including normal
// stand-alone unbundled instructions.
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
  if (Indexes && Indexes->hasIndex(*MI)) {
    SlotIndex idx = Indexes->getInstructionIndex(*MI);
    if (!(idx > lastIndex)) {
      report("Instruction index out of order", MI);
      errs() << "Last instruction was at " << lastIndex << '\n';
    }
    lastIndex = idx;
  }

  // Ensure non-terminators don't follow terminators.
  // Ignore predicated terminators formed by if conversion.
  // FIXME: If conversion shouldn't need to violate this rule.
  if (MI->isTerminator() && !TII->isPredicated(*MI)) {
    if (!FirstTerminator)
      FirstTerminator = MI;
  } else if (FirstTerminator) {
    report("Non-terminator instruction after the first terminator", MI);
    errs() << "First terminator was:\t" << *FirstTerminator;
  }
}

// The operands on an INLINEASM instruction must follow a template.
// Verify that the flag operands make sense.
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
  // The first two operands on INLINEASM are the asm string and global flags.
  if (MI->getNumOperands() < 2) {
    report("Too few operands on inline asm", MI);
    return;
  }
  if (!MI->getOperand(0).isSymbol())
    report("Asm string must be an external symbol", MI);
  if (!MI->getOperand(1).isImm())
    report("Asm flags must be an immediate", MI);
  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
  // and Extra_IsConvergent = 32.
  if (!isUInt<6>(MI->getOperand(1).getImm()))
    report("Unknown asm flags", &MI->getOperand(1), 1);

  static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");

  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
  unsigned NumOps;
  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
    const MachineOperand &MO = MI->getOperand(OpNo);
    // There may be implicit ops after the fixed operands.
    if (!MO.isImm())
      break;
    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
  }

  if (OpNo > MI->getNumOperands())
    report("Missing operands in last group", MI);

  // An optional MDNode follows the groups.
  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
    ++OpNo;

  // All trailing operands must be implicit registers.
  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
    const MachineOperand &MO = MI->getOperand(OpNo);
    if (!MO.isReg() || !MO.isImplicit())
      report("Expected implicit register after groups", &MO, OpNo);
  }
}

/// Check that types are consistent when two operands need to have the same
/// number of vector elements.
/// \return true if the types are valid.
bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
                                               const MachineInstr *MI) {
  if (Ty0.isVector() != Ty1.isVector()) {
    report("operand types must be all-vector or all-scalar", MI);
    // Generally we try to report as many issues as possible at once, but in
    // this case it's not clear what should we be comparing the size of the
    // scalar with: the size of the whole vector or its lane. Instead of
    // making an arbitrary choice and emitting not so helpful message, let's
    // avoid the extra noise and stop here.
    return false;
  }

  if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
    report("operand types must preserve number of vector elements", MI);
    return false;
  }

  return true;
}

void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
  if (isFunctionSelected)
    report("Unexpected generic instruction in a Selected function", MI);

  const MCInstrDesc &MCID = MI->getDesc();
  unsigned NumOps = MI->getNumOperands();

  // Branches must reference a basic block if they are not indirect
  if (MI->isBranch() && !MI->isIndirectBranch()) {
    bool HasMBB = false;
    for (const MachineOperand &Op : MI->operands()) {
      if (Op.isMBB()) {
        HasMBB = true;
        break;
      }
    }

    if (!HasMBB) {
      report("Branch instruction is missing a basic block operand or "
             "isIndirectBranch property",
             MI);
    }
  }

  // Check types.
  SmallVector<LLT, 4> Types;
  for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
       I != E; ++I) {
    if (!MCID.OpInfo[I].isGenericType())
      continue;
    // Generic instructions specify type equality constraints between some of
    // their operands. Make sure these are consistent.
    size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
    Types.resize(std::max(TypeIdx + 1, Types.size()));

    const MachineOperand *MO = &MI->getOperand(I);
    if (!MO->isReg()) {
      report("generic instruction must use register operands", MI);
      continue;
    }

    LLT OpTy = MRI->getType(MO->getReg());
    // Don't report a type mismatch if there is no actual mismatch, only a
    // type missing, to reduce noise:
    if (OpTy.isValid()) {
      // Only the first valid type for a type index will be printed: don't
      // overwrite it later so it's always clear which type was expected:
      if (!Types[TypeIdx].isValid())
        Types[TypeIdx] = OpTy;
      else if (Types[TypeIdx] != OpTy)
        report("Type mismatch in generic instruction", MO, I, OpTy);
    } else {
      // Generic instructions must have types attached to their operands.
      report("Generic instruction is missing a virtual register type", MO, I);
    }
  }

  // Generic opcodes must not have physical register operands.
  for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
    const MachineOperand *MO = &MI->getOperand(I);
    if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
      report("Generic instruction cannot have physical register", MO, I);
  }

  // Avoid out of bounds in checks below. This was already reported earlier.
  if (MI->getNumOperands() < MCID.getNumOperands())
    return;

  StringRef ErrorInfo;
  if (!TII->verifyInstruction(*MI, ErrorInfo))
    report(ErrorInfo.data(), MI);

  // Verify properties of various specific instruction types
  switch (MI->getOpcode()) {
  case TargetOpcode::G_CONSTANT:
  case TargetOpcode::G_FCONSTANT: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (DstTy.isVector())
      report("Instruction cannot use a vector result type", MI);

    if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
      if (!MI->getOperand(1).isCImm()) {
        report("G_CONSTANT operand must be cimm", MI);
        break;
      }

      const ConstantInt *CI = MI->getOperand(1).getCImm();
      if (CI->getBitWidth() != DstTy.getSizeInBits())
        report("inconsistent constant size", MI);
    } else {
      if (!MI->getOperand(1).isFPImm()) {
        report("G_FCONSTANT operand must be fpimm", MI);
        break;
      }
      const ConstantFP *CF = MI->getOperand(1).getFPImm();

      if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
          DstTy.getSizeInBits()) {
        report("inconsistent constant size", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_LOAD:
  case TargetOpcode::G_STORE:
  case TargetOpcode::G_ZEXTLOAD:
  case TargetOpcode::G_SEXTLOAD: {
    LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
    if (!PtrTy.isPointer())
      report("Generic memory instruction must access a pointer", MI);

    // Generic loads and stores must have a single MachineMemOperand
    // describing that access.
    if (!MI->hasOneMemOperand()) {
      report("Generic instruction accessing memory must have one mem operand",
             MI);
    } else {
      const MachineMemOperand &MMO = **MI->memoperands_begin();
      if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
          MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
        if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
          report("Generic extload must have a narrower memory type", MI);
      } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
        if (MMO.getSize() > ValTy.getSizeInBytes())
          report("load memory size cannot exceed result size", MI);
      } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
        if (ValTy.getSizeInBytes() < MMO.getSize())
          report("store memory size cannot exceed value size", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_PHI: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstTy.isValid() ||
        !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
                     [this, &DstTy](const MachineOperand &MO) {
                       if (!MO.isReg())
                         return true;
                       LLT Ty = MRI->getType(MO.getReg());
                       if (!Ty.isValid() || (Ty != DstTy))
                         return false;
                       return true;
                     }))
      report("Generic Instruction G_PHI has operands with incompatible/missing "
             "types",
             MI);
    break;
  }
  case TargetOpcode::G_BITCAST: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    if (SrcTy.isPointer() != DstTy.isPointer())
      report("bitcast cannot convert between pointers and other types", MI);

    if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
      report("bitcast sizes must match", MI);

    if (SrcTy == DstTy)
      report("bitcast must change the type", MI);

    break;
  }
  case TargetOpcode::G_INTTOPTR:
  case TargetOpcode::G_PTRTOINT:
  case TargetOpcode::G_ADDRSPACE_CAST: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    verifyVectorElementMatch(DstTy, SrcTy, MI);

