LazyValueInfo.cpp
76.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "lazy-value-info"
// This is the number of worklist items we will process to try to discover an
// answer for a given value.
static const unsigned MaxProcessedPerValue = 500;
char LazyValueInfoWrapperPass::ID = 0;
LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
namespace llvm {
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
}
AnalysisKey LazyValueAnalysis::Key;
/// Returns true if this lattice value represents at most one possible value.
/// This is as precise as any lattice value can get while still representing
/// reachable code.
static bool hasSingleValue(const ValueLatticeElement &Val) {
if (Val.isConstantRange() &&
Val.getConstantRange().isSingleElement())
// Integer constants are single element ranges
return true;
if (Val.isConstant())
// Non integer constants
return true;
return false;
}
/// Combine two sets of facts about the same value into a single set of
/// facts. Note that this method is not suitable for merging facts along
/// different paths in a CFG; that's what the mergeIn function is for. This
/// is for merging facts gathered about the same value at the same location
/// through two independent means.
/// Notes:
/// * This method does not promise to return the most precise possible lattice
/// value implied by A and B. It is allowed to return any lattice element
/// which is at least as strong as *either* A or B (unless our facts
/// conflict, see below).
/// * Due to unreachable code, the intersection of two lattice values could be
/// contradictory. If this happens, we return some valid lattice value so as
/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
/// we do not make this guarantee. TODO: This would be a useful enhancement.
static ValueLatticeElement intersect(const ValueLatticeElement &A,
const ValueLatticeElement &B) {
// Undefined is the strongest state. It means the value is known to be along
// an unreachable path.
if (A.isUnknown())
return A;
if (B.isUnknown())
return B;
// If we gave up for one, but got a useable fact from the other, use it.
if (A.isOverdefined())
return B;
if (B.isOverdefined())
return A;
// Can't get any more precise than constants.
if (hasSingleValue(A))
return A;
if (hasSingleValue(B))
return B;
// Could be either constant range or not constant here.
if (!A.isConstantRange() || !B.isConstantRange()) {
// TODO: Arbitrary choice, could be improved
return A;
}
// Intersect two constant ranges
ConstantRange Range =
A.getConstantRange().intersectWith(B.getConstantRange());
// Note: An empty range is implicitly converted to unknown or undef depending
// on MayIncludeUndef internally.
return ValueLatticeElement::getRange(
std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() |
B.isConstantRangeIncludingUndef());
}
//===----------------------------------------------------------------------===//
// LazyValueInfoCache Decl
//===----------------------------------------------------------------------===//
namespace {
/// A callback value handle updates the cache when values are erased.
class LazyValueInfoCache;
struct LVIValueHandle final : public CallbackVH {
LazyValueInfoCache *Parent;
LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
: CallbackVH(V), Parent(P) { }
void deleted() override;
void allUsesReplacedWith(Value *V) override {
deleted();
}
};
} // end anonymous namespace
namespace {
/// This is the cache kept by LazyValueInfo which
/// maintains information about queries across the clients' queries.
class LazyValueInfoCache {
/// This is all of the cached information for one basic block. It contains
/// the per-value lattice elements, as well as a separate set for
/// overdefined values to reduce memory usage.
struct BlockCacheEntry {
SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
};
/// Cached information per basic block.
DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
BlockCache;
/// Set of value handles used to erase values from the cache on deletion.
DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
auto It = BlockCache.find_as(BB);
if (It == BlockCache.end())
return nullptr;
return It->second.get();
}
BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
auto It = BlockCache.find_as(BB);
if (It == BlockCache.end())
It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
.first;
return It->second.get();
}
void addValueHandle(Value *Val) {
auto HandleIt = ValueHandles.find_as(Val);
if (HandleIt == ValueHandles.end())
ValueHandles.insert({ Val, this });
}
public:
void insertResult(Value *Val, BasicBlock *BB,
const ValueLatticeElement &Result) {
BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
// Insert over-defined values into their own cache to reduce memory
// overhead.
if (Result.isOverdefined())
Entry->OverDefined.insert(Val);
else
Entry->LatticeElements.insert({ Val, Result });
addValueHandle(Val);
}
Optional<ValueLatticeElement> getCachedValueInfo(Value *V,
BasicBlock *BB) const {
const BlockCacheEntry *Entry = getBlockEntry(BB);
if (!Entry)
return None;
if (Entry->OverDefined.count(V))
return ValueLatticeElement::getOverdefined();
auto LatticeIt = Entry->LatticeElements.find_as(V);
if (LatticeIt == Entry->LatticeElements.end())
return None;
return LatticeIt->second;
}
/// clear - Empty the cache.
void clear() {
BlockCache.clear();
ValueHandles.clear();
}
/// Inform the cache that a given value has been deleted.
void eraseValue(Value *V);
/// This is part of the update interface to inform the cache
/// that a block has been deleted.
void eraseBlock(BasicBlock *BB);
/// Updates the cache to remove any influence an overdefined value in
/// OldSucc might have (unless also overdefined in NewSucc). This just
/// flushes elements from the cache and does not add any.
void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
};
}
void LazyValueInfoCache::eraseValue(Value *V) {
for (auto &Pair : BlockCache) {
Pair.second->LatticeElements.erase(V);
Pair.second->OverDefined.erase(V);
}
auto HandleIt = ValueHandles.find_as(V);
if (HandleIt != ValueHandles.end())
ValueHandles.erase(HandleIt);
}
void LVIValueHandle::deleted() {
// This erasure deallocates *this, so it MUST happen after we're done
// using any and all members of *this.
Parent->eraseValue(*this);
}
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
BlockCache.erase(BB);
}
void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
BasicBlock *NewSucc) {
// When an edge in the graph has been threaded, values that we could not
// determine a value for before (i.e. were marked overdefined) may be
// possible to solve now. We do NOT try to proactively update these values.
// Instead, we clear their entries from the cache, and allow lazy updating to
// recompute them when needed.
// The updating process is fairly simple: we need to drop cached info
// for all values that were marked overdefined in OldSucc, and for those same
// values in any successor of OldSucc (except NewSucc) in which they were
// also marked overdefined.
std::vector<BasicBlock*> worklist;
worklist.push_back(OldSucc);
const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
if (!Entry || Entry->OverDefined.empty())
return; // Nothing to process here.
SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
Entry->OverDefined.end());
// Use a worklist to perform a depth-first search of OldSucc's successors.
