LazyValueInfo.cpp 76.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "lazy-value-info"

// This is the number of worklist items we will process to try to discover an
// answer for a given value.
static const unsigned MaxProcessedPerValue = 500;

char LazyValueInfoWrapperPass::ID = 0;
LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
  initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
                "Lazy Value Information Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
                "Lazy Value Information Analysis", false, true)

namespace llvm {
  FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
}

AnalysisKey LazyValueAnalysis::Key;

/// Returns true if this lattice value represents at most one possible value.
/// This is as precise as any lattice value can get while still representing
/// reachable code.
static bool hasSingleValue(const ValueLatticeElement &Val) {
  if (Val.isConstantRange() &&
      Val.getConstantRange().isSingleElement())
    // Integer constants are single element ranges
    return true;
  if (Val.isConstant())
    // Non integer constants
    return true;
  return false;
}

/// Combine two sets of facts about the same value into a single set of
/// facts.  Note that this method is not suitable for merging facts along
/// different paths in a CFG; that's what the mergeIn function is for.  This
/// is for merging facts gathered about the same value at the same location
/// through two independent means.
/// Notes:
/// * This method does not promise to return the most precise possible lattice
///   value implied by A and B.  It is allowed to return any lattice element
///   which is at least as strong as *either* A or B (unless our facts
///   conflict, see below).
/// * Due to unreachable code, the intersection of two lattice values could be
///   contradictory.  If this happens, we return some valid lattice value so as
///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
///   we do not make this guarantee.  TODO: This would be a useful enhancement.
static ValueLatticeElement intersect(const ValueLatticeElement &A,
                                     const ValueLatticeElement &B) {
  // Undefined is the strongest state.  It means the value is known to be along
  // an unreachable path.
  if (A.isUnknown())
    return A;
  if (B.isUnknown())
    return B;

  // If we gave up for one, but got a useable fact from the other, use it.
  if (A.isOverdefined())
    return B;
  if (B.isOverdefined())
    return A;

  // Can't get any more precise than constants.
  if (hasSingleValue(A))
    return A;
  if (hasSingleValue(B))
    return B;

  // Could be either constant range or not constant here.
  if (!A.isConstantRange() || !B.isConstantRange()) {
    // TODO: Arbitrary choice, could be improved
    return A;
  }

  // Intersect two constant ranges
  ConstantRange Range =
      A.getConstantRange().intersectWith(B.getConstantRange());
  // Note: An empty range is implicitly converted to unknown or undef depending
  // on MayIncludeUndef internally.
  return ValueLatticeElement::getRange(
      std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() |
                            B.isConstantRangeIncludingUndef());
}

//===----------------------------------------------------------------------===//
//                          LazyValueInfoCache Decl
//===----------------------------------------------------------------------===//

namespace {
  /// A callback value handle updates the cache when values are erased.
  class LazyValueInfoCache;
  struct LVIValueHandle final : public CallbackVH {
    LazyValueInfoCache *Parent;

    LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
      : CallbackVH(V), Parent(P) { }

    void deleted() override;
    void allUsesReplacedWith(Value *V) override {
      deleted();
    }
  };
} // end anonymous namespace

namespace {
  /// This is the cache kept by LazyValueInfo which
  /// maintains information about queries across the clients' queries.
  class LazyValueInfoCache {
    /// This is all of the cached information for one basic block. It contains
    /// the per-value lattice elements, as well as a separate set for
    /// overdefined values to reduce memory usage.
    struct BlockCacheEntry {
      SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
      SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
    };

    /// Cached information per basic block.
    DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
        BlockCache;
    /// Set of value handles used to erase values from the cache on deletion.
    DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;

    const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
      auto It = BlockCache.find_as(BB);
      if (It == BlockCache.end())
        return nullptr;
      return It->second.get();
    }

    BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
      auto It = BlockCache.find_as(BB);
      if (It == BlockCache.end())
        It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
                       .first;

      return It->second.get();
    }

    void addValueHandle(Value *Val) {
      auto HandleIt = ValueHandles.find_as(Val);
      if (HandleIt == ValueHandles.end())
        ValueHandles.insert({ Val, this });
    }

  public:
    void insertResult(Value *Val, BasicBlock *BB,
                      const ValueLatticeElement &Result) {
      BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);

      // Insert over-defined values into their own cache to reduce memory
      // overhead.
      if (Result.isOverdefined())
        Entry->OverDefined.insert(Val);
      else
        Entry->LatticeElements.insert({ Val, Result });

      addValueHandle(Val);
    }

    Optional<ValueLatticeElement> getCachedValueInfo(Value *V,
                                                     BasicBlock *BB) const {
      const BlockCacheEntry *Entry = getBlockEntry(BB);
      if (!Entry)
        return None;

      if (Entry->OverDefined.count(V))
        return ValueLatticeElement::getOverdefined();

      auto LatticeIt = Entry->LatticeElements.find_as(V);
      if (LatticeIt == Entry->LatticeElements.end())
        return None;

      return LatticeIt->second;
    }

    /// clear - Empty the cache.
    void clear() {
      BlockCache.clear();
      ValueHandles.clear();
    }

    /// Inform the cache that a given value has been deleted.
    void eraseValue(Value *V);

    /// This is part of the update interface to inform the cache
    /// that a block has been deleted.
    void eraseBlock(BasicBlock *BB);

    /// Updates the cache to remove any influence an overdefined value in
    /// OldSucc might have (unless also overdefined in NewSucc).  This just
    /// flushes elements from the cache and does not add any.
    void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
  };
}

void LazyValueInfoCache::eraseValue(Value *V) {
  for (auto &Pair : BlockCache) {
    Pair.second->LatticeElements.erase(V);
    Pair.second->OverDefined.erase(V);
  }

  auto HandleIt = ValueHandles.find_as(V);
  if (HandleIt != ValueHandles.end())
    ValueHandles.erase(HandleIt);
}

void LVIValueHandle::deleted() {
  // This erasure deallocates *this, so it MUST happen after we're done
  // using any and all members of *this.
  Parent->eraseValue(*this);
}

void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
  BlockCache.erase(BB);
}

void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
                                        BasicBlock *NewSucc) {
  // When an edge in the graph has been threaded, values that we could not
  // determine a value for before (i.e. were marked overdefined) may be
  // possible to solve now. We do NOT try to proactively update these values.
  // Instead, we clear their entries from the cache, and allow lazy updating to
  // recompute them when needed.