    DstTy = DstTy.getScalarType();
    SrcTy = SrcTy.getScalarType();

    if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
      if (!DstTy.isPointer())
        report("inttoptr result type must be a pointer", MI);
      if (SrcTy.isPointer())
        report("inttoptr source type must not be a pointer", MI);
    } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
      if (!SrcTy.isPointer())
        report("ptrtoint source type must be a pointer", MI);
      if (DstTy.isPointer())
        report("ptrtoint result type must not be a pointer", MI);
    } else {
      assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
      if (!SrcTy.isPointer() || !DstTy.isPointer())
        report("addrspacecast types must be pointers", MI);
      else {
        if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
          report("addrspacecast must convert different address spaces", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_PTR_ADD: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
    LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
    if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
      break;

    if (!PtrTy.getScalarType().isPointer())
      report("gep first operand must be a pointer", MI);

    if (OffsetTy.getScalarType().isPointer())
      report("gep offset operand must not be a pointer", MI);

    // TODO: Is the offset allowed to be a scalar with a vector?
    break;
  }
  case TargetOpcode::G_PTRMASK: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
      break;

    if (!DstTy.getScalarType().isPointer())
      report("ptrmask result type must be a pointer", MI);

    if (!MaskTy.getScalarType().isScalar())
      report("ptrmask mask type must be an integer", MI);

    verifyVectorElementMatch(DstTy, MaskTy, MI);
    break;
  }
  case TargetOpcode::G_SEXT:
  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_ANYEXT:
  case TargetOpcode::G_TRUNC:
  case TargetOpcode::G_FPEXT:
  case TargetOpcode::G_FPTRUNC: {
    // Number of operands and presense of types is already checked (and
    // reported in case of any issues), so no need to report them again. As
    // we're trying to report as many issues as possible at once, however, the
    // instructions aren't guaranteed to have the right number of operands or
    // types attached to them at this point
    assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    LLT DstElTy = DstTy.getScalarType();
    LLT SrcElTy = SrcTy.getScalarType();
    if (DstElTy.isPointer() || SrcElTy.isPointer())
      report("Generic extend/truncate can not operate on pointers", MI);

    verifyVectorElementMatch(DstTy, SrcTy, MI);

    unsigned DstSize = DstElTy.getSizeInBits();
    unsigned SrcSize = SrcElTy.getSizeInBits();
    switch (MI->getOpcode()) {
    default:
      if (DstSize <= SrcSize)
        report("Generic extend has destination type no larger than source", MI);
      break;
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_FPTRUNC:
      if (DstSize >= SrcSize)
        report("Generic truncate has destination type no smaller than source",
               MI);
      break;
    }
    break;
  }
  case TargetOpcode::G_SELECT: {
    LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
    LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
    if (!SelTy.isValid() || !CondTy.isValid())
      break;

    // Scalar condition select on a vector is valid.
    if (CondTy.isVector())
      verifyVectorElementMatch(SelTy, CondTy, MI);
    break;
  }
  case TargetOpcode::G_MERGE_VALUES: {
    // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
    // e.g. s2N = MERGE sN, sN
    // Merging multiple scalars into a vector is not allowed, should use
    // G_BUILD_VECTOR for that.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (DstTy.isVector() || SrcTy.isVector())
      report("G_MERGE_VALUES cannot operate on vectors", MI);

    const unsigned NumOps = MI->getNumOperands();
    if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
      report("G_MERGE_VALUES result size is inconsistent", MI);

    for (unsigned I = 2; I != NumOps; ++I) {
      if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
        report("G_MERGE_VALUES source types do not match", MI);
    }

    break;
  }
  case TargetOpcode::G_UNMERGE_VALUES: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
    // For now G_UNMERGE can split vectors.
    for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
      if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
        report("G_UNMERGE_VALUES destination types do not match", MI);
    }
    if (SrcTy.getSizeInBits() !=
        (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
      report("G_UNMERGE_VALUES source operand does not cover dest operands",
             MI);
    }
    break;
  }
  case TargetOpcode::G_BUILD_VECTOR: {
    // Source types must be scalars, dest type a vector. Total size of scalars
    // must match the dest vector size.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || SrcEltTy.isVector()) {
      report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
      break;
    }

    if (DstTy.getElementType() != SrcEltTy)
      report("G_BUILD_VECTOR result element type must match source type", MI);

    if (DstTy.getNumElements() != MI->getNumOperands() - 1)
      report("G_BUILD_VECTOR must have an operand for each elemement", MI);

    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
      if (MRI->getType(MI->getOperand(1).getReg()) !=
          MRI->getType(MI->getOperand(i).getReg()))
        report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
    }

    break;
  }
  case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
    // Source types must be scalars, dest type a vector. Scalar types must be
    // larger than the dest vector elt type, as this is a truncating operation.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || SrcEltTy.isVector())
      report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
             MI);
    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
      if (MRI->getType(MI->getOperand(1).getReg()) !=
          MRI->getType(MI->getOperand(i).getReg()))
        report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
               MI);
    }
    if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
      report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
             "dest elt type",
             MI);
    break;
  }
  case TargetOpcode::G_CONCAT_VECTORS: {
    // Source types should be vectors, and total size should match the dest
    // vector size.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || !SrcTy.isVector())
      report("G_CONCAT_VECTOR requires vector source and destination operands",
             MI);
    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
      if (MRI->getType(MI->getOperand(1).getReg()) !=
          MRI->getType(MI->getOperand(i).getReg()))
        report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
    }
    if (DstTy.getNumElements() !=
        SrcTy.getNumElements() * (MI->getNumOperands() - 1))
      report("G_CONCAT_VECTOR num dest and source elements should match", MI);
    break;
  }
  case TargetOpcode::G_ICMP:
  case TargetOpcode::G_FCMP: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());

    if ((DstTy.isVector() != SrcTy.isVector()) ||
        (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
      report("Generic vector icmp/fcmp must preserve number of lanes", MI);

    break;
  }
  case TargetOpcode::G_EXTRACT: {
    const MachineOperand &SrcOp = MI->getOperand(1);
    if (!SrcOp.isReg()) {
      report("extract source must be a register", MI);
      break;
    }

    const MachineOperand &OffsetOp = MI->getOperand(2);
    if (!OffsetOp.isImm()) {
      report("extract offset must be a constant", MI);
      break;
    }

    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
    if (SrcSize == DstSize)
      report("extract source must be larger than result", MI);

    if (DstSize + OffsetOp.getImm() > SrcSize)
      report("extract reads past end of register", MI);
    break;
  }
  case TargetOpcode::G_INSERT: {
    const MachineOperand &SrcOp = MI->getOperand(2);
    if (!SrcOp.isReg()) {
      report("insert source must be a register", MI);
      break;
    }

    const MachineOperand &OffsetOp = MI->getOperand(3);
    if (!OffsetOp.isImm()) {
      report("insert offset must be a constant", MI);
      break;
    }

    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();

    if (DstSize <= SrcSize)
      report("inserted size must be smaller than total register", MI);

    if (SrcSize + OffsetOp.getImm() > DstSize)
      report("insert writes past end of register", MI);

    break;
  }
  case TargetOpcode::G_JUMP_TABLE: {
    if (!MI->getOperand(1).isJTI())
      report("G_JUMP_TABLE source operand must be a jump table index", MI);
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstTy.isPointer())
      report("G_JUMP_TABLE dest operand must have a pointer type", MI);
    break;
  }
  case TargetOpcode::G_BRJT: {
    if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
      report("G_BRJT src operand 0 must be a pointer type", MI);

    if (!MI->getOperand(1).isJTI())
      report("G_BRJT src operand 1 must be a jump table index", MI);

    const auto &IdxOp = MI->getOperand(2);
    if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
      report("G_BRJT src operand 2 must be a scalar reg type", MI);
    break;
  }
  case TargetOpcode::G_INTRINSIC:
  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
    // TODO: Should verify number of def and use operands, but the current
    // interface requires passing in IR types for mangling.
    const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
    if (!IntrIDOp.isIntrinsicID()) {
      report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
      break;
    }

    bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
    unsigned IntrID = IntrIDOp.getIntrinsicID();
    if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
      AttributeList Attrs
        = Intrinsic::getAttributes(MF->getFunction().getContext(),
                                   static_cast<Intrinsic::ID>(IntrID));
      bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
      if (NoSideEffects && DeclHasSideEffects) {
        report("G_INTRINSIC used with intrinsic that accesses memory", MI);
        break;
      }
      if (!NoSideEffects && !DeclHasSideEffects) {
        report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
        break;
      }
    }
    switch (IntrID) {
    case Intrinsic::memcpy:
      if (MI->getNumOperands() != 5)
        report("Expected memcpy intrinsic to have 5 operands", MI);
      break;
    case Intrinsic::memmove:
      if (MI->getNumOperands() != 5)
        report("Expected memmove intrinsic to have 5 operands", MI);
      break;
    case Intrinsic::memset:
      if (MI->getNumOperands() != 5)
        report("Expected memset intrinsic to have 5 operands", MI);
      break;
    }
    break;
  }
  case TargetOpcode::G_SEXT_INREG: {
    if (!MI->getOperand(2).isImm()) {
      report("G_SEXT_INREG expects an immediate operand #2", MI);
      break;
    }