// NOTE: We do not need a visited list since any blocks we have already
// visited will have had their overdefined markers cleared already, and we
// thus won't loop to their successors.
while (!worklist.empty()) {
BasicBlock *ToUpdate = worklist.back();
worklist.pop_back();
// Skip blocks only accessible through NewSucc.
if (ToUpdate == NewSucc) continue;
// If a value was marked overdefined in OldSucc, and is here too...
auto OI = BlockCache.find_as(ToUpdate);
if (OI == BlockCache.end() || OI->second->OverDefined.empty())
continue;
auto &ValueSet = OI->second->OverDefined;
bool changed = false;
for (Value *V : ValsToClear) {
if (!ValueSet.erase(V))
continue;
// If we removed anything, then we potentially need to update
// blocks successors too.
changed = true;
}
if (!changed) continue;
worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
}
}
namespace {
/// An assembly annotator class to print LazyValueCache information in
/// comments.
class LazyValueInfoImpl;
class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
LazyValueInfoImpl *LVIImpl;
// While analyzing which blocks we can solve values for, we need the dominator
// information.
DominatorTree &DT;
public:
LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
: LVIImpl(L), DT(DTree) {}
void emitBasicBlockStartAnnot(const BasicBlock *BB,
formatted_raw_ostream &OS) override;
void emitInstructionAnnot(const Instruction *I,
formatted_raw_ostream &OS) override;
};
}
namespace {
// The actual implementation of the lazy analysis and update. Note that the
// inheritance from LazyValueInfoCache is intended to be temporary while
// splitting the code and then transitioning to a has-a relationship.
class LazyValueInfoImpl {
/// Cached results from previous queries
LazyValueInfoCache TheCache;
/// This stack holds the state of the value solver during a query.
/// It basically emulates the callstack of the naive
/// recursive value lookup process.
SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
/// Keeps track of which block-value pairs are in BlockValueStack.
DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
/// Push BV onto BlockValueStack unless it's already in there.
/// Returns true on success.
bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
if (!BlockValueSet.insert(BV).second)
return false; // It's already in the stack.
LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
<< BV.first->getName() << "\n");
BlockValueStack.push_back(BV);
return true;
}
AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
const DataLayout &DL; ///< A mandatory DataLayout
/// Declaration of the llvm.experimental.guard() intrinsic,
/// if it exists in the module.
Function *GuardDecl;
Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB);
Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
BasicBlock *T, Instruction *CxtI = nullptr);
// These methods process one work item and may add more. A false value
// returned means that the work item was not completely processed and must
// be revisited after going through the new items.
bool solveBlockValue(Value *Val, BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
BasicBlock *BB);
Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
Instruction *I, BasicBlock *BB,
std::function<ConstantRange(const ConstantRange &,
const ConstantRange &)> OpFn);
Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI,
BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic(
WithOverflowInst *WO, BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueSaturatingIntrinsic(
SaturatingInst *SI, BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
BasicBlock *BB);
Optional<ValueLatticeElement> solveBlockValueExtractValue(
ExtractValueInst *EVI, BasicBlock *BB);
void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
ValueLatticeElement &BBLV,
Instruction *BBI);
void solve();
public:
/// This is the query interface to determine the lattice
/// value for the specified Value* at the end of the specified block.
ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
Instruction *CxtI = nullptr);
/// This is the query interface to determine the lattice
/// value for the specified Value* at the specified instruction (generally
/// from an assume intrinsic).
ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
/// This is the query interface to determine the lattice
/// value for the specified Value* that is true on the specified edge.
ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
BasicBlock *ToBB,
Instruction *CxtI = nullptr);
/// Complete flush all previously computed values
void clear() {
TheCache.clear();
}
/// Printing the LazyValueInfo Analysis.
void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
LazyValueInfoAnnotatedWriter Writer(this, DTree);
F.print(OS, &Writer);
}
/// This is part of the update interface to inform the cache
/// that a block has been deleted.
void eraseBlock(BasicBlock *BB) {
TheCache.eraseBlock(BB);
}
/// This is the update interface to inform the cache that an edge from
/// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
Function *GuardDecl)
: AC(AC), DL(DL), GuardDecl(GuardDecl) {}
};
} // end anonymous namespace
void LazyValueInfoImpl::solve() {
SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
BlockValueStack.begin(), BlockValueStack.end());
unsigned processedCount = 0;
while (!BlockValueStack.empty()) {
processedCount++;
// Abort if we have to process too many values to get a result for this one.
// Because of the design of the overdefined cache currently being per-block
// to avoid naming-related issues (IE it wants to try to give different
// results for the same name in different blocks), overdefined results don't
// get cached globally, which in turn means we will often try to rediscover
// the same overdefined result again and again. Once something like
// PredicateInfo is used in LVI or CVP, we should be able to make the
// overdefined cache global, and remove this throttle.
if (processedCount > MaxProcessedPerValue) {
LLVM_DEBUG(
dbgs() << "Giving up on stack because we are getting too deep\n");
// Fill in the original values
while (!StartingStack.empty()) {
std::pair<BasicBlock *, Value *> &e = StartingStack.back();
TheCache.insertResult(e.second, e.first,
ValueLatticeElement::getOverdefined());
StartingStack.pop_back();
}
BlockValueSet.clear();
BlockValueStack.clear();
return;
}
std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
if (solveBlockValue(e.second, e.first)) {
// The work item was completely processed.
assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
#ifndef NDEBUG
Optional<ValueLatticeElement> BBLV =
TheCache.getCachedValueInfo(e.second, e.first);
assert(BBLV && "Result should be in cache!");
LLVM_DEBUG(
dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
<< *BBLV << "\n");
#endif
BlockValueStack.pop_back();
BlockValueSet.erase(e);
} else {
// More work needs to be done before revisiting.
assert(BlockValueStack.back() != e && "Stack should have been pushed!");
}
}
}
Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val,
BasicBlock *BB) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val))
return ValueLatticeElement::get(VC);
if (Optional<ValueLatticeElement> OptLatticeVal =
TheCache.getCachedValueInfo(Val, BB))
return OptLatticeVal;
// We have hit a cycle, assume overdefined.
if (!pushBlockValue({ BB, Val }))
return ValueLatticeElement::getOverdefined();
// Yet to be resolved.
return None;
}
static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
switch (BBI->getOpcode()) {
default: break;
case Instruction::Load:
case Instruction::Call:
case Instruction::Invoke:
if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
if (isa<IntegerType>(BBI->getType())) {
return ValueLatticeElement::getRange(
getConstantRangeFromMetadata(*Ranges));
}
break;
};
// Nothing known - will be intersected with other facts
return ValueLatticeElement::getOverdefined();
}
bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
assert(!isa<Constant>(Val) && "Value should not be constant");
assert(!TheCache.getCachedValueInfo(Val, BB) &&
"Value should not be in cache");
// Hold off inserting this value into the Cache in case we have to return
// false and come back later.
Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
if (!Res)
// Work pushed, will revisit
return false;
TheCache.insertResult(Val, BB, *Res);
return true;
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl(
Value *Val, BasicBlock *BB) {
Instruction *BBI = dyn_cast<Instruction>(Val);
if (!BBI || BBI->getParent() != BB)
return solveBlockValueNonLocal(Val, BB);
if (PHINode *PN = dyn_cast<PHINode>(BBI))
return solveBlockValuePHINode(PN, BB);
if (auto *SI = dyn_cast<SelectInst>(BBI))
return solveBlockValueSelect(SI, BB);
// If this value is a nonnull pointer, record it's range and bailout. Note
// that for all other pointer typed values, we terminate the search at the
// definition. We could easily extend this to look through geps, bitcasts,
// and the like to prove non-nullness, but it's not clear that's worth it
// compile time wise. The context-insensitive value walk done inside
// isKnownNonZero gets most of the profitable cases at much less expense.
// This does mean that we have a sensitivity to where the defining
// instruction is placed, even if it could legally be hoisted much higher.
// That is unfortunate.
PointerType *PT = dyn_cast<PointerType>(BBI->getType());
if (PT && isKnownNonZero(BBI, DL))
return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
if (BBI->getType()->isIntegerTy()) {
if (auto *CI = dyn_cast<CastInst>(BBI))
return solveBlockValueCast(CI, BB);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
return solveBlockValueBinaryOp(BO, BB);
if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
return solveBlockValueExtractValue(EVI, BB);
if (auto *II = dyn_cast<IntrinsicInst>(BBI))
return solveBlockValueIntrinsic(II, BB);
}
LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - unknown inst def found.\n");
return getFromRangeMetadata(BBI);
}
static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
if (LoadInst *L = dyn_cast<LoadInst>(I)) {
return L->getPointerAddressSpace() == 0 &&
GetUnderlyingObject(L->getPointerOperand(),
L->getModule()->getDataLayout()) == Ptr;
}
if (StoreInst *S = dyn_cast<StoreInst>(I)) {
return S->getPointerAddressSpace() == 0 &&
GetUnderlyingObject(S->getPointerOperand(),
S->getModule()->getDataLayout()) == Ptr;
}
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
if (MI->isVolatile()) return false;
// FIXME: check whether it has a valuerange that excludes zero?
ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
if (!Len || Len->isZero()) return false;
if (MI->getDestAddressSpace() == 0)
if (GetUnderlyingObject(MI->getRawDest(),
MI->getModule()->getDataLayout()) == Ptr)
return true;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
if (MTI->getSourceAddressSpace() == 0)
if (GetUnderlyingObject(MTI->getRawSource(),
MTI->getModule()->getDataLayout()) == Ptr)
return true;
}
return false;
}
/// Return true if the allocation associated with Val is ever dereferenced
/// within the given basic block. This establishes the fact Val is not null,
/// but does not imply that the memory at Val is dereferenceable. (Val may
/// point off the end of the dereferenceable part of the object.)
static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
assert(Val->getType()->isPointerTy());
const DataLayout &DL = BB->getModule()->getDataLayout();
Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
// If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
// inside InstructionDereferencesPointer either.
if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
for (Instruction &I : *BB)
if (InstructionDereferencesPointer(&I, UnderlyingVal))
return true;
return false;
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal(
Value *Val, BasicBlock *BB) {
ValueLatticeElement Result; // Start Undefined.
// If this is the entry block, we must be asking about an argument. The
// value is overdefined.
if (BB == &BB->getParent()->getEntryBlock()) {
assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
// Before giving up, see if we can prove the pointer non-null local to
// this particular block.
PointerType *PTy = dyn_cast<PointerType>(Val->getType());
if (PTy &&
(isKnownNonZero(Val, DL) ||
(isObjectDereferencedInBlock(Val, BB) &&
!NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace()))))
return ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
else
return ValueLatticeElement::getOverdefined();
}
// Loop over all of our predecessors, merging what we know from them into
// result. If we encounter an unexplored predecessor, we eagerly explore it
// in a depth first manner. In practice, this has the effect of discovering
// paths we can't analyze eagerly without spending compile times analyzing
// other paths. This heuristic benefits from the fact that predecessors are
// frequently arranged such that dominating ones come first and we quickly
// find a path to function entry. TODO: We should consider explicitly
// canonicalizing to make this true rather than relying on this happy
// accident.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, *PI, BB);
if (!EdgeResult)
// Explore that input, then return here
return None;
Result.mergeIn(*EdgeResult);
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred (non local).\n");
// Before giving up, see if we can prove the pointer non-null local to
// this particular block.
PointerType *PTy = dyn_cast<PointerType>(Val->getType());
if (PTy && isObjectDereferencedInBlock(Val, BB) &&
!NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
}
return Result;
}
}
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined());
return Result;
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode(
PHINode *PN, BasicBlock *BB) {
ValueLatticeElement Result; // Start Undefined.
// Loop over all of our predecessors, merging what we know from them into
// result. See the comment about the chosen traversal order in
// solveBlockValueNonLocal; the same reasoning applies here.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PhiBB = PN->getIncomingBlock(i);
Value *PhiVal = PN->getIncomingValue(i);
// Note that we can provide PN as the context value to getEdgeValue, even
// though the results will be cached, because PN is the value being used as
// the cache key in the caller.