  // The updating process is fairly simple: we need to drop cached info
  // for all values that were marked overdefined in OldSucc, and for those same
  // values in any successor of OldSucc (except NewSucc) in which they were
  // also marked overdefined.
  std::vector<BasicBlock*> worklist;
  worklist.push_back(OldSucc);

  const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
  if (!Entry || Entry->OverDefined.empty())
    return; // Nothing to process here.
  SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
                                      Entry->OverDefined.end());

  // Use a worklist to perform a depth-first search of OldSucc's successors.
  // NOTE: We do not need a visited list since any blocks we have already
  // visited will have had their overdefined markers cleared already, and we
  // thus won't loop to their successors.
  while (!worklist.empty()) {
    BasicBlock *ToUpdate = worklist.back();
    worklist.pop_back();

    // Skip blocks only accessible through NewSucc.
    if (ToUpdate == NewSucc) continue;

    // If a value was marked overdefined in OldSucc, and is here too...
    auto OI = BlockCache.find_as(ToUpdate);
    if (OI == BlockCache.end() || OI->second->OverDefined.empty())
      continue;
    auto &ValueSet = OI->second->OverDefined;

    bool changed = false;
    for (Value *V : ValsToClear) {
      if (!ValueSet.erase(V))
        continue;

      // If we removed anything, then we potentially need to update
      // blocks successors too.
      changed = true;
    }

    if (!changed) continue;

    worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
  }
}


namespace {
/// An assembly annotator class to print LazyValueCache information in
/// comments.
class LazyValueInfoImpl;
class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
  LazyValueInfoImpl *LVIImpl;
  // While analyzing which blocks we can solve values for, we need the dominator
  // information.
  DominatorTree &DT;

public:
  LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
      : LVIImpl(L), DT(DTree) {}

  void emitBasicBlockStartAnnot(const BasicBlock *BB,
                                formatted_raw_ostream &OS) override;

  void emitInstructionAnnot(const Instruction *I,
                            formatted_raw_ostream &OS) override;
};
}
namespace {
// The actual implementation of the lazy analysis and update.  Note that the
// inheritance from LazyValueInfoCache is intended to be temporary while
// splitting the code and then transitioning to a has-a relationship.
class LazyValueInfoImpl {

  /// Cached results from previous queries
  LazyValueInfoCache TheCache;

  /// This stack holds the state of the value solver during a query.
  /// It basically emulates the callstack of the naive
  /// recursive value lookup process.
  SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;

  /// Keeps track of which block-value pairs are in BlockValueStack.
  DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;

  /// Push BV onto BlockValueStack unless it's already in there.
  /// Returns true on success.
  bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
    if (!BlockValueSet.insert(BV).second)
      return false;  // It's already in the stack.

    LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
                      << BV.first->getName() << "\n");
    BlockValueStack.push_back(BV);
    return true;
  }

  AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
  const DataLayout &DL; ///< A mandatory DataLayout

  /// Declaration of the llvm.experimental.guard() intrinsic,
  /// if it exists in the module.
  Function *GuardDecl;

  Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB);
  Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
                                BasicBlock *T, Instruction *CxtI = nullptr);

  // These methods process one work item and may add more. A false value
  // returned means that the work item was not completely processed and must
  // be revisited after going through the new items.
  bool solveBlockValue(Value *Val, BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
                                                        BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
                                                       BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
                                                      BasicBlock *BB);
  Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
                                             BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
      Instruction *I, BasicBlock *BB,
      std::function<ConstantRange(const ConstantRange &,
                                  const ConstantRange &)> OpFn);
  Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI,
                                                        BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
                                                    BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic(
      WithOverflowInst *WO, BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueSaturatingIntrinsic(
      SaturatingInst *SI, BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
                                                         BasicBlock *BB);
  Optional<ValueLatticeElement> solveBlockValueExtractValue(
      ExtractValueInst *EVI, BasicBlock *BB);
  void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
                                                     ValueLatticeElement &BBLV,
                                                     Instruction *BBI);

  void solve();

public:
  /// This is the query interface to determine the lattice
  /// value for the specified Value* at the end of the specified block.
  ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
                                      Instruction *CxtI = nullptr);

  /// This is the query interface to determine the lattice
  /// value for the specified Value* at the specified instruction (generally
  /// from an assume intrinsic).
  ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);

  /// This is the query interface to determine the lattice
  /// value for the specified Value* that is true on the specified edge.
  ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
                                     BasicBlock *ToBB,
                                     Instruction *CxtI = nullptr);

  /// Complete flush all previously computed values
  void clear() {
    TheCache.clear();
  }

  /// Printing the LazyValueInfo Analysis.
  void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
    LazyValueInfoAnnotatedWriter Writer(this, DTree);
    F.print(OS, &Writer);
  }

  /// This is part of the update interface to inform the cache
  /// that a block has been deleted.
  void eraseBlock(BasicBlock *BB) {
    TheCache.eraseBlock(BB);
  }

  /// This is the update interface to inform the cache that an edge from
  /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
  void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);

  LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
                    Function *GuardDecl)
      : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
};
} // end anonymous namespace


void LazyValueInfoImpl::solve() {
  SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
      BlockValueStack.begin(), BlockValueStack.end());

  unsigned processedCount = 0;
  while (!BlockValueStack.empty()) {
    processedCount++;
    // Abort if we have to process too many values to get a result for this one.
    // Because of the design of the overdefined cache currently being per-block
    // to avoid naming-related issues (IE it wants to try to give different
    // results for the same name in different blocks), overdefined results don't
    // get cached globally, which in turn means we will often try to rediscover
    // the same overdefined result again and again.  Once something like
    // PredicateInfo is used in LVI or CVP, we should be able to make the
    // overdefined cache global, and remove this throttle.
    if (processedCount > MaxProcessedPerValue) {
      LLVM_DEBUG(
          dbgs() << "Giving up on stack because we are getting too deep\n");
      // Fill in the original values
      while (!StartingStack.empty()) {
        std::pair<BasicBlock *, Value *> &e = StartingStack.back();
        TheCache.insertResult(e.second, e.first,
                              ValueLatticeElement::getOverdefined());
        StartingStack.pop_back();
      }
      BlockValueSet.clear();
      BlockValueStack.clear();
      return;
    }
    std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
    assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");

    if (solveBlockValue(e.second, e.first)) {
      // The work item was completely processed.
      assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
#ifndef NDEBUG
      Optional<ValueLatticeElement> BBLV =
          TheCache.getCachedValueInfo(e.second, e.first);
      assert(BBLV && "Result should be in cache!");
      LLVM_DEBUG(
          dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
                 << *BBLV << "\n");
#endif

      BlockValueStack.pop_back();
      BlockValueSet.erase(e);
    } else {
      // More work needs to be done before revisiting.
      assert(BlockValueStack.back() != e && "Stack should have been pushed!");
    }
  }
}

Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val,
                                                               BasicBlock *BB) {
  // If already a constant, there is nothing to compute.
  if (Constant *VC = dyn_cast<Constant>(Val))
    return ValueLatticeElement::get(VC);

  if (Optional<ValueLatticeElement> OptLatticeVal =
          TheCache.getCachedValueInfo(Val, BB))
    return OptLatticeVal;

  // We have hit a cycle, assume overdefined.
  if (!pushBlockValue({ BB, Val }))
    return ValueLatticeElement::getOverdefined();

  // Yet to be resolved.
  return None;
}

static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
  switch (BBI->getOpcode()) {
  default: break;
  case Instruction::Load:
  case Instruction::Call:
  case Instruction::Invoke:
    if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
      if (isa<IntegerType>(BBI->getType())) {
        return ValueLatticeElement::getRange(
            getConstantRangeFromMetadata(*Ranges));
      }
    break;
  };
  // Nothing known - will be intersected with other facts
  return ValueLatticeElement::getOverdefined();
}

bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
  assert(!isa<Constant>(Val) && "Value should not be constant");
  assert(!TheCache.getCachedValueInfo(Val, BB) &&
         "Value should not be in cache");

  // Hold off inserting this value into the Cache in case we have to return
  // false and come back later.
  Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
  if (!Res)
    // Work pushed, will revisit
    return false;

  TheCache.insertResult(Val, BB, *Res);
  return true;
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl(
    Value *Val, BasicBlock *BB) {
  Instruction *BBI = dyn_cast<Instruction>(Val);
  if (!BBI || BBI->getParent() != BB)
    return solveBlockValueNonLocal(Val, BB);

  if (PHINode *PN = dyn_cast<PHINode>(BBI))
    return solveBlockValuePHINode(PN, BB);

  if (auto *SI = dyn_cast<SelectInst>(BBI))
    return solveBlockValueSelect(SI, BB);

  // If this value is a nonnull pointer, record it's range and bailout.  Note
  // that for all other pointer typed values, we terminate the search at the
  // definition.  We could easily extend this to look through geps, bitcasts,
  // and the like to prove non-nullness, but it's not clear that's worth it
  // compile time wise.  The context-insensitive value walk done inside
  // isKnownNonZero gets most of the profitable cases at much less expense.
  // This does mean that we have a sensitivity to where the defining
  // instruction is placed, even if it could legally be hoisted much higher.
  // That is unfortunate.
  PointerType *PT = dyn_cast<PointerType>(BBI->getType());
  if (PT && isKnownNonZero(BBI, DL))
    return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));

  if (BBI->getType()->isIntegerTy()) {
    if (auto *CI = dyn_cast<CastInst>(BBI))
      return solveBlockValueCast(CI, BB);

    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
      return solveBlockValueBinaryOp(BO, BB);

    if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
      return solveBlockValueExtractValue(EVI, BB);

    if (auto *II = dyn_cast<IntrinsicInst>(BBI))
      return solveBlockValueIntrinsic(II, BB);
  }

  LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
                    << "' - unknown inst def found.\n");
  return getFromRangeMetadata(BBI);
}

static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    return L->getPointerAddressSpace() == 0 &&
           GetUnderlyingObject(L->getPointerOperand(),
                               L->getModule()->getDataLayout()) == Ptr;
  }
  if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    return S->getPointerAddressSpace() == 0 &&
           GetUnderlyingObject(S->getPointerOperand(),
                               S->getModule()->getDataLayout()) == Ptr;
  }
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    if (MI->isVolatile()) return false;