    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    verifyVectorElementMatch(DstTy, SrcTy, MI);

    int64_t Imm = MI->getOperand(2).getImm();
    if (Imm <= 0)
      report("G_SEXT_INREG size must be >= 1", MI);
    if (Imm >= SrcTy.getScalarSizeInBits())
      report("G_SEXT_INREG size must be less than source bit width", MI);
    break;
  }
  case TargetOpcode::G_SHUFFLE_VECTOR: {
    const MachineOperand &MaskOp = MI->getOperand(3);
    if (!MaskOp.isShuffleMask()) {
      report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
      break;
    }

    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
    LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());

    if (Src0Ty != Src1Ty)
      report("Source operands must be the same type", MI);

    if (Src0Ty.getScalarType() != DstTy.getScalarType())
      report("G_SHUFFLE_VECTOR cannot change element type", MI);

    // Don't check that all operands are vector because scalars are used in
    // place of 1 element vectors.
    int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
    int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;

    ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();

    if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
      report("Wrong result type for shufflemask", MI);

    for (int Idx : MaskIdxes) {
      if (Idx < 0)
        continue;

      if (Idx >= 2 * SrcNumElts)
        report("Out of bounds shuffle index", MI);
    }

    break;
  }
  case TargetOpcode::G_DYN_STACKALLOC: {
    const MachineOperand &DstOp = MI->getOperand(0);
    const MachineOperand &AllocOp = MI->getOperand(1);
    const MachineOperand &AlignOp = MI->getOperand(2);

    if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
      report("dst operand 0 must be a pointer type", MI);
      break;
    }

    if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
      report("src operand 1 must be a scalar reg type", MI);
      break;
    }

    if (!AlignOp.isImm()) {
      report("src operand 2 must be an immediate type", MI);
      break;
    }
    break;
  }
  default:
    break;
  }
}

void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
  const MCInstrDesc &MCID = MI->getDesc();
  if (MI->getNumOperands() < MCID.getNumOperands()) {
    report("Too few operands", MI);
    errs() << MCID.getNumOperands() << " operands expected, but "
           << MI->getNumOperands() << " given.\n";
  }

  if (MI->isPHI()) {
    if (MF->getProperties().hasProperty(
            MachineFunctionProperties::Property::NoPHIs))
      report("Found PHI instruction with NoPHIs property set", MI);

    if (FirstNonPHI)
      report("Found PHI instruction after non-PHI", MI);
  } else if (FirstNonPHI == nullptr)
    FirstNonPHI = MI;

  // Check the tied operands.
  if (MI->isInlineAsm())
    verifyInlineAsm(MI);

  // A fully-formed DBG_VALUE must have a location. Ignore partially formed
  // DBG_VALUEs: these are convenient to use in tests, but should never get
  // generated.
  if (MI->isDebugValue() && MI->getNumOperands() == 4)
    if (!MI->getDebugLoc())
      report("Missing DebugLoc for debug instruction", MI);

  // Check the MachineMemOperands for basic consistency.
  for (MachineMemOperand *Op : MI->memoperands()) {
    if (Op->isLoad() && !MI->mayLoad())
      report("Missing mayLoad flag", MI);
    if (Op->isStore() && !MI->mayStore())
      report("Missing mayStore flag", MI);
  }

  // Debug values must not have a slot index.
  // Other instructions must have one, unless they are inside a bundle.
  if (LiveInts) {
    bool mapped = !LiveInts->isNotInMIMap(*MI);
    if (MI->isDebugInstr()) {
      if (mapped)
        report("Debug instruction has a slot index", MI);
    } else if (MI->isInsideBundle()) {
      if (mapped)
        report("Instruction inside bundle has a slot index", MI);
    } else {
      if (!mapped)
        report("Missing slot index", MI);
    }
  }

  if (isPreISelGenericOpcode(MCID.getOpcode())) {
    verifyPreISelGenericInstruction(MI);
    return;
  }

  StringRef ErrorInfo;
  if (!TII->verifyInstruction(*MI, ErrorInfo))
    report(ErrorInfo.data(), MI);

  // Verify properties of various specific instruction types
  switch (MI->getOpcode()) {
  case TargetOpcode::COPY: {
    if (foundErrors)
      break;
    const MachineOperand &DstOp = MI->getOperand(0);
    const MachineOperand &SrcOp = MI->getOperand(1);
    LLT DstTy = MRI->getType(DstOp.getReg());
    LLT SrcTy = MRI->getType(SrcOp.getReg());
    if (SrcTy.isValid() && DstTy.isValid()) {
      // If both types are valid, check that the types are the same.
      if (SrcTy != DstTy) {
        report("Copy Instruction is illegal with mismatching types", MI);
        errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
      }
    }
    if (SrcTy.isValid() || DstTy.isValid()) {
      // If one of them have valid types, let's just check they have the same
      // size.
      unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
      unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
      assert(SrcSize && "Expecting size here");
      assert(DstSize && "Expecting size here");
      if (SrcSize != DstSize)
        if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
          report("Copy Instruction is illegal with mismatching sizes", MI);
          errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
                 << "\n";
        }
    }
    break;
  }
  case TargetOpcode::STATEPOINT: {
    StatepointOpers SO(MI);
    if (!MI->getOperand(SO.getIDPos()).isImm() ||
        !MI->getOperand(SO.getNBytesPos()).isImm() ||
        !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
      report("meta operands to STATEPOINT not constant!", MI);
      break;
    }

    auto VerifyStackMapConstant = [&](unsigned Offset) {
      if (!MI->getOperand(Offset - 1).isImm() ||
          MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
          !MI->getOperand(Offset).isImm())
        report("stack map constant to STATEPOINT not well formed!", MI);
    };
    VerifyStackMapConstant(SO.getCCIdx());
    VerifyStackMapConstant(SO.getFlagsIdx());
    VerifyStackMapConstant(SO.getNumDeoptArgsIdx());

    // TODO: verify we have properly encoded deopt arguments
  } break;
  }
}

void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const MCInstrDesc &MCID = MI->getDesc();
  unsigned NumDefs = MCID.getNumDefs();
  if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
    NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;

  // The first MCID.NumDefs operands must be explicit register defines
  if (MONum < NumDefs) {
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    if (!MO->isReg())
      report("Explicit definition must be a register", MO, MONum);
    else if (!MO->isDef() && !MCOI.isOptionalDef())
      report("Explicit definition marked as use", MO, MONum);
    else if (MO->isImplicit())
      report("Explicit definition marked as implicit", MO, MONum);
  } else if (MONum < MCID.getNumOperands()) {
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    // Don't check if it's the last operand in a variadic instruction. See,
    // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
    bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
    if (!IsOptional) {
      if (MO->isReg()) {
        if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
          report("Explicit operand marked as def", MO, MONum);
        if (MO->isImplicit())
          report("Explicit operand marked as implicit", MO, MONum);
      }

      // Check that an instruction has register operands only as expected.
      if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
          !MO->isReg() && !MO->isFI())
        report("Expected a register operand.", MO, MONum);
      if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
           MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
        report("Expected a non-register operand.", MO, MONum);
    }