Optional<ValueLatticeElement> EdgeResult =
getEdgeValue(PhiVal, PhiBB, BB, PN);
if (!EdgeResult)
// Explore that input, then return here
return None;
Result.mergeIn(*EdgeResult);
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred (local).\n");
return Result;
}
}
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined() && "Possible PHI in entry block?");
return Result;
}
static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
bool isTrueDest = true);
// If we can determine a constraint on the value given conditions assumed by
// the program, intersect those constraints with BBLV
void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
if (!BBI)
return;
BasicBlock *BB = BBI->getParent();
for (auto &AssumeVH : AC->assumptionsFor(Val)) {
if (!AssumeVH)
continue;
// Only check assumes in the block of the context instruction. Other
// assumes will have already been taken into account when the value was
// propagated from predecessor blocks.
auto *I = cast<CallInst>(AssumeVH);
if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
continue;
BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
}
// If guards are not used in the module, don't spend time looking for them
if (!GuardDecl || GuardDecl->use_empty())
return;
if (BBI->getIterator() == BB->begin())
return;
for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
BB->rend())) {
Value *Cond = nullptr;
if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
}
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect(
SelectInst *SI, BasicBlock *BB) {
// Recurse on our inputs if needed
Optional<ValueLatticeElement> OptTrueVal =
getBlockValue(SI->getTrueValue(), BB);
if (!OptTrueVal)
return None;
ValueLatticeElement &TrueVal = *OptTrueVal;
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
// extra slots in the table if we can.
if (TrueVal.isOverdefined())
return ValueLatticeElement::getOverdefined();
Optional<ValueLatticeElement> OptFalseVal =
getBlockValue(SI->getFalseValue(), BB);
if (!OptFalseVal)
return None;
ValueLatticeElement &FalseVal = *OptFalseVal;
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
// extra slots in the table if we can.
if (FalseVal.isOverdefined())
return ValueLatticeElement::getOverdefined();
if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
const ConstantRange &TrueCR = TrueVal.getConstantRange();
const ConstantRange &FalseCR = FalseVal.getConstantRange();
Value *LHS = nullptr;
Value *RHS = nullptr;
SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
// Is this a min specifically of our two inputs? (Avoid the risk of
// ValueTracking getting smarter looking back past our immediate inputs.)
if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
ConstantRange ResultCR = [&]() {
switch (SPR.Flavor) {
default:
llvm_unreachable("unexpected minmax type!");
case SPF_SMIN: /// Signed minimum
return TrueCR.smin(FalseCR);
case SPF_UMIN: /// Unsigned minimum
return TrueCR.umin(FalseCR);
case SPF_SMAX: /// Signed maximum
return TrueCR.smax(FalseCR);
case SPF_UMAX: /// Unsigned maximum
return TrueCR.umax(FalseCR);
};
}();
return ValueLatticeElement::getRange(
ResultCR, TrueVal.isConstantRangeIncludingUndef() |
FalseVal.isConstantRangeIncludingUndef());
}
if (SPR.Flavor == SPF_ABS) {
if (LHS == SI->getTrueValue())
return ValueLatticeElement::getRange(
TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
if (LHS == SI->getFalseValue())
return ValueLatticeElement::getRange(
FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
}
if (SPR.Flavor == SPF_NABS) {
ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
if (LHS == SI->getTrueValue())
return ValueLatticeElement::getRange(
Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
if (LHS == SI->getFalseValue())
return ValueLatticeElement::getRange(
Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
}
}
// Can we constrain the facts about the true and false values by using the
// condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
// TODO: We could potentially refine an overdefined true value above.
Value *Cond = SI->getCondition();
TrueVal = intersect(TrueVal,
getValueFromCondition(SI->getTrueValue(), Cond, true));
FalseVal = intersect(FalseVal,
getValueFromCondition(SI->getFalseValue(), Cond, false));
// Handle clamp idioms such as:
// %24 = constantrange<0, 17>
// %39 = icmp eq i32 %24, 0
// %40 = add i32 %24, -1
// %siv.next = select i1 %39, i32 16, i32 %40
// %siv.next = constantrange<0, 17> not <-1, 17>
// In general, this can handle any clamp idiom which tests the edge
// condition via an equality or inequality.
if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *A = ICI->getOperand(0);
if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
auto addConstants = [](ConstantInt *A, ConstantInt *B) {
assert(A->getType() == B->getType());
return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
};
// See if either input is A + C2, subject to the constraint from the
// condition that A != C when that input is used. We can assume that
// that input doesn't include C + C2.
ConstantInt *CIAdded;
switch (Pred) {
default: break;
case ICmpInst::ICMP_EQ:
if (match(SI->getFalseValue(), m_Add(m_Specific(A),
m_ConstantInt(CIAdded)))) {
auto ResNot = addConstants(CIBase, CIAdded);
FalseVal = intersect(FalseVal,
ValueLatticeElement::getNot(ResNot));
}
break;
case ICmpInst::ICMP_NE:
if (match(SI->getTrueValue(), m_Add(m_Specific(A),
m_ConstantInt(CIAdded)))) {
auto ResNot = addConstants(CIBase, CIAdded);
TrueVal = intersect(TrueVal,
ValueLatticeElement::getNot(ResNot));
}
break;
};
}
}
ValueLatticeElement Result = TrueVal;
Result.mergeIn(FalseVal);
return Result;
}
Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
Instruction *I,
BasicBlock *BB) {
Optional<ValueLatticeElement> OptVal = getBlockValue(I->getOperand(Op), BB);
if (!OptVal)
return None;
ValueLatticeElement &Val = *OptVal;
intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
if (Val.isConstantRange())
return Val.getConstantRange();
const unsigned OperandBitWidth =
DL.getTypeSizeInBits(I->getOperand(Op)->getType());
return ConstantRange::getFull(OperandBitWidth);
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast(
CastInst *CI, BasicBlock *BB) {
// Without knowing how wide the input is, we can't analyze it in any useful
// way.
if (!CI->getOperand(0)->getType()->isSized())
return ValueLatticeElement::getOverdefined();
// Filter out casts we don't know how to reason about before attempting to
// recurse on our operand. This can cut a long search short if we know we're
// not going to be able to get any useful information anways.
switch (CI->getOpcode()) {
case Instruction::Trunc:
case Instruction::SExt:
case Instruction::ZExt:
case Instruction::BitCast:
break;
default:
// Unhandled instructions are overdefined.
LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined (unknown cast).\n");
return ValueLatticeElement::getOverdefined();
}
// Figure out the range of the LHS. If that fails, we still apply the
// transfer rule on the full set since we may be able to locally infer
// interesting facts.
Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
if (!LHSRes.hasValue())
// More work to do before applying this transfer rule.
return None;
const ConstantRange &LHSRange = LHSRes.getValue();
const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
// more definitions.
return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
ResultBitWidth));
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
Instruction *I, BasicBlock *BB,
std::function<ConstantRange(const ConstantRange &,
const ConstantRange &)> OpFn) {
// Figure out the ranges of the operands. If that fails, use a
// conservative range, but apply the transfer rule anyways. This
// lets us pick up facts from expressions like "and i32 (call i32
// @foo()), 32"
Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB);
Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB);
if (!LHSRes.hasValue() || !RHSRes.hasValue())
// More work to do before applying this transfer rule.
return None;
const ConstantRange &LHSRange = LHSRes.getValue();
const ConstantRange &RHSRange = RHSRes.getValue();
return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp(
BinaryOperator *BO, BasicBlock *BB) {
assert(BO->getOperand(0)->getType()->isSized() &&
"all operands to binary operators are sized");
if (BO->getOpcode() == Instruction::Xor) {
// Xor is the only operation not supported by ConstantRange::binaryOp().
LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined (unknown binary operator).\n");
return ValueLatticeElement::getOverdefined();
}
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
unsigned NoWrapKind = 0;
if (OBO->hasNoUnsignedWrap())
NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
if (OBO->hasNoSignedWrap())
NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
return solveBlockValueBinaryOpImpl(
BO, BB,
[BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
});
}
return solveBlockValueBinaryOpImpl(
BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.binaryOp(BO->getOpcode(), CR2);
});
}
Optional<ValueLatticeElement>
LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
BasicBlock *BB) {
return solveBlockValueBinaryOpImpl(
WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.binaryOp(WO->getBinaryOp(), CR2);
});
}
Optional<ValueLatticeElement>
LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic(SaturatingInst *SI,
BasicBlock *BB) {
switch (SI->getIntrinsicID()) {
case Intrinsic::uadd_sat:
return solveBlockValueBinaryOpImpl(
SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.uadd_sat(CR2);
});
case Intrinsic::usub_sat:
return solveBlockValueBinaryOpImpl(
SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.usub_sat(CR2);
});
case Intrinsic::sadd_sat:
return solveBlockValueBinaryOpImpl(
SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.sadd_sat(CR2);
});
case Intrinsic::ssub_sat:
return solveBlockValueBinaryOpImpl(
SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.ssub_sat(CR2);
});
default:
llvm_unreachable("All llvm.sat intrinsic are handled.");
}
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic(
IntrinsicInst *II, BasicBlock *BB) {
if (auto *SI = dyn_cast<SaturatingInst>(II))
return solveBlockValueSaturatingIntrinsic(SI, BB);
LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined (unknown intrinsic).\n");
return ValueLatticeElement::getOverdefined();
}
Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue(
ExtractValueInst *EVI, BasicBlock *BB) {
if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
return solveBlockValueOverflowIntrinsic(WO, BB);
// Handle extractvalue of insertvalue to allow further simplification
// based on replaced with.overflow intrinsics.
if (Value *V = SimplifyExtractValueInst(
EVI->getAggregateOperand(), EVI->getIndices(),
EVI->getModule()->getDataLayout()))
return getBlockValue(V, BB);
LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined (unknown extractvalue).\n");
return ValueLatticeElement::getOverdefined();
}
static bool matchICmpOperand(const APInt *&Offset, Value *LHS, Value *Val,
ICmpInst::Predicate Pred) {
if (LHS == Val)
return true;
// Handle range checking idiom produced by InstCombine. We will subtract the
// offset from the allowed range for RHS in this case.
if (match(LHS, m_Add(m_Specific(Val), m_APInt(Offset))))
return true;
// If (x | y) < C, then (x < C) && (y < C).
if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
(Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
return true;
// If (x & y) > C, then (x > C) && (y > C).
if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
(Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
return true;
return false;
}
static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
bool isTrueDest) {
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
// Get the predicate that must hold along the considered edge.
CmpInst::Predicate EdgePred =
isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
if (isa<Constant>(RHS)) {
if (ICI->isEquality() && LHS == Val) {
if (EdgePred == ICmpInst::ICMP_EQ)
return ValueLatticeElement::get(cast<Constant>(RHS));
else if (!isa<UndefValue>(RHS))
return ValueLatticeElement::getNot(cast<Constant>(RHS));
}
}
if (!Val->getType()->isIntegerTy())
return ValueLatticeElement::getOverdefined();
const APInt *Offset = nullptr;
if (!matchICmpOperand(Offset, LHS, Val, EdgePred)) {
std::swap(LHS, RHS);
EdgePred = CmpInst::getSwappedPredicate(EdgePred);
if (!matchICmpOperand(Offset, LHS, Val, EdgePred))
return ValueLatticeElement::getOverdefined();
}
// Calculate the range of values that are allowed by the comparison.
ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
/*isFullSet=*/true);
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
RHSRange = ConstantRange(CI->getValue());
else if (Instruction *I = dyn_cast<Instruction>(RHS))
if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
RHSRange = getConstantRangeFromMetadata(*Ranges);
// If we're interested in the false dest, invert the condition
ConstantRange TrueValues =
ConstantRange::makeAllowedICmpRegion(EdgePred, RHSRange);
if (Offset) // Apply the offset from above.
TrueValues = TrueValues.subtract(*Offset);
return ValueLatticeElement::getRange(std::move(TrueValues));
}
// Handle conditions of the form
// extractvalue(op.with.overflow(%x, C), 1).
static ValueLatticeElement getValueFromOverflowCondition(
Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
// TODO: This only works with a constant RHS for now. We could also compute
// the range of the RHS, but this doesn't fit into the current structure of
// the edge value calculation.
const APInt *C;
if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
return ValueLatticeElement::getOverdefined();
// Calculate the possible values of %x for which no overflow occurs.
ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
WO->getBinaryOp(), *C, WO->getNoWrapKind());
// If overflow is false, %x is constrained to NWR. If overflow is true, %x is
// constrained to it's inverse (all values that might cause overflow).
if (IsTrueDest)
NWR = NWR.inverse();
return ValueLatticeElement::getRange(NWR);
}
static ValueLatticeElement
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
SmallDenseMap<Value*, ValueLatticeElement> &Visited);
static ValueLatticeElement
getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
return getValueFromICmpCondition(Val, ICI, isTrueDest);
if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
return getValueFromOverflowCondition(Val, WO, isTrueDest);
// Handle conditions in the form of (cond1 && cond2), we know that on the
// true dest path both of the conditions hold. Similarly for conditions of
// the form (cond1 || cond2), we know that on the false dest path neither
// condition holds.
BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
(!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
return ValueLatticeElement::getOverdefined();
// Prevent infinite recursion if Cond references itself as in this example:
// Cond: "%tmp4 = and i1 %tmp4, undef"
// BL: "%tmp4 = and i1 %tmp4, undef"
// BR: "i1 undef"
Value *BL = BO->getOperand(0);
Value *BR = BO->getOperand(1);
if (BL == Cond || BR == Cond)
return ValueLatticeElement::getOverdefined();
return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
getValueFromCondition(Val, BR, isTrueDest, Visited));
}
static ValueLatticeElement
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
auto I = Visited.find(Cond);
if (I != Visited.end())
return I->second;
auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
Visited[Cond] = Result;
return Result;
}
ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
bool isTrueDest) {
assert(Cond && "precondition");
SmallDenseMap<Value*, ValueLatticeElement> Visited;
return getValueFromCondition(Val, Cond, isTrueDest, Visited);
}
// Return true if Usr has Op as an operand, otherwise false.
static bool usesOperand(User *Usr, Value *Op) {
return find(Usr->operands(), Op) != Usr->op_end();
}
// Return true if the instruction type of Val is supported by
// constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
// before calling constantFoldUser() to find out if it's even worth attempting
// to call it.
static bool isOperationFoldable(User *Usr) {
return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
}
// Check if Usr can be simplified to an integer constant when the value of one
// of its operands Op is an integer constant OpConstVal. If so, return it as an
// lattice value range with a single element or otherwise return an overdefined
// lattice value.
static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
const APInt &OpConstVal,
const DataLayout &DL) {
assert(isOperationFoldable(Usr) && "Precondition");
Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
// Check if Usr can be simplified to a constant.
if (auto *CI = dyn_cast<CastInst>(Usr)) {
assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
if (auto *C = dyn_cast_or_null<ConstantInt>(
SimplifyCastInst(CI->getOpcode(), OpConst,
CI->getDestTy(), DL))) {
return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
}
} else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
bool Op0Match = BO->getOperand(0) == Op;
bool Op1Match = BO->getOperand(1) == Op;
assert((Op0Match || Op1Match) &&
"Operand 0 nor Operand 1 isn't a match");
Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
if (auto *C = dyn_cast_or_null<ConstantInt>(
SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
}
}
return ValueLatticeElement::getOverdefined();
}
/// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
/// Val is not constrained on the edge. Result is unspecified if return value
/// is false.
static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
BasicBlock *BBFrom,
BasicBlock *BBTo) {
// TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
// know that v != 0.
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
// If this is a conditional branch and only one successor goes to BBTo, then
// we may be able to infer something from the condition.
if (BI->isConditional() &&
BI->getSuccessor(0) != BI->getSuccessor(1)) {
bool isTrueDest = BI->getSuccessor(0) == BBTo;
assert(BI->getSuccessor(!isTrueDest) == BBTo &&
"BBTo isn't a successor of BBFrom");
Value *Condition = BI->getCondition();
// If V is the condition of the branch itself, then we know exactly what
// it is.
if (Condition == Val)
return ValueLatticeElement::get(ConstantInt::get(
Type::getInt1Ty(Val->getContext()), isTrueDest));
// If the condition of the branch is an equality comparison, we may be
// able to infer the value.
ValueLatticeElement Result = getValueFromCondition(Val, Condition,
isTrueDest);
if (!Result.isOverdefined())
return Result;
if (User *Usr = dyn_cast<User>(Val)) {
assert(Result.isOverdefined() && "Result isn't overdefined");
// Check with isOperationFoldable() first to avoid linearly iterating
// over the operands unnecessarily which can be expensive for
// instructions with many operands.
if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
const DataLayout &DL = BBTo->getModule()->getDataLayout();
if (usesOperand(Usr, Condition)) {
// If Val has Condition as an operand and Val can be folded into a
// constant with either Condition == true or Condition == false,
// propagate the constant.
// eg.
// ; %Val is true on the edge to %then.
// %Val = and i1 %Condition, true.
// br %Condition, label %then, label %else
APInt ConditionVal(1, isTrueDest ? 1 : 0);
Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
} else {
// If one of Val's operand has an inferred value, we may be able to
// infer the value of Val.
// eg.
// ; %Val is 94 on the edge to %then.
// %Val = add i8 %Op, 1
// %Condition = icmp eq i8 %Op, 93
// br i1 %Condition, label %then, label %else
for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
Value *Op = Usr->getOperand(i);
ValueLatticeElement OpLatticeVal =
getValueFromCondition(Op, Condition, isTrueDest);
if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
break;
}
}
}
}
}
if (!Result.isOverdefined())
return Result;
}
}
// If the edge was formed by a switch on the value, then we may know exactly
// what it is.
if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
Value *Condition = SI->getCondition();
if (!isa<IntegerType>(Val->getType()))
return None;
bool ValUsesConditionAndMayBeFoldable = false;
if (Condition != Val) {
// Check if Val has Condition as an operand.
if (User *Usr = dyn_cast<User>(Val))
ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
usesOperand(Usr, Condition);
if (!ValUsesConditionAndMayBeFoldable)
return None;
}
assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
"Condition != Val nor Val doesn't use Condition");
bool DefaultCase = SI->getDefaultDest() == BBTo;
unsigned BitWidth = Val->getType()->getIntegerBitWidth();
ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
for (auto Case : SI->cases()) {
APInt CaseValue = Case.getCaseValue()->getValue();
ConstantRange EdgeVal(CaseValue);
if (ValUsesConditionAndMayBeFoldable) {
User *Usr = cast<User>(Val);
const DataLayout &DL = BBTo->getModule()->getDataLayout();
ValueLatticeElement EdgeLatticeVal =
constantFoldUser(Usr, Condition, CaseValue, DL);
if (EdgeLatticeVal.isOverdefined())
return None;
EdgeVal = EdgeLatticeVal.getConstantRange();
}
if (DefaultCase) {
// It is possible that the default destination is the destination of
// some cases. We cannot perform difference for those cases.
// We know Condition != CaseValue in BBTo. In some cases we can use
// this to infer Val == f(Condition) is != f(CaseValue). For now, we
// only do this when f is identity (i.e. Val == Condition), but we
// should be able to do this for any injective f.
if (Case.getCaseSuccessor() != BBTo && Condition == Val)
EdgesVals = EdgesVals.difference(EdgeVal);
} else if (Case.getCaseSuccessor() == BBTo)
EdgesVals = EdgesVals.unionWith(EdgeVal);
}
return ValueLatticeElement::getRange(std::move(EdgesVals));
}
return None;
}
/// Compute the value of Val on the edge BBFrom -> BBTo or the value at
/// the basic block if the edge does not constrain Val.
Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue(
Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val))
return ValueLatticeElement::get(VC);
ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo)
.getValueOr(ValueLatticeElement::getOverdefined());
if (hasSingleValue(LocalResult))
// Can't get any more precise here
return LocalResult;
Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom);
if (!OptInBlock)
return None;
ValueLatticeElement &InBlock = *OptInBlock;
// Try to intersect ranges of the BB and the constraint on the edge.
intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
BBFrom->getTerminator());
// We can use the context instruction (generically the ultimate instruction
// the calling pass is trying to simplify) here, even though the result of
// this function is generally cached when called from the solve* functions
// (and that cached result might be used with queries using a different
// context instruction), because when this function is called from the solve*
// functions, the context instruction is not provided. When called from
// LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
// but then the result is not cached.
intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
return intersect(LocalResult, InBlock);
}
ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
Instruction *CxtI) {
LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
<< BB->getName() << "'\n");
assert(BlockValueStack.empty() && BlockValueSet.empty());
Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB);
if (!OptResult) {
solve();
OptResult = getBlockValue(V, BB);
assert(OptResult && "Value not available after solving");
}
ValueLatticeElement Result = *OptResult;
intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
<< "'\n");
if (auto *C = dyn_cast<Constant>(V))
return ValueLatticeElement::get(C);
ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
if (auto *I = dyn_cast<Instruction>(V))
Result = getFromRangeMetadata(I);
intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
ValueLatticeElement LazyValueInfoImpl::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
Instruction *CxtI) {
LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
<< FromBB->getName() << "' to '" << ToBB->getName()
<< "'\n");
Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI);
if (!Result) {
solve();
Result = getEdgeValue(V, FromBB, ToBB, CxtI);
assert(Result && "More work to do after problem solved?");
}
LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n");
return *Result;
}
void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
TheCache.threadEdgeImpl(OldSucc, NewSucc);
}
//===----------------------------------------------------------------------===//
// LazyValueInfo Impl
//===----------------------------------------------------------------------===//
/// This lazily constructs the LazyValueInfoImpl.
static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
const Module *M) {
if (!PImpl) {
assert(M && "getCache() called with a null Module");
const DataLayout &DL = M->getDataLayout();
Function *GuardDecl = M->getFunction(
Intrinsic::getName(Intrinsic::experimental_guard));
PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
}
return *static_cast<LazyValueInfoImpl*>(PImpl);
}
bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
if (Info.PImpl)
getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
// Fully lazy.
return false;
}
void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
void LazyValueInfo::releaseMemory() {
// If the cache was allocated, free it.
if (PImpl) {
delete &getImpl(PImpl, AC, nullptr);
PImpl = nullptr;
}
}
bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
// We need to invalidate if we have either failed to preserve this analyses
// result directly or if any of its dependencies have been invalidated.
auto PAC = PA.getChecker<LazyValueAnalysis>();
if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
return true;
return false;
}
void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
LazyValueInfo LazyValueAnalysis::run(Function &F,
FunctionAnalysisManager &FAM) {
auto &AC = FAM.getResult<AssumptionAnalysis>(F);
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
}
/// Returns true if we can statically tell that this value will never be a
/// "useful" constant. In practice, this means we've got something like an
/// alloca or a malloc call for which a comparison against a constant can
/// only be guarding dead code. Note that we are potentially giving up some
/// precision in dead code (a constant result) in favour of avoiding a
/// expensive search for a easily answered common query.
static bool isKnownNonConstant(Value *V) {
V = V->stripPointerCasts();
// The return val of alloc cannot be a Constant.
if (isa<AllocaInst>(V))
return true;
return false;
}
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
Instruction *CxtI) {
// Bail out early if V is known not to be a Constant.
if (isKnownNonConstant(V))
return nullptr;
ValueLatticeElement Result =
getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
const ConstantRange &CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return nullptr;
}
ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
Instruction *CxtI,
bool UndefAllowed) {
assert(V->getType()->isIntegerTy());
unsigned Width = V->getType()->getIntegerBitWidth();
ValueLatticeElement Result =
getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
if (Result.isUnknown())
return ConstantRange::getEmpty(Width);
if (Result.isConstantRange(UndefAllowed))
return Result.getConstantRange(UndefAllowed);
// We represent ConstantInt constants as constant ranges but other kinds
// of integer constants, i.e. ConstantExpr will be tagged as constants
assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
"ConstantInt value must be represented as constantrange");
return ConstantRange::getFull(Width);
}
/// Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
BasicBlock *ToBB,
Instruction *CxtI) {
Module *M = FromBB->getModule();
ValueLatticeElement Result =
getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
const ConstantRange &CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return nullptr;
}
ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
BasicBlock *FromBB,
BasicBlock *ToBB,
Instruction *CxtI) {
unsigned Width = V->getType()->getIntegerBitWidth();
Module *M = FromBB->getModule();
ValueLatticeElement Result =
getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
if (Result.isUnknown())
return ConstantRange::getEmpty(Width);
if (Result.isConstantRange())
return Result.getConstantRange();
// We represent ConstantInt constants as constant ranges but other kinds
// of integer constants, i.e. ConstantExpr will be tagged as constants
assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
"ConstantInt value must be represented as constantrange");
return ConstantRange::getFull(Width);
}
static LazyValueInfo::Tristate
getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
const DataLayout &DL, TargetLibraryInfo *TLI) {
// If we know the value is a constant, evaluate the conditional.
Constant *Res = nullptr;
if (Val.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
return LazyValueInfo::Unknown;
}
if (Val.isConstantRange()) {
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI) return LazyValueInfo::Unknown;
const ConstantRange &CR = Val.getConstantRange();
if (Pred == ICmpInst::ICMP_EQ) {
if (!CR.contains(CI->getValue()))
return LazyValueInfo::False;
if (CR.isSingleElement())
return LazyValueInfo::True;
} else if (Pred == ICmpInst::ICMP_NE) {
if (!CR.contains(CI->getValue()))
return LazyValueInfo::True;
if (CR.isSingleElement())
return LazyValueInfo::False;
} else {
// Handle more complex predicates.
ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
(ICmpInst::Predicate)Pred, CI->getValue());
if (TrueValues.contains(CR))
return LazyValueInfo::True;
if (TrueValues.inverse().contains(CR))
return LazyValueInfo::False;
}
return LazyValueInfo::Unknown;
}
if (Val.isNotConstant()) {
// If this is an equality comparison, we can try to fold it knowing that
// "V != C1".
if (Pred == ICmpInst::ICMP_EQ) {
// !C1 == C -> false iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Val.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return LazyValueInfo::False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Val.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return LazyValueInfo::True;
}
return LazyValueInfo::Unknown;
}
return LazyValueInfo::Unknown;
}
/// Determine whether the specified value comparison with a constant is known to
/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
BasicBlock *FromBB, BasicBlock *ToBB,
Instruction *CxtI) {
Module *M = FromBB->getModule();
ValueLatticeElement Result =
getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
}
LazyValueInfo::Tristate
LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
Instruction *CxtI) {
// Is or is not NonNull are common predicates being queried. If
// isKnownNonZero can tell us the result of the predicate, we can
// return it quickly. But this is only a fastpath, and falling
// through would still be correct.
Module *M = CxtI->getModule();
const DataLayout &DL = M->getDataLayout();
if (V->getType()->isPointerTy() && C->isNullValue() &&
isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
if (Pred == ICmpInst::ICMP_EQ)
return LazyValueInfo::False;
else if (Pred == ICmpInst::ICMP_NE)
return LazyValueInfo::True;
}
ValueLatticeElement Result = getImpl(PImpl, AC, M).getValueAt(V, CxtI);
Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
if (Ret != Unknown)
return Ret;
// Note: The following bit of code is somewhat distinct from the rest of LVI;
// LVI as a whole tries to compute a lattice value which is conservatively
// correct at a given location. In this case, we have a predicate which we
// weren't able to prove about the merged result, and we're pushing that
// predicate back along each incoming edge to see if we can prove it
// separately for each input. As a motivating example, consider:
// bb1:
// %v1 = ... ; constantrange<1, 5>
// br label %merge
// bb2:
// %v2 = ... ; constantrange<10, 20>
// br label %merge
// merge:
// %phi = phi [%v1, %v2] ; constantrange<1,20>
// %pred = icmp eq i32 %phi, 8
// We can't tell from the lattice value for '%phi' that '%pred' is false
// along each path, but by checking the predicate over each input separately,
// we can.
// We limit the search to one step backwards from the current BB and value.
// We could consider extending this to search further backwards through the
// CFG and/or value graph, but there are non-obvious compile time vs quality
// tradeoffs.
if (CxtI) {
BasicBlock *BB = CxtI->getParent();
// Function entry or an unreachable block. Bail to avoid confusing
// analysis below.
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE)
return Unknown;
// If V is a PHI node in the same block as the context, we need to ask
// questions about the predicate as applied to the incoming value along
// each edge. This is useful for eliminating cases where the predicate is
// known along all incoming edges.
if (auto *PHI = dyn_cast<PHINode>(V))
if (PHI->getParent() == BB) {
Tristate Baseline = Unknown;
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
Value *Incoming = PHI->getIncomingValue(i);
BasicBlock *PredBB = PHI->getIncomingBlock(i);
// Note that PredBB may be BB itself.
Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
CxtI);
// Keep going as long as we've seen a consistent known result for
// all inputs.
Baseline = (i == 0) ? Result /* First iteration */
: (Baseline == Result ? Baseline : Unknown); /* All others */
if (Baseline == Unknown)
break;
}
if (Baseline != Unknown)
return Baseline;
}
// For a comparison where the V is outside this block, it's possible
// that we've branched on it before. Look to see if the value is known
// on all incoming edges.
if (!isa<Instruction>(V) ||
cast<Instruction>(V)->getParent() != BB) {
// For predecessor edge, determine if the comparison is true or false
// on that edge. If they're all true or all false, we can conclude
// the value of the comparison in this block.
Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
if (Baseline != Unknown) {
// Check that all remaining incoming values match the first one.
while (++PI != PE) {
Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
if (Ret != Baseline) break;
}
// If we terminated early, then one of the values didn't match.
if (PI == PE) {
return Baseline;
}
}
}
}
return Unknown;
}
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
if (PImpl) {
getImpl(PImpl, AC, PredBB->getModule())
.threadEdge(PredBB, OldSucc, NewSucc);
}
}
void LazyValueInfo::eraseBlock(BasicBlock *BB) {
if (PImpl) {
getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
}
}
void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
if (PImpl) {
getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
}
}
// Print the LVI for the function arguments at the start of each basic block.
void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
const BasicBlock *BB, formatted_raw_ostream &OS) {
// Find if there are latticevalues defined for arguments of the function.
auto *F = BB->getParent();
for (auto &Arg : F->args()) {
ValueLatticeElement Result = LVIImpl->getValueInBlock(
const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
if (Result.isUnknown())
continue;
OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
}
}
// This function prints the LVI analysis for the instruction I at the beginning
// of various basic blocks. It relies on calculated values that are stored in
// the LazyValueInfoCache, and in the absence of cached values, recalculate the
// LazyValueInfo for `I`, and print that info.
void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
const Instruction *I, formatted_raw_ostream &OS) {
auto *ParentBB = I->getParent();
SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
// We can generate (solve) LVI values only for blocks that are dominated by
// the I's parent. However, to avoid generating LVI for all dominating blocks,
// that contain redundant/uninteresting information, we print LVI for
// blocks that may use this LVI information (such as immediate successor
// blocks, and blocks that contain uses of `I`).
auto printResult = [&](const BasicBlock *BB) {
if (!BlocksContainingLVI.insert(BB).second)
return;
ValueLatticeElement Result = LVIImpl->getValueInBlock(
const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
OS << "; LatticeVal for: '" << *I << "' in BB: '";
BB->printAsOperand(OS, false);
OS << "' is: " << Result << "\n";
};
printResult(ParentBB);
// Print the LVI analysis results for the immediate successor blocks, that
// are dominated by `ParentBB`.
for (auto *BBSucc : successors(ParentBB))
if (DT.dominates(ParentBB, BBSucc))
printResult(BBSucc);
// Print LVI in blocks where `I` is used.
for (auto *U : I->users())
if (auto *UseI = dyn_cast<Instruction>(U))
if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
printResult(UseI->getParent());
}
namespace {
// Printer class for LazyValueInfo results.
class LazyValueInfoPrinter : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
LazyValueInfoPrinter() : FunctionPass(ID) {
initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<LazyValueInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
}
// Get the mandatory dominator tree analysis and pass this in to the
// LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
bool runOnFunction(Function &F) override {
dbgs() << "LVI for function '" << F.getName() << "':\n";
auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LVI.printLVI(F, DTree, dbgs());
return false;
}
};
}
char LazyValueInfoPrinter::ID = 0;
INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
"Lazy Value Info Printer Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
"Lazy Value Info Printer Pass", false, false)