    // FIXME: check whether it has a valuerange that excludes zero?
    ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    if (!Len || Len->isZero()) return false;

    if (MI->getDestAddressSpace() == 0)
      if (GetUnderlyingObject(MI->getRawDest(),
                              MI->getModule()->getDataLayout()) == Ptr)
        return true;
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
      if (MTI->getSourceAddressSpace() == 0)
        if (GetUnderlyingObject(MTI->getRawSource(),
                                MTI->getModule()->getDataLayout()) == Ptr)
          return true;
  }
  return false;
}

/// Return true if the allocation associated with Val is ever dereferenced
/// within the given basic block.  This establishes the fact Val is not null,
/// but does not imply that the memory at Val is dereferenceable.  (Val may
/// point off the end of the dereferenceable part of the object.)
static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
  assert(Val->getType()->isPointerTy());

  const DataLayout &DL = BB->getModule()->getDataLayout();
  Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
  // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
  // inside InstructionDereferencesPointer either.
  if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
    for (Instruction &I : *BB)
      if (InstructionDereferencesPointer(&I, UnderlyingVal))
        return true;
  return false;
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal(
    Value *Val, BasicBlock *BB) {
  ValueLatticeElement Result;  // Start Undefined.

  // If this is the entry block, we must be asking about an argument.  The
  // value is overdefined.
  if (BB == &BB->getParent()->getEntryBlock()) {
    assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    // Before giving up, see if we can prove the pointer non-null local to
    // this particular block.
    PointerType *PTy = dyn_cast<PointerType>(Val->getType());
    if (PTy &&
        (isKnownNonZero(Val, DL) ||
          (isObjectDereferencedInBlock(Val, BB) &&
           !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace()))))
      return ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
    else
      return ValueLatticeElement::getOverdefined();
  }

  // Loop over all of our predecessors, merging what we know from them into
  // result.  If we encounter an unexplored predecessor, we eagerly explore it
  // in a depth first manner.  In practice, this has the effect of discovering
  // paths we can't analyze eagerly without spending compile times analyzing
  // other paths.  This heuristic benefits from the fact that predecessors are
  // frequently arranged such that dominating ones come first and we quickly
  // find a path to function entry.  TODO: We should consider explicitly
  // canonicalizing to make this true rather than relying on this happy
  // accident.
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, *PI, BB);
    if (!EdgeResult)
      // Explore that input, then return here
      return None;

    Result.mergeIn(*EdgeResult);

    // If we hit overdefined, exit early.  The BlockVals entry is already set
    // to overdefined.
    if (Result.isOverdefined()) {
      LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
                        << "' - overdefined because of pred (non local).\n");
      // Before giving up, see if we can prove the pointer non-null local to
      // this particular block.
      PointerType *PTy = dyn_cast<PointerType>(Val->getType());
      if (PTy && isObjectDereferencedInBlock(Val, BB) &&
          !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
        Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
      }

      return Result;
    }
  }

  // Return the merged value, which is more precise than 'overdefined'.
  assert(!Result.isOverdefined());
  return Result;
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode(
    PHINode *PN, BasicBlock *BB) {
  ValueLatticeElement Result;  // Start Undefined.

  // Loop over all of our predecessors, merging what we know from them into
  // result.  See the comment about the chosen traversal order in
  // solveBlockValueNonLocal; the same reasoning applies here.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *PhiBB = PN->getIncomingBlock(i);
    Value *PhiVal = PN->getIncomingValue(i);
    // Note that we can provide PN as the context value to getEdgeValue, even
    // though the results will be cached, because PN is the value being used as
    // the cache key in the caller.
    Optional<ValueLatticeElement> EdgeResult =
        getEdgeValue(PhiVal, PhiBB, BB, PN);
    if (!EdgeResult)
      // Explore that input, then return here
      return None;

    Result.mergeIn(*EdgeResult);

    // If we hit overdefined, exit early.  The BlockVals entry is already set
    // to overdefined.
    if (Result.isOverdefined()) {
      LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
                        << "' - overdefined because of pred (local).\n");

      return Result;
    }
  }

  // Return the merged value, which is more precise than 'overdefined'.
  assert(!Result.isOverdefined() && "Possible PHI in entry block?");
  return Result;
}

static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
                                                 bool isTrueDest = true);

// If we can determine a constraint on the value given conditions assumed by
// the program, intersect those constraints with BBLV
void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
        Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
  BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
  if (!BBI)
    return;

  BasicBlock *BB = BBI->getParent();
  for (auto &AssumeVH : AC->assumptionsFor(Val)) {
    if (!AssumeVH)
      continue;

    // Only check assumes in the block of the context instruction. Other
    // assumes will have already been taken into account when the value was
    // propagated from predecessor blocks.
    auto *I = cast<CallInst>(AssumeVH);
    if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
      continue;

    BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
  }

  // If guards are not used in the module, don't spend time looking for them
  if (!GuardDecl || GuardDecl->use_empty())
    return;

  if (BBI->getIterator() == BB->begin())
    return;
  for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
                                   BB->rend())) {
    Value *Cond = nullptr;
    if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
      BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
  }
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect(
    SelectInst *SI, BasicBlock *BB) {
  // Recurse on our inputs if needed
  Optional<ValueLatticeElement> OptTrueVal =
      getBlockValue(SI->getTrueValue(), BB);
  if (!OptTrueVal)
    return None;
  ValueLatticeElement &TrueVal = *OptTrueVal;

  // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
  // extra slots in the table if we can.
  if (TrueVal.isOverdefined())
    return ValueLatticeElement::getOverdefined();

  Optional<ValueLatticeElement> OptFalseVal =
      getBlockValue(SI->getFalseValue(), BB);
  if (!OptFalseVal)
    return None;
  ValueLatticeElement &FalseVal = *OptFalseVal;

  // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
  // extra slots in the table if we can.
  if (FalseVal.isOverdefined())
    return ValueLatticeElement::getOverdefined();

  if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
    const ConstantRange &TrueCR = TrueVal.getConstantRange();
    const ConstantRange &FalseCR = FalseVal.getConstantRange();
    Value *LHS = nullptr;
    Value *RHS = nullptr;
    SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
    // Is this a min specifically of our two inputs?  (Avoid the risk of
    // ValueTracking getting smarter looking back past our immediate inputs.)
    if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
        LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
      ConstantRange ResultCR = [&]() {
        switch (SPR.Flavor) {
        default:
          llvm_unreachable("unexpected minmax type!");
        case SPF_SMIN:                   /// Signed minimum
          return TrueCR.smin(FalseCR);
        case SPF_UMIN:                   /// Unsigned minimum
          return TrueCR.umin(FalseCR);
        case SPF_SMAX:                   /// Signed maximum
          return TrueCR.smax(FalseCR);
        case SPF_UMAX:                   /// Unsigned maximum
          return TrueCR.umax(FalseCR);
        };
      }();
      return ValueLatticeElement::getRange(
          ResultCR, TrueVal.isConstantRangeIncludingUndef() |
                        FalseVal.isConstantRangeIncludingUndef());
    }

    if (SPR.Flavor == SPF_ABS) {
      if (LHS == SI->getTrueValue())
        return ValueLatticeElement::getRange(
            TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
      if (LHS == SI->getFalseValue())
        return ValueLatticeElement::getRange(
            FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
    }

    if (SPR.Flavor == SPF_NABS) {
      ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
      if (LHS == SI->getTrueValue())
        return ValueLatticeElement::getRange(
            Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
      if (LHS == SI->getFalseValue())
        return ValueLatticeElement::getRange(
            Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
    }
  }

  // Can we constrain the facts about the true and false values by using the
  // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
  // TODO: We could potentially refine an overdefined true value above.
  Value *Cond = SI->getCondition();
  TrueVal = intersect(TrueVal,
                      getValueFromCondition(SI->getTrueValue(), Cond, true));
  FalseVal = intersect(FalseVal,
                       getValueFromCondition(SI->getFalseValue(), Cond, false));

  // Handle clamp idioms such as:
  //   %24 = constantrange<0, 17>
  //   %39 = icmp eq i32 %24, 0
  //   %40 = add i32 %24, -1
  //   %siv.next = select i1 %39, i32 16, i32 %40
  //   %siv.next = constantrange<0, 17> not <-1, 17>
  // In general, this can handle any clamp idiom which tests the edge
  // condition via an equality or inequality.
  if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
    ICmpInst::Predicate Pred = ICI->getPredicate();
    Value *A = ICI->getOperand(0);
    if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
      auto addConstants = [](ConstantInt *A, ConstantInt *B) {
        assert(A->getType() == B->getType());
        return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
      };
      // See if either input is A + C2, subject to the constraint from the
      // condition that A != C when that input is used.  We can assume that
      // that input doesn't include C + C2.
      ConstantInt *CIAdded;
      switch (Pred) {
      default: break;
      case ICmpInst::ICMP_EQ:
        if (match(SI->getFalseValue(), m_Add(m_Specific(A),
                                             m_ConstantInt(CIAdded)))) {
          auto ResNot = addConstants(CIBase, CIAdded);
          FalseVal = intersect(FalseVal,
                               ValueLatticeElement::getNot(ResNot));
        }
        break;
      case ICmpInst::ICMP_NE:
        if (match(SI->getTrueValue(), m_Add(m_Specific(A),
                                            m_ConstantInt(CIAdded)))) {
          auto ResNot = addConstants(CIBase, CIAdded);
          TrueVal = intersect(TrueVal,
                              ValueLatticeElement::getNot(ResNot));
        }
        break;
      };
    }
  }

  ValueLatticeElement Result = TrueVal;
  Result.mergeIn(FalseVal);
  return Result;
}

Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
                                                              Instruction *I,
                                                              BasicBlock *BB) {
  Optional<ValueLatticeElement> OptVal = getBlockValue(I->getOperand(Op), BB);
  if (!OptVal)
    return None;

  ValueLatticeElement &Val = *OptVal;
  intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
  if (Val.isConstantRange())
    return Val.getConstantRange();

  const unsigned OperandBitWidth =
    DL.getTypeSizeInBits(I->getOperand(Op)->getType());
  return ConstantRange::getFull(OperandBitWidth);
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast(
    CastInst *CI, BasicBlock *BB) {
  // Without knowing how wide the input is, we can't analyze it in any useful
  // way.
  if (!CI->getOperand(0)->getType()->isSized())
    return ValueLatticeElement::getOverdefined();

  // Filter out casts we don't know how to reason about before attempting to
  // recurse on our operand.  This can cut a long search short if we know we're
  // not going to be able to get any useful information anways.
  switch (CI->getOpcode()) {
  case Instruction::Trunc:
  case Instruction::SExt:
  case Instruction::ZExt:
  case Instruction::BitCast:
    break;
  default:
    // Unhandled instructions are overdefined.
    LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
                      << "' - overdefined (unknown cast).\n");
    return ValueLatticeElement::getOverdefined();
  }

  // Figure out the range of the LHS.  If that fails, we still apply the
  // transfer rule on the full set since we may be able to locally infer
  // interesting facts.
  Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
  if (!LHSRes.hasValue())
    // More work to do before applying this transfer rule.
    return None;
  const ConstantRange &LHSRange = LHSRes.getValue();

  const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();