    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
    if (TiedTo != -1) {
      if (!MO->isReg())
        report("Tied use must be a register", MO, MONum);
      else if (!MO->isTied())
        report("Operand should be tied", MO, MONum);
      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
        report("Tied def doesn't match MCInstrDesc", MO, MONum);
      else if (Register::isPhysicalRegister(MO->getReg())) {
        const MachineOperand &MOTied = MI->getOperand(TiedTo);
        if (!MOTied.isReg())
          report("Tied counterpart must be a register", &MOTied, TiedTo);
        else if (Register::isPhysicalRegister(MOTied.getReg()) &&
                 MO->getReg() != MOTied.getReg())
          report("Tied physical registers must match.", &MOTied, TiedTo);
      }
    } else if (MO->isReg() && MO->isTied())
      report("Explicit operand should not be tied", MO, MONum);
  } else {
    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
  }

  switch (MO->getType()) {
  case MachineOperand::MO_Register: {
    const Register Reg = MO->getReg();
    if (!Reg)
      return;
    if (MRI->tracksLiveness() && !MI->isDebugValue())
      checkLiveness(MO, MONum);

    // Verify the consistency of tied operands.
    if (MO->isTied()) {
      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
      if (!OtherMO.isReg())
        report("Must be tied to a register", MO, MONum);
      if (!OtherMO.isTied())
        report("Missing tie flags on tied operand", MO, MONum);
      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
        report("Inconsistent tie links", MO, MONum);
      if (MONum < MCID.getNumDefs()) {
        if (OtherIdx < MCID.getNumOperands()) {
          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
            report("Explicit def tied to explicit use without tie constraint",
                   MO, MONum);
        } else {
          if (!OtherMO.isImplicit())
            report("Explicit def should be tied to implicit use", MO, MONum);
        }
      }
    }

    // Verify two-address constraints after the twoaddressinstruction pass.
    // Both twoaddressinstruction pass and phi-node-elimination pass call
    // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
    // twoaddressinstruction pass not after phi-node-elimination pass. So we
    // shouldn't use the NoSSA as the condition, we should based on
    // TiedOpsRewritten property to verify two-address constraints, this
    // property will be set in twoaddressinstruction pass.
    unsigned DefIdx;
    if (MF->getProperties().hasProperty(
            MachineFunctionProperties::Property::TiedOpsRewritten) &&
        MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
        Reg != MI->getOperand(DefIdx).getReg())
      report("Two-address instruction operands must be identical", MO, MONum);

    // Check register classes.
    unsigned SubIdx = MO->getSubReg();

    if (Register::isPhysicalRegister(Reg)) {
      if (SubIdx) {
        report("Illegal subregister index for physical register", MO, MONum);
        return;
      }
      if (MONum < MCID.getNumOperands()) {
        if (const TargetRegisterClass *DRC =
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
          if (!DRC->contains(Reg)) {
            report("Illegal physical register for instruction", MO, MONum);
            errs() << printReg(Reg, TRI) << " is not a "
                   << TRI->getRegClassName(DRC) << " register.\n";
          }
        }
      }
      if (MO->isRenamable()) {
        if (MRI->isReserved(Reg)) {
          report("isRenamable set on reserved register", MO, MONum);
          return;
        }
      }
      if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
        report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
        return;
      }
    } else {
      // Virtual register.
      const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
      if (!RC) {
        // This is a generic virtual register.

        // Do not allow undef uses for generic virtual registers. This ensures
        // getVRegDef can never fail and return null on a generic register.
        //
        // FIXME: This restriction should probably be broadened to all SSA
        // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
        // run on the SSA function just before phi elimination.
        if (MO->isUndef())
          report("Generic virtual register use cannot be undef", MO, MONum);

        // If we're post-Select, we can't have gvregs anymore.
        if (isFunctionSelected) {
          report("Generic virtual register invalid in a Selected function",
                 MO, MONum);
          return;
        }

        // The gvreg must have a type and it must not have a SubIdx.
        LLT Ty = MRI->getType(Reg);
        if (!Ty.isValid()) {
          report("Generic virtual register must have a valid type", MO,
                 MONum);
          return;
        }

        const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);

        // If we're post-RegBankSelect, the gvreg must have a bank.
        if (!RegBank && isFunctionRegBankSelected) {
          report("Generic virtual register must have a bank in a "
                 "RegBankSelected function",
                 MO, MONum);
          return;
        }

        // Make sure the register fits into its register bank if any.
        if (RegBank && Ty.isValid() &&
            RegBank->getSize() < Ty.getSizeInBits()) {
          report("Register bank is too small for virtual register", MO,
                 MONum);
          errs() << "Register bank " << RegBank->getName() << " too small("
                 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
                 << "-bits\n";
          return;
        }
        if (SubIdx)  {
          report("Generic virtual register does not allow subregister index", MO,
                 MONum);
          return;
        }

        // If this is a target specific instruction and this operand
        // has register class constraint, the virtual register must
        // comply to it.
        if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
            MONum < MCID.getNumOperands() &&
            TII->getRegClass(MCID, MONum, TRI, *MF)) {
          report("Virtual register does not match instruction constraint", MO,
                 MONum);
          errs() << "Expect register class "
                 << TRI->getRegClassName(
                        TII->getRegClass(MCID, MONum, TRI, *MF))
                 << " but got nothing\n";
          return;
        }

        break;
      }
      if (SubIdx) {
        const TargetRegisterClass *SRC =
          TRI->getSubClassWithSubReg(RC, SubIdx);
        if (!SRC) {
          report("Invalid subregister index for virtual register", MO, MONum);
          errs() << "Register class " << TRI->getRegClassName(RC)
              << " does not support subreg index " << SubIdx << "\n";
          return;
        }
        if (RC != SRC) {
          report("Invalid register class for subregister index", MO, MONum);
          errs() << "Register class " << TRI->getRegClassName(RC)
              << " does not fully support subreg index " << SubIdx << "\n";
          return;
        }
      }
      if (MONum < MCID.getNumOperands()) {
        if (const TargetRegisterClass *DRC =
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
          if (SubIdx) {
            const TargetRegisterClass *SuperRC =
                TRI->getLargestLegalSuperClass(RC, *MF);
            if (!SuperRC) {
              report("No largest legal super class exists.", MO, MONum);
              return;
            }
            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
            if (!DRC) {
              report("No matching super-reg register class.", MO, MONum);
              return;
            }
          }
          if (!RC->hasSuperClassEq(DRC)) {
            report("Illegal virtual register for instruction", MO, MONum);
            errs() << "Expected a " << TRI->getRegClassName(DRC)
                << " register, but got a " << TRI->getRegClassName(RC)
                << " register\n";
          }
        }
      }
    }
    break;
  }

  case MachineOperand::MO_RegisterMask:
    regMasks.push_back(MO->getRegMask());
    break;

  case MachineOperand::MO_MachineBasicBlock:
    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
      report("PHI operand is not in the CFG", MO, MONum);
    break;

  case MachineOperand::MO_FrameIndex:
    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
        LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      int FI = MO->getIndex();
      LiveInterval &LI = LiveStks->getInterval(FI);
      SlotIndex Idx = LiveInts->getInstructionIndex(*MI);

      bool stores = MI->mayStore();
      bool loads = MI->mayLoad();
      // For a memory-to-memory move, we need to check if the frame
      // index is used for storing or loading, by inspecting the
      // memory operands.
      if (stores && loads) {
        for (auto *MMO : MI->memoperands()) {
          const PseudoSourceValue *PSV = MMO->getPseudoValue();
          if (PSV == nullptr) continue;
          const FixedStackPseudoSourceValue *Value =
            dyn_cast<FixedStackPseudoSourceValue>(PSV);
          if (Value == nullptr) continue;
          if (Value->getFrameIndex() != FI) continue;

          if (MMO->isStore())
            loads = false;
          else
            stores = false;
          break;
        }
        if (loads == stores)
          report("Missing fixed stack memoperand.", MI);
      }
      if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
        report("Instruction loads from dead spill slot", MO, MONum);
        errs() << "Live stack: " << LI << '\n';
      }
      if (stores && !LI.liveAt(Idx.getRegSlot())) {
        report("Instruction stores to dead spill slot", MO, MONum);
        errs() << "Live stack: " << LI << '\n';
      }
    }
    break;

  default:
    break;
  }
}

void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
    unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
    LaneBitmask LaneMask) {
  LiveQueryResult LRQ = LR.Query(UseIdx);
  // Check if we have a segment at the use, note however that we only need one
  // live subregister range, the others may be dead.
  if (!LRQ.valueIn() && LaneMask.none()) {
    report("No live segment at use", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    report_context(UseIdx);
  }
  if (MO->isKill() && !LRQ.isKill()) {
    report("Live range continues after kill flag", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    if (LaneMask.any())
      report_context_lanemask(LaneMask);
    report_context(UseIdx);
  }
}

void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
    unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
    bool SubRangeCheck, LaneBitmask LaneMask) {
  if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
    assert(VNI && "NULL valno is not allowed");
    if (VNI->def != DefIdx) {
      report("Inconsistent valno->def", MO, MONum);
      report_context_liverange(LR);
      report_context_vreg_regunit(VRegOrUnit);
      if (LaneMask.any())
        report_context_lanemask(LaneMask);
      report_context(*VNI);
      report_context(DefIdx);
    }
  } else {
    report("No live segment at def", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    if (LaneMask.any())
      report_context_lanemask(LaneMask);
    report_context(DefIdx);
  }
  // Check that, if the dead def flag is present, LiveInts agree.
  if (MO->isDead()) {
    LiveQueryResult LRQ = LR.Query(DefIdx);
    if (!LRQ.isDeadDef()) {
      assert(Register::isVirtualRegister(VRegOrUnit) &&
             "Expecting a virtual register.");
      // A dead subreg def only tells us that the specific subreg is dead. There
      // could be other non-dead defs of other subregs, or we could have other
      // parts of the register being live through the instruction. So unless we
      // are checking liveness for a subrange it is ok for the live range to
      // continue, given that we have a dead def of a subregister.
      if (SubRangeCheck || MO->getSubReg() == 0) {
        report("Live range continues after dead def flag", MO, MONum);
        report_context_liverange(LR);
        report_context_vreg_regunit(VRegOrUnit);
        if (LaneMask.any())
          report_context_lanemask(LaneMask);
      }
    }
  }
}

void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const unsigned Reg = MO->getReg();

  // Both use and def operands can read a register.
  if (MO->readsReg()) {
    if (MO->isKill())
      addRegWithSubRegs(regsKilled, Reg);

    // Check that LiveVars knows this kill.
    if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
      if (!is_contained(VI.Kills, MI))
        report("Kill missing from LiveVariables", MO, MONum);
    }

    // Check LiveInts liveness and kill.
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
      // Check the cached regunit intervals.
      if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
          if (MRI->isReservedRegUnit(*Units))
            continue;
          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
            checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
        }
      }

      if (Register::isVirtualRegister(Reg)) {
        if (LiveInts->hasInterval(Reg)) {
          // This is a virtual register interval.
          const LiveInterval &LI = LiveInts->getInterval(Reg);
          checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);

          if (LI.hasSubRanges() && !MO->isDef()) {
            unsigned SubRegIdx = MO->getSubReg();
            LaneBitmask MOMask = SubRegIdx != 0
                               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
                               : MRI->getMaxLaneMaskForVReg(Reg);
            LaneBitmask LiveInMask;
            for (const LiveInterval::SubRange &SR : LI.subranges()) {
              if ((MOMask & SR.LaneMask).none())
                continue;
              checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
              LiveQueryResult LRQ = SR.Query(UseIdx);
              if (LRQ.valueIn())
                LiveInMask |= SR.LaneMask;
            }
            // At least parts of the register has to be live at the use.
            if ((LiveInMask & MOMask).none()) {
              report("No live subrange at use", MO, MONum);
              report_context(LI);
              report_context(UseIdx);
            }
          }
        } else {
          report("Virtual register has no live interval", MO, MONum);
        }
      }
    }

    // Use of a dead register.
    if (!regsLive.count(Reg)) {
      if (Register::isPhysicalRegister(Reg)) {
        // Reserved registers may be used even when 'dead'.
        bool Bad = !isReserved(Reg);
        // We are fine if just any subregister has a defined value.
        if (Bad) {

          for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
            if (regsLive.count(SubReg)) {
              Bad = false;
              break;
            }
          }
        }
        // If there is an additional implicit-use of a super register we stop
        // here. By definition we are fine if the super register is not
        // (completely) dead, if the complete super register is dead we will
        // get a report for its operand.
        if (Bad) {
          for (const MachineOperand &MOP : MI->uses()) {
            if (!MOP.isReg() || !MOP.isImplicit())
              continue;

            if (!Register::isPhysicalRegister(MOP.getReg()))
              continue;

            for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
              if (SubReg == Reg) {
                Bad = false;
                break;
              }
            }
          }
        }
        if (Bad)
          report("Using an undefined physical register", MO, MONum);
      } else if (MRI->def_empty(Reg)) {
        report("Reading virtual register without a def", MO, MONum);
      } else {
        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
        // We don't know which virtual registers are live in, so only complain
        // if vreg was killed in this MBB. Otherwise keep track of vregs that
        // must be live in. PHI instructions are handled separately.
        if (MInfo.regsKilled.count(Reg))
          report("Using a killed virtual register", MO, MONum);
        else if (!MI->isPHI())
          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
      }
    }
  }

  if (MO->isDef()) {
    // Register defined.
    // TODO: verify that earlyclobber ops are not used.
    if (MO->isDead())
      addRegWithSubRegs(regsDead, Reg);
    else
      addRegWithSubRegs(regsDefined, Reg);

    // Verify SSA form.
    if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
        std::next(MRI->def_begin(Reg)) != MRI->def_end())
      report("Multiple virtual register defs in SSA form", MO, MONum);

    // Check LiveInts for a live segment, but only for virtual registers.
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());

      if (Register::isVirtualRegister(Reg)) {
        if (LiveInts->hasInterval(Reg)) {
          const LiveInterval &LI = LiveInts->getInterval(Reg);
          checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);

          if (LI.hasSubRanges()) {
            unsigned SubRegIdx = MO->getSubReg();
            LaneBitmask MOMask = SubRegIdx != 0
              ? TRI->getSubRegIndexLaneMask(SubRegIdx)
              : MRI->getMaxLaneMaskForVReg(Reg);
            for (const LiveInterval::SubRange &SR : LI.subranges()) {
              if ((SR.LaneMask & MOMask).none())
                continue;
              checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
            }
          }
        } else {
          report("Virtual register has no Live interval", MO, MONum);
        }
      }
    }
  }
}

// This function gets called after visiting all instructions in a bundle. The
// argument points to the bundle header.
// Normal stand-alone instructions are also considered 'bundles', and this
// function is called for all of them.
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
  set_union(MInfo.regsKilled, regsKilled);
  set_subtract(regsLive, regsKilled); regsKilled.clear();
  // Kill any masked registers.
  while (!regMasks.empty()) {
    const uint32_t *Mask = regMasks.pop_back_val();
    for (unsigned Reg : regsLive)
      if (Register::isPhysicalRegister(Reg) &&
          MachineOperand::clobbersPhysReg(Mask, Reg))
        regsDead.push_back(Reg);
  }
  set_subtract(regsLive, regsDead);   regsDead.clear();
  set_union(regsLive, regsDefined);   regsDefined.clear();
}

void
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
  MBBInfoMap[MBB].regsLiveOut = regsLive;
  regsLive.clear();

  if (Indexes) {
    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
    if (!(stop > lastIndex)) {
      report("Block ends before last instruction index", MBB);
      errs() << "Block ends at " << stop
          << " last instruction was at " << lastIndex << '\n';
    }
    lastIndex = stop;
  }
}