  // NOTE: We're currently limited by the set of operations that ConstantRange
  // can evaluate symbolically.  Enhancing that set will allows us to analyze
  // more definitions.
  return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
                                                       ResultBitWidth));
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
    Instruction *I, BasicBlock *BB,
    std::function<ConstantRange(const ConstantRange &,
                                const ConstantRange &)> OpFn) {
  // Figure out the ranges of the operands.  If that fails, use a
  // conservative range, but apply the transfer rule anyways.  This
  // lets us pick up facts from expressions like "and i32 (call i32
  // @foo()), 32"
  Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB);
  Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB);
  if (!LHSRes.hasValue() || !RHSRes.hasValue())
    // More work to do before applying this transfer rule.
    return None;

  const ConstantRange &LHSRange = LHSRes.getValue();
  const ConstantRange &RHSRange = RHSRes.getValue();
  return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp(
    BinaryOperator *BO, BasicBlock *BB) {
  assert(BO->getOperand(0)->getType()->isSized() &&
         "all operands to binary operators are sized");
  if (BO->getOpcode() == Instruction::Xor) {
    // Xor is the only operation not supported by ConstantRange::binaryOp().
    LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
                      << "' - overdefined (unknown binary operator).\n");
    return ValueLatticeElement::getOverdefined();
  }

  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
    unsigned NoWrapKind = 0;
    if (OBO->hasNoUnsignedWrap())
      NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
    if (OBO->hasNoSignedWrap())
      NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;

    return solveBlockValueBinaryOpImpl(
        BO, BB,
        [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
          return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
        });
  }

  return solveBlockValueBinaryOpImpl(
      BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
        return CR1.binaryOp(BO->getOpcode(), CR2);
      });
}

Optional<ValueLatticeElement>
LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
                                                    BasicBlock *BB) {
  return solveBlockValueBinaryOpImpl(
      WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
        return CR1.binaryOp(WO->getBinaryOp(), CR2);
      });
}

Optional<ValueLatticeElement>
LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic(SaturatingInst *SI,
                                                      BasicBlock *BB) {
  switch (SI->getIntrinsicID()) {
  case Intrinsic::uadd_sat:
    return solveBlockValueBinaryOpImpl(
        SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
          return CR1.uadd_sat(CR2);
        });
  case Intrinsic::usub_sat:
    return solveBlockValueBinaryOpImpl(
        SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
          return CR1.usub_sat(CR2);
        });
  case Intrinsic::sadd_sat:
    return solveBlockValueBinaryOpImpl(
        SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
          return CR1.sadd_sat(CR2);
        });
  case Intrinsic::ssub_sat:
    return solveBlockValueBinaryOpImpl(
        SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
          return CR1.ssub_sat(CR2);
        });
  default:
    llvm_unreachable("All llvm.sat intrinsic are handled.");
  }
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic(
    IntrinsicInst *II, BasicBlock *BB) {
  if (auto *SI = dyn_cast<SaturatingInst>(II))
    return solveBlockValueSaturatingIntrinsic(SI, BB);

  LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
                    << "' - overdefined (unknown intrinsic).\n");
  return ValueLatticeElement::getOverdefined();
}

Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue(
    ExtractValueInst *EVI, BasicBlock *BB) {
  if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
    if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
      return solveBlockValueOverflowIntrinsic(WO, BB);

  // Handle extractvalue of insertvalue to allow further simplification
  // based on replaced with.overflow intrinsics.
  if (Value *V = SimplifyExtractValueInst(
          EVI->getAggregateOperand(), EVI->getIndices(),
          EVI->getModule()->getDataLayout()))
    return getBlockValue(V, BB);

  LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
                    << "' - overdefined (unknown extractvalue).\n");
  return ValueLatticeElement::getOverdefined();
}

static bool matchICmpOperand(const APInt *&Offset, Value *LHS, Value *Val,
                             ICmpInst::Predicate Pred) {
  if (LHS == Val)
    return true;

  // Handle range checking idiom produced by InstCombine. We will subtract the
  // offset from the allowed range for RHS in this case.
  if (match(LHS, m_Add(m_Specific(Val), m_APInt(Offset))))
    return true;

  // If (x | y) < C, then (x < C) && (y < C).
  if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
      (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
    return true;

  // If (x & y) > C, then (x > C) && (y > C).
  if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
      (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
    return true;

  return false;
}

static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
                                                     bool isTrueDest) {
  Value *LHS = ICI->getOperand(0);
  Value *RHS = ICI->getOperand(1);

  // Get the predicate that must hold along the considered edge.
  CmpInst::Predicate EdgePred =
      isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();

  if (isa<Constant>(RHS)) {
    if (ICI->isEquality() && LHS == Val) {
      if (EdgePred == ICmpInst::ICMP_EQ)
        return ValueLatticeElement::get(cast<Constant>(RHS));
      else if (!isa<UndefValue>(RHS))
        return ValueLatticeElement::getNot(cast<Constant>(RHS));
    }
  }

  if (!Val->getType()->isIntegerTy())
    return ValueLatticeElement::getOverdefined();

  const APInt *Offset = nullptr;
  if (!matchICmpOperand(Offset, LHS, Val, EdgePred)) {
    std::swap(LHS, RHS);
    EdgePred = CmpInst::getSwappedPredicate(EdgePred);
    if (!matchICmpOperand(Offset, LHS, Val, EdgePred))
      return ValueLatticeElement::getOverdefined();
  }

  // Calculate the range of values that are allowed by the comparison.
  ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
                         /*isFullSet=*/true);
  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
    RHSRange = ConstantRange(CI->getValue());
  else if (Instruction *I = dyn_cast<Instruction>(RHS))
    if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
      RHSRange = getConstantRangeFromMetadata(*Ranges);