namespace {
// This implements a set of registers that serves as a filter: can filter other
// sets by passing through elements not in the filter and blocking those that
// are. Any filter implicitly includes the full set of physical registers upon
// creation, thus filtering them all out. The filter itself as a set only grows,
// and needs to be as efficient as possible.
struct VRegFilter {
  // Add elements to the filter itself. \pre Input set \p FromRegSet must have
  // no duplicates. Both virtual and physical registers are fine.
  template <typename RegSetT> void add(const RegSetT &FromRegSet) {
    SmallVector<unsigned, 0> VRegsBuffer;
    filterAndAdd(FromRegSet, VRegsBuffer);
  }
  // Filter \p FromRegSet through the filter and append passed elements into \p
  // ToVRegs. All elements appended are then added to the filter itself.
  // \returns true if anything changed.
  template <typename RegSetT>
  bool filterAndAdd(const RegSetT &FromRegSet,
                    SmallVectorImpl<unsigned> &ToVRegs) {
    unsigned SparseUniverse = Sparse.size();
    unsigned NewSparseUniverse = SparseUniverse;
    unsigned NewDenseSize = Dense.size();
    size_t Begin = ToVRegs.size();
    for (unsigned Reg : FromRegSet) {
      if (!Register::isVirtualRegister(Reg))
        continue;
      unsigned Index = Register::virtReg2Index(Reg);
      if (Index < SparseUniverseMax) {
        if (Index < SparseUniverse && Sparse.test(Index))
          continue;
        NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
      } else {
        if (Dense.count(Reg))
          continue;
        ++NewDenseSize;
      }
      ToVRegs.push_back(Reg);
    }
    size_t End = ToVRegs.size();
    if (Begin == End)
      return false;
    // Reserving space in sets once performs better than doing so continuously
    // and pays easily for double look-ups (even in Dense with SparseUniverseMax
    // tuned all the way down) and double iteration (the second one is over a
    // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
    Sparse.resize(NewSparseUniverse);
    Dense.reserve(NewDenseSize);
    for (unsigned I = Begin; I < End; ++I) {
      unsigned Reg = ToVRegs[I];
      unsigned Index = Register::virtReg2Index(Reg);
      if (Index < SparseUniverseMax)
        Sparse.set(Index);
      else
        Dense.insert(Reg);
    }
    return true;
  }

private:
  static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
  // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
  // are tracked by Dense. The only purpose of the threashold and the Dense set
  // is to have a reasonably growing memory usage in pathological cases (large
  // number of very sparse VRegFilter instances live at the same time). In
  // practice even in the worst-by-execution time cases having all elements
  // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
  // space efficient than if tracked by Dense. The threashold is set to keep the
  // worst-case memory usage within 2x of figures determined empirically for
  // "all Dense" scenario in such worst-by-execution-time cases.
  BitVector Sparse;
  DenseSet<unsigned> Dense;
};

// Implements both a transfer function and a (binary, in-place) join operator
// for a dataflow over register sets with set union join and filtering transfer
// (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
// Maintains out_b as its state, allowing for O(n) iteration over it at any
// time, where n is the size of the set (as opposed to O(U) where U is the
// universe). filter_b implicitly contains all physical registers at all times.
class FilteringVRegSet {
  VRegFilter Filter;
  SmallVector<unsigned, 0> VRegs;

public:
  // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
  // Both virtual and physical registers are fine.
  template <typename RegSetT> void addToFilter(const RegSetT &RS) {
    Filter.add(RS);
  }
  // Passes \p RS through the filter_b (transfer function) and adds what's left
  // to itself (out_b).
  template <typename RegSetT> bool add(const RegSetT &RS) {
    // Double-duty the Filter: to maintain VRegs a set (and the join operation
    // a set union) just add everything being added here to the Filter as well.
    return Filter.filterAndAdd(RS, VRegs);
  }
  using const_iterator = decltype(VRegs)::const_iterator;
  const_iterator begin() const { return VRegs.begin(); }
  const_iterator end() const { return VRegs.end(); }
  size_t size() const { return VRegs.size(); }
};
} // namespace

// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void MachineVerifier::calcRegsPassed() {
  // This is a forward dataflow, doing it in RPO. A standard map serves as a
  // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
  // number to MBB mapping all at once.
  std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
  DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
  if (MF->empty()) {
    // ReversePostOrderTraversal doesn't handle empty functions.
    return;
  }
  std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
  for (const MachineBasicBlock *MBB :
       ReversePostOrderTraversal<const MachineFunction *>(MF)) {
    // Careful with the evaluation order, fetch next number before allocating.
    unsigned Number = RPONumbers.size();
    RPONumbers[MBB] = Number;
    // Set-up the transfer functions for all blocks.
    const BBInfo &MInfo = MBBInfoMap[MBB];
    VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
    VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
  }
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
  // have any vregsPassed.
  for (const MachineBasicBlock &MBB : *MF) {
    const BBInfo &MInfo = MBBInfoMap[&MBB];
    if (!MInfo.reachable)
      continue;
    for (const MachineBasicBlock *Succ : MBB.successors()) {
      unsigned SuccNumber = RPONumbers[Succ];
      FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
      if (SuccSet.add(MInfo.regsLiveOut))
        RPOWorklist.emplace(SuccNumber, Succ);
    }
  }

  // Iteratively push vregsPassed to successors.
  while (!RPOWorklist.empty()) {
    auto Next = RPOWorklist.begin();
    const MachineBasicBlock *MBB = Next->second;
    RPOWorklist.erase(Next);
    FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
    for (const MachineBasicBlock *Succ : MBB->successors()) {
      if (Succ == MBB)
        continue;
      unsigned SuccNumber = RPONumbers[Succ];
      FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
      if (SuccSet.add(MSet))
        RPOWorklist.emplace(SuccNumber, Succ);
    }
  }
  // Copy the results back to BBInfos.
  for (const MachineBasicBlock &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    if (!MInfo.reachable)
      continue;
    const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
    MInfo.vregsPassed.reserve(MSet.size());
    MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
  }
}

// Calculate the set of virtual registers that must be passed through each basic
// block in order to satisfy the requirements of successor blocks. This is very
// similar to calcRegsPassed, only backwards.
void MachineVerifier::calcRegsRequired() {
  // First push live-in regs to predecessors' vregsRequired.
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
  for (const auto &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    for (const MachineBasicBlock *Pred : MBB.predecessors()) {
      BBInfo &PInfo = MBBInfoMap[Pred];
      if (PInfo.addRequired(MInfo.vregsLiveIn))
        todo.insert(Pred);
    }
  }

  // Iteratively push vregsRequired to predecessors. This will converge to the
  // same final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
      if (Pred == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[Pred];
      if (SInfo.addRequired(MInfo.vregsRequired))
        todo.insert(Pred);
    }
  }
}

// Check PHI instructions at the beginning of MBB. It is assumed that
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
  BBInfo &MInfo = MBBInfoMap[&MBB];

  SmallPtrSet<const MachineBasicBlock*, 8> seen;
  for (const MachineInstr &Phi : MBB) {
    if (!Phi.isPHI())
      break;
    seen.clear();

    const MachineOperand &MODef = Phi.getOperand(0);
    if (!MODef.isReg() || !MODef.isDef()) {
      report("Expected first PHI operand to be a register def", &MODef, 0);
      continue;
    }
    if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
        MODef.isEarlyClobber() || MODef.isDebug())
      report("Unexpected flag on PHI operand", &MODef, 0);
    Register DefReg = MODef.getReg();
    if (!Register::isVirtualRegister(DefReg))
      report("Expected first PHI operand to be a virtual register", &MODef, 0);

    for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
      const MachineOperand &MO0 = Phi.getOperand(I);
      if (!MO0.isReg()) {
        report("Expected PHI operand to be a register", &MO0, I);
        continue;
      }
      if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
          MO0.isDebug() || MO0.isTied())
        report("Unexpected flag on PHI operand", &MO0, I);

      const MachineOperand &MO1 = Phi.getOperand(I + 1);
      if (!MO1.isMBB()) {
        report("Expected PHI operand to be a basic block", &MO1, I + 1);
        continue;
      }

      const MachineBasicBlock &Pre = *MO1.getMBB();
      if (!Pre.isSuccessor(&MBB)) {
        report("PHI input is not a predecessor block", &MO1, I + 1);
        continue;
      }

      if (MInfo.reachable) {
        seen.insert(&Pre);
        BBInfo &PrInfo = MBBInfoMap[&Pre];
        if (!MO0.isUndef() && PrInfo.reachable &&
            !PrInfo.isLiveOut(MO0.getReg()))
          report("PHI operand is not live-out from predecessor", &MO0, I);
      }
    }

    // Did we see all predecessors?
    if (MInfo.reachable) {
      for (MachineBasicBlock *Pred : MBB.predecessors()) {
        if (!seen.count(Pred)) {
          report("Missing PHI operand", &Phi);
          errs() << printMBBReference(*Pred)
                 << " is a predecessor according to the CFG.\n";
        }
      }
    }
  }
}

void MachineVerifier::visitMachineFunctionAfter() {
  calcRegsPassed();

  for (const MachineBasicBlock &MBB : *MF)
    checkPHIOps(MBB);