  // If we're interested in the false dest, invert the condition
  ConstantRange TrueValues =
      ConstantRange::makeAllowedICmpRegion(EdgePred, RHSRange);

  if (Offset) // Apply the offset from above.
    TrueValues = TrueValues.subtract(*Offset);

  return ValueLatticeElement::getRange(std::move(TrueValues));
}

// Handle conditions of the form
// extractvalue(op.with.overflow(%x, C), 1).
static ValueLatticeElement getValueFromOverflowCondition(
    Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
  // TODO: This only works with a constant RHS for now. We could also compute
  // the range of the RHS, but this doesn't fit into the current structure of
  // the edge value calculation.
  const APInt *C;
  if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
    return ValueLatticeElement::getOverdefined();

  // Calculate the possible values of %x for which no overflow occurs.
  ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
      WO->getBinaryOp(), *C, WO->getNoWrapKind());

  // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
  // constrained to it's inverse (all values that might cause overflow).
  if (IsTrueDest)
    NWR = NWR.inverse();
  return ValueLatticeElement::getRange(NWR);
}

static ValueLatticeElement
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
                      SmallDenseMap<Value*, ValueLatticeElement> &Visited);

static ValueLatticeElement
getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
                          SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
    return getValueFromICmpCondition(Val, ICI, isTrueDest);

  if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
    if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
      if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
        return getValueFromOverflowCondition(Val, WO, isTrueDest);

  // Handle conditions in the form of (cond1 && cond2), we know that on the
  // true dest path both of the conditions hold. Similarly for conditions of
  // the form (cond1 || cond2), we know that on the false dest path neither
  // condition holds.
  BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
  if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
             (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
    return ValueLatticeElement::getOverdefined();

  // Prevent infinite recursion if Cond references itself as in this example:
  //  Cond: "%tmp4 = and i1 %tmp4, undef"
  //    BL: "%tmp4 = and i1 %tmp4, undef"
  //    BR: "i1 undef"
  Value *BL = BO->getOperand(0);
  Value *BR = BO->getOperand(1);
  if (BL == Cond || BR == Cond)
    return ValueLatticeElement::getOverdefined();

  return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
                   getValueFromCondition(Val, BR, isTrueDest, Visited));
}

static ValueLatticeElement
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
                      SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
  auto I = Visited.find(Cond);
  if (I != Visited.end())
    return I->second;

  auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
  Visited[Cond] = Result;
  return Result;
}

ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
                                          bool isTrueDest) {
  assert(Cond && "precondition");
  SmallDenseMap<Value*, ValueLatticeElement> Visited;
  return getValueFromCondition(Val, Cond, isTrueDest, Visited);
}

// Return true if Usr has Op as an operand, otherwise false.
static bool usesOperand(User *Usr, Value *Op) {
  return find(Usr->operands(), Op) != Usr->op_end();
}

// Return true if the instruction type of Val is supported by
// constantFoldUser(). Currently CastInst and BinaryOperator only.  Call this
// before calling constantFoldUser() to find out if it's even worth attempting
// to call it.
static bool isOperationFoldable(User *Usr) {
  return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
}

// Check if Usr can be simplified to an integer constant when the value of one
// of its operands Op is an integer constant OpConstVal. If so, return it as an
// lattice value range with a single element or otherwise return an overdefined
// lattice value.
static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
                                            const APInt &OpConstVal,
                                            const DataLayout &DL) {
  assert(isOperationFoldable(Usr) && "Precondition");
  Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
  // Check if Usr can be simplified to a constant.
  if (auto *CI = dyn_cast<CastInst>(Usr)) {
    assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
    if (auto *C = dyn_cast_or_null<ConstantInt>(
            SimplifyCastInst(CI->getOpcode(), OpConst,
                             CI->getDestTy(), DL))) {
      return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
    }
  } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
    bool Op0Match = BO->getOperand(0) == Op;
    bool Op1Match = BO->getOperand(1) == Op;
    assert((Op0Match || Op1Match) &&
           "Operand 0 nor Operand 1 isn't a match");
    Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
    Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
    if (auto *C = dyn_cast_or_null<ConstantInt>(
            SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
      return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
    }
  }
  return ValueLatticeElement::getOverdefined();
}

/// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
/// Val is not constrained on the edge.  Result is unspecified if return value
/// is false.
static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
                                                       BasicBlock *BBFrom,
                                                       BasicBlock *BBTo) {
  // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
  // know that v != 0.
  if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    // If this is a conditional branch and only one successor goes to BBTo, then
    // we may be able to infer something from the condition.
    if (BI->isConditional() &&
        BI->getSuccessor(0) != BI->getSuccessor(1)) {
      bool isTrueDest = BI->getSuccessor(0) == BBTo;
      assert(BI->getSuccessor(!isTrueDest) == BBTo &&
             "BBTo isn't a successor of BBFrom");
      Value *Condition = BI->getCondition();

      // If V is the condition of the branch itself, then we know exactly what
      // it is.
      if (Condition == Val)
        return ValueLatticeElement::get(ConstantInt::get(
                              Type::getInt1Ty(Val->getContext()), isTrueDest));

      // If the condition of the branch is an equality comparison, we may be
      // able to infer the value.
      ValueLatticeElement Result = getValueFromCondition(Val, Condition,
                                                         isTrueDest);
      if (!Result.isOverdefined())
        return Result;

      if (User *Usr = dyn_cast<User>(Val)) {
        assert(Result.isOverdefined() && "Result isn't overdefined");
        // Check with isOperationFoldable() first to avoid linearly iterating
        // over the operands unnecessarily which can be expensive for
        // instructions with many operands.
        if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
          const DataLayout &DL = BBTo->getModule()->getDataLayout();
          if (usesOperand(Usr, Condition)) {
            // If Val has Condition as an operand and Val can be folded into a
            // constant with either Condition == true or Condition == false,
            // propagate the constant.
            // eg.
            //   ; %Val is true on the edge to %then.
            //   %Val = and i1 %Condition, true.
            //   br %Condition, label %then, label %else
            APInt ConditionVal(1, isTrueDest ? 1 : 0);
            Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
          } else {
            // If one of Val's operand has an inferred value, we may be able to
            // infer the value of Val.
            // eg.
            //    ; %Val is 94 on the edge to %then.
            //    %Val = add i8 %Op, 1
            //    %Condition = icmp eq i8 %Op, 93
            //    br i1 %Condition, label %then, label %else
            for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
              Value *Op = Usr->getOperand(i);
              ValueLatticeElement OpLatticeVal =
                  getValueFromCondition(Op, Condition, isTrueDest);
              if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
                Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
                break;
              }
            }
          }
        }
      }
      if (!Result.isOverdefined())
        return Result;
    }
  }