  // Now check liveness info if available
  calcRegsRequired();

  // Check for killed virtual registers that should be live out.
  for (const auto &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    for (unsigned VReg : MInfo.vregsRequired)
      if (MInfo.regsKilled.count(VReg)) {
        report("Virtual register killed in block, but needed live out.", &MBB);
        errs() << "Virtual register " << printReg(VReg)
               << " is used after the block.\n";
      }
  }

  if (!MF->empty()) {
    BBInfo &MInfo = MBBInfoMap[&MF->front()];
    for (unsigned VReg : MInfo.vregsRequired) {
      report("Virtual register defs don't dominate all uses.", MF);
      report_context_vreg(VReg);
    }
  }

  if (LiveVars)
    verifyLiveVariables();
  if (LiveInts)
    verifyLiveIntervals();

  // Check live-in list of each MBB. If a register is live into MBB, check
  // that the register is in regsLiveOut of each predecessor block. Since
  // this must come from a definition in the predecesssor or its live-in
  // list, this will catch a live-through case where the predecessor does not
  // have the register in its live-in list.  This currently only checks
  // registers that have no aliases, are not allocatable and are not
  // reserved, which could mean a condition code register for instance.
  if (MRI->tracksLiveness())
    for (const auto &MBB : *MF)
      for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
        MCPhysReg LiveInReg = P.PhysReg;
        bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
        if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
          continue;
        for (const MachineBasicBlock *Pred : MBB.predecessors()) {
          BBInfo &PInfo = MBBInfoMap[Pred];
          if (!PInfo.regsLiveOut.count(LiveInReg)) {
            report("Live in register not found to be live out from predecessor.",
                   &MBB);
            errs() << TRI->getName(LiveInReg)
                   << " not found to be live out from "
                   << printMBBReference(*Pred) << "\n";
          }
        }
      }

  for (auto CSInfo : MF->getCallSitesInfo())
    if (!CSInfo.first->isCall())
      report("Call site info referencing instruction that is not call", MF);
}

void MachineVerifier::verifyLiveVariables() {
  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = Register::index2VirtReg(i);
    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
    for (const auto &MBB : *MF) {
      BBInfo &MInfo = MBBInfoMap[&MBB];

      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
      if (MInfo.vregsRequired.count(Reg)) {
        if (!VI.AliveBlocks.test(MBB.getNumber())) {
          report("LiveVariables: Block missing from AliveBlocks", &MBB);
          errs() << "Virtual register " << printReg(Reg)
                 << " must be live through the block.\n";
        }
      } else {
        if (VI.AliveBlocks.test(MBB.getNumber())) {
          report("LiveVariables: Block should not be in AliveBlocks", &MBB);
          errs() << "Virtual register " << printReg(Reg)
                 << " is not needed live through the block.\n";
        }
      }
    }
  }
}

void MachineVerifier::verifyLiveIntervals() {
  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = Register::index2VirtReg(i);

    // Spilling and splitting may leave unused registers around. Skip them.
    if (MRI->reg_nodbg_empty(Reg))
      continue;

    if (!LiveInts->hasInterval(Reg)) {
      report("Missing live interval for virtual register", MF);
      errs() << printReg(Reg, TRI) << " still has defs or uses\n";
      continue;
    }

    const LiveInterval &LI = LiveInts->getInterval(Reg);
    assert(Reg == LI.reg && "Invalid reg to interval mapping");
    verifyLiveInterval(LI);
  }

  // Verify all the cached regunit intervals.
  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
      verifyLiveRange(*LR, i);
}

void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
                                           const VNInfo *VNI, unsigned Reg,
                                           LaneBitmask LaneMask) {
  if (VNI->isUnused())
    return;

  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);

  if (!DefVNI) {
    report("Value not live at VNInfo def and not marked unused", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (DefVNI != VNI) {
    report("Live segment at def has different VNInfo", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
  if (!MBB) {
    report("Invalid VNInfo definition index", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (VNI->isPHIDef()) {
    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
      report("PHIDef VNInfo is not defined at MBB start", MBB);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }
    return;
  }

  // Non-PHI def.
  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
  if (!MI) {
    report("No instruction at VNInfo def index", MBB);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (Reg != 0) {
    bool hasDef = false;
    bool isEarlyClobber = false;
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
      if (!MOI->isReg() || !MOI->isDef())
        continue;
      if (Register::isVirtualRegister(Reg)) {
        if (MOI->getReg() != Reg)
          continue;
      } else {
        if (!Register::isPhysicalRegister(MOI->getReg()) ||
            !TRI->hasRegUnit(MOI->getReg(), Reg))
          continue;
      }
      if (LaneMask.any() &&
          (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
        continue;
      hasDef = true;
      if (MOI->isEarlyClobber())
        isEarlyClobber = true;
    }

    if (!hasDef) {
      report("Defining instruction does not modify register", MI);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }

    // Early clobber defs begin at USE slots, but other defs must begin at
    // DEF slots.
    if (isEarlyClobber) {
      if (!VNI->def.isEarlyClobber()) {
        report("Early clobber def must be at an early-clobber slot", MBB);
        report_context(LR, Reg, LaneMask);
        report_context(*VNI);
      }
    } else if (!VNI->def.isRegister()) {
      report("Non-PHI, non-early clobber def must be at a register slot", MBB);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }
  }
}

void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
                                             const LiveRange::const_iterator I,
                                             unsigned Reg, LaneBitmask LaneMask)
{
  const LiveRange::Segment &S = *I;
  const VNInfo *VNI = S.valno;
  assert(VNI && "Live segment has no valno");

  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
    report("Foreign valno in live segment", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    report_context(*VNI);
  }

  if (VNI->isUnused()) {
    report("Live segment valno is marked unused", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
  if (!MBB) {
    report("Bad start of live segment, no basic block", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }
  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
  if (S.start != MBBStartIdx && S.start != VNI->def) {
    report("Live segment must begin at MBB entry or valno def", MBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  const MachineBasicBlock *EndMBB =
    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
  if (!EndMBB) {
    report("Bad end of live segment, no basic block", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }

  // No more checks for live-out segments.
  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
    return;

  // RegUnit intervals are allowed dead phis.
  if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
    return;

  // The live segment is ending inside EndMBB
  const MachineInstr *MI =
    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
  if (!MI) {
    report("Live segment doesn't end at a valid instruction", EndMBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }

  // The block slot must refer to a basic block boundary.
  if (S.end.isBlock()) {
    report("Live segment ends at B slot of an instruction", EndMBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  if (S.end.isDead()) {
    // Segment ends on the dead slot.
    // That means there must be a dead def.
    if (!SlotIndex::isSameInstr(S.start, S.end)) {
      report("Live segment ending at dead slot spans instructions", EndMBB);
      report_context(LR, Reg, LaneMask);
      report_context(S);
    }
  }

  // A live segment can only end at an early-clobber slot if it is being
  // redefined by an early-clobber def.
  if (S.end.isEarlyClobber()) {
    if (I+1 == LR.end() || (I+1)->start != S.end) {
      report("Live segment ending at early clobber slot must be "
             "redefined by an EC def in the same instruction", EndMBB);
      report_context(LR, Reg, LaneMask);
      report_context(S);
    }
  }

  // The following checks only apply to virtual registers. Physreg liveness
  // is too weird to check.
  if (Register::isVirtualRegister(Reg)) {
    // A live segment can end with either a redefinition, a kill flag on a
    // use, or a dead flag on a def.
    bool hasRead = false;
    bool hasSubRegDef = false;
    bool hasDeadDef = false;
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
      if (!MOI->isReg() || MOI->getReg() != Reg)
        continue;
      unsigned Sub = MOI->getSubReg();
      LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
                                 : LaneBitmask::getAll();
      if (MOI->isDef()) {
        if (Sub != 0) {
          hasSubRegDef = true;
          // An operand %0:sub0 reads %0:sub1..n. Invert the lane
          // mask for subregister defs. Read-undef defs will be handled by
          // readsReg below.
          SLM = ~SLM;
        }
        if (MOI->isDead())
          hasDeadDef = true;
      }
      if (LaneMask.any() && (LaneMask & SLM).none())
        continue;
      if (MOI->readsReg())
        hasRead = true;
    }
    if (S.end.isDead()) {
      // Make sure that the corresponding machine operand for a "dead" live
      // range has the dead flag. We cannot perform this check for subregister
      // liveranges as partially dead values are allowed.
      if (LaneMask.none() && !hasDeadDef) {
        report("Instruction ending live segment on dead slot has no dead flag",
               MI);
        report_context(LR, Reg, LaneMask);
        report_context(S);
      }
    } else {
      if (!hasRead) {
        // When tracking subregister liveness, the main range must start new
        // values on partial register writes, even if there is no read.
        if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
            !hasSubRegDef) {
          report("Instruction ending live segment doesn't read the register",
                 MI);
          report_context(LR, Reg, LaneMask);
          report_context(S);
        }
      }
    }
  }

  // Now check all the basic blocks in this live segment.
  MachineFunction::const_iterator MFI = MBB->getIterator();
  // Is this live segment the beginning of a non-PHIDef VN?
  if (S.start == VNI->def && !VNI->isPHIDef()) {
    // Not live-in to any blocks.
    if (MBB == EndMBB)
      return;
    // Skip this block.
    ++MFI;
  }

  SmallVector<SlotIndex, 4> Undefs;
  if (LaneMask.any()) {
    LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
    OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
  }

  while (true) {
    assert(LiveInts->isLiveInToMBB(LR, &*MFI));
    // We don't know how to track physregs into a landing pad.
    if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
      if (&*MFI == EndMBB)
        break;
      ++MFI;
      continue;
    }

    // Is VNI a PHI-def in the current block?
    bool IsPHI = VNI->isPHIDef() &&
      VNI->def == LiveInts->getMBBStartIdx(&*MFI);

    // Check that VNI is live-out of all predecessors.
    for (const MachineBasicBlock *Pred : MFI->predecessors()) {
      SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);

      // All predecessors must have a live-out value. However for a phi
      // instruction with subregister intervals
      // only one of the subregisters (not necessarily the current one) needs to
      // be defined.
      if (!PVNI && (LaneMask.none() || !IsPHI)) {
        if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
          continue;
        report("Register not marked live out of predecessor", Pred);
        report_context(LR, Reg, LaneMask);
        report_context(*VNI);
        errs() << " live into " << printMBBReference(*MFI) << '@'
               << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
               << PEnd << '\n';
        continue;
      }

      // Only PHI-defs can take different predecessor values.
      if (!IsPHI && PVNI != VNI) {
        report("Different value live out of predecessor", Pred);
        report_context(LR, Reg, LaneMask);
        errs() << "Valno #" << PVNI->id << " live out of "
               << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
               << VNI->id << " live into " << printMBBReference(*MFI) << '@'
               << LiveInts->getMBBStartIdx(&*MFI) << '\n';
      }
    }
    if (&*MFI == EndMBB)
      break;
    ++MFI;
  }
}

void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
                                      LaneBitmask LaneMask) {
  for (const VNInfo *VNI : LR.valnos)
    verifyLiveRangeValue(LR, VNI, Reg, LaneMask);

  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
    verifyLiveRangeSegment(LR, I, Reg, LaneMask);
}

void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
  unsigned Reg = LI.reg;
  assert(Register::isVirtualRegister(Reg));
  verifyLiveRange(LI, Reg);

  LaneBitmask Mask;
  LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    if ((Mask & SR.LaneMask).any()) {
      report("Lane masks of sub ranges overlap in live interval", MF);
      report_context(LI);
    }
    if ((SR.LaneMask & ~MaxMask).any()) {
      report("Subrange lanemask is invalid", MF);
      report_context(LI);
    }
    if (SR.empty()) {
      report("Subrange must not be empty", MF);
      report_context(SR, LI.reg, SR.LaneMask);
    }
    Mask |= SR.LaneMask;
    verifyLiveRange(SR, LI.reg, SR.LaneMask);
    if (!LI.covers(SR)) {
      report("A Subrange is not covered by the main range", MF);
      report_context(LI);
    }
  }

  // Check the LI only has one connected component.
  ConnectedVNInfoEqClasses ConEQ(*LiveInts);
  unsigned NumComp = ConEQ.Classify(LI);
  if (NumComp > 1) {
    report("Multiple connected components in live interval", MF);
    report_context(LI);
    for (unsigned comp = 0; comp != NumComp; ++comp) {
      errs() << comp << ": valnos";
      for (const VNInfo *I : LI.valnos)
        if (comp == ConEQ.getEqClass(I))
          errs() << ' ' << I->id;
      errs() << '\n';
    }
  }
}

namespace {

  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
  // value is zero.
  // We use a bool plus an integer to capture the stack state.
  struct StackStateOfBB {
    StackStateOfBB() = default;
    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
      ExitIsSetup(ExitSetup) {}

    // Can be negative, which means we are setting up a frame.
    int EntryValue = 0;
    int ExitValue = 0;
    bool EntryIsSetup = false;
    bool ExitIsSetup = false;
  };

} // end anonymous namespace

/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
/// by a FrameDestroy <n>, stack adjustments are identical on all
/// CFG edges to a merge point, and frame is destroyed at end of a return block.
void MachineVerifier::verifyStackFrame() {
  unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
  if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
    return;

  SmallVector<StackStateOfBB, 8> SPState;
  SPState.resize(MF->getNumBlockIDs());
  df_iterator_default_set<const MachineBasicBlock*> Reachable;

  // Visit the MBBs in DFS order.
  for (df_ext_iterator<const MachineFunction *,
                       df_iterator_default_set<const MachineBasicBlock *>>
       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
       DFI != DFE; ++DFI) {
    const MachineBasicBlock *MBB = *DFI;

    StackStateOfBB BBState;
    // Check the exit state of the DFS stack predecessor.
    if (DFI.getPathLength() >= 2) {
      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
      assert(Reachable.count(StackPred) &&
             "DFS stack predecessor is already visited.\n");
      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
      BBState.ExitValue = BBState.EntryValue;
      BBState.ExitIsSetup = BBState.EntryIsSetup;
    }

    // Update stack state by checking contents of MBB.
    for (const auto &I : *MBB) {
      if (I.getOpcode() == FrameSetupOpcode) {
        if (BBState.ExitIsSetup)
          report("FrameSetup is after another FrameSetup", &I);
        BBState.ExitValue -= TII->getFrameTotalSize(I);
        BBState.ExitIsSetup = true;
      }

      if (I.getOpcode() == FrameDestroyOpcode) {
        int Size = TII->getFrameTotalSize(I);
        if (!BBState.ExitIsSetup)
          report("FrameDestroy is not after a FrameSetup", &I);
        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
                                               BBState.ExitValue;
        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
          report("FrameDestroy <n> is after FrameSetup <m>", &I);
          errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
              << AbsSPAdj << ">.\n";
        }
        BBState.ExitValue += Size;
        BBState.ExitIsSetup = false;
      }
    }
    SPState[MBB->getNumber()] = BBState;

    // Make sure the exit state of any predecessor is consistent with the entry
    // state.
    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
      if (Reachable.count(Pred) &&
          (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
           SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
        report("The exit stack state of a predecessor is inconsistent.", MBB);
        errs() << "Predecessor " << printMBBReference(*Pred)
               << " has exit state (" << SPState[Pred->getNumber()].ExitValue
               << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
               << printMBBReference(*MBB) << " has entry state ("
               << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
      }
    }

    // Make sure the entry state of any successor is consistent with the exit
    // state.
    for (const MachineBasicBlock *Succ : MBB->successors()) {
      if (Reachable.count(Succ) &&
          (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
           SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
        report("The entry stack state of a successor is inconsistent.", MBB);
        errs() << "Successor " << printMBBReference(*Succ)
               << " has entry state (" << SPState[Succ->getNumber()].EntryValue
               << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
               << printMBBReference(*MBB) << " has exit state ("
               << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
      }
    }

    // Make sure a basic block with return ends with zero stack adjustment.
    if (!MBB->empty() && MBB->back().isReturn()) {
      if (BBState.ExitIsSetup)
        report("A return block ends with a FrameSetup.", MBB);
      if (BBState.ExitValue)
        report("A return block ends with a nonzero stack adjustment.", MBB);
    }
  }
}