  // If the edge was formed by a switch on the value, then we may know exactly
  // what it is.
  if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    Value *Condition = SI->getCondition();
    if (!isa<IntegerType>(Val->getType()))
      return None;
    bool ValUsesConditionAndMayBeFoldable = false;
    if (Condition != Val) {
      // Check if Val has Condition as an operand.
      if (User *Usr = dyn_cast<User>(Val))
        ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
            usesOperand(Usr, Condition);
      if (!ValUsesConditionAndMayBeFoldable)
        return None;
    }
    assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
           "Condition != Val nor Val doesn't use Condition");

    bool DefaultCase = SI->getDefaultDest() == BBTo;
    unsigned BitWidth = Val->getType()->getIntegerBitWidth();
    ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);

    for (auto Case : SI->cases()) {
      APInt CaseValue = Case.getCaseValue()->getValue();
      ConstantRange EdgeVal(CaseValue);
      if (ValUsesConditionAndMayBeFoldable) {
        User *Usr = cast<User>(Val);
        const DataLayout &DL = BBTo->getModule()->getDataLayout();
        ValueLatticeElement EdgeLatticeVal =
            constantFoldUser(Usr, Condition, CaseValue, DL);
        if (EdgeLatticeVal.isOverdefined())
          return None;
        EdgeVal = EdgeLatticeVal.getConstantRange();
      }
      if (DefaultCase) {
        // It is possible that the default destination is the destination of
        // some cases. We cannot perform difference for those cases.
        // We know Condition != CaseValue in BBTo.  In some cases we can use
        // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
        // only do this when f is identity (i.e. Val == Condition), but we
        // should be able to do this for any injective f.
        if (Case.getCaseSuccessor() != BBTo && Condition == Val)
          EdgesVals = EdgesVals.difference(EdgeVal);
      } else if (Case.getCaseSuccessor() == BBTo)
        EdgesVals = EdgesVals.unionWith(EdgeVal);
    }
    return ValueLatticeElement::getRange(std::move(EdgesVals));
  }
  return None;
}

/// Compute the value of Val on the edge BBFrom -> BBTo or the value at
/// the basic block if the edge does not constrain Val.
Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue(
    Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) {
  // If already a constant, there is nothing to compute.
  if (Constant *VC = dyn_cast<Constant>(Val))
    return ValueLatticeElement::get(VC);

  ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo)
      .getValueOr(ValueLatticeElement::getOverdefined());
  if (hasSingleValue(LocalResult))
    // Can't get any more precise here
    return LocalResult;

  Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom);
  if (!OptInBlock)
    return None;
  ValueLatticeElement &InBlock = *OptInBlock;

  // Try to intersect ranges of the BB and the constraint on the edge.
  intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
                                                BBFrom->getTerminator());
  // We can use the context instruction (generically the ultimate instruction
  // the calling pass is trying to simplify) here, even though the result of
  // this function is generally cached when called from the solve* functions
  // (and that cached result might be used with queries using a different
  // context instruction), because when this function is called from the solve*
  // functions, the context instruction is not provided. When called from
  // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
  // but then the result is not cached.
  intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);

  return intersect(LocalResult, InBlock);
}

ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
                                                       Instruction *CxtI) {
  LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
                    << BB->getName() << "'\n");

  assert(BlockValueStack.empty() && BlockValueSet.empty());
  Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB);
  if (!OptResult) {
    solve();
    OptResult = getBlockValue(V, BB);
    assert(OptResult && "Value not available after solving");
  }
  ValueLatticeElement Result = *OptResult;
  intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);

  LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
  return Result;
}

ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
  LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
                    << "'\n");

  if (auto *C = dyn_cast<Constant>(V))
    return ValueLatticeElement::get(C);

  ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
  if (auto *I = dyn_cast<Instruction>(V))
    Result = getFromRangeMetadata(I);
  intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);

  LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
  return Result;
}

ValueLatticeElement LazyValueInfoImpl::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
               Instruction *CxtI) {
  LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
                    << FromBB->getName() << "' to '" << ToBB->getName()
                    << "'\n");

  Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI);
  if (!Result) {
    solve();
    Result = getEdgeValue(V, FromBB, ToBB, CxtI);
    assert(Result && "More work to do after problem solved?");
  }

  LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n");
  return *Result;
}

void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
                                   BasicBlock *NewSucc) {
  TheCache.threadEdgeImpl(OldSucc, NewSucc);
}

//===----------------------------------------------------------------------===//
//                            LazyValueInfo Impl
//===----------------------------------------------------------------------===//

/// This lazily constructs the LazyValueInfoImpl.
static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
                                  const Module *M) {
  if (!PImpl) {
    assert(M && "getCache() called with a null Module");
    const DataLayout &DL = M->getDataLayout();
    Function *GuardDecl = M->getFunction(
        Intrinsic::getName(Intrinsic::experimental_guard));
    PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
  }
  return *static_cast<LazyValueInfoImpl*>(PImpl);
}

bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
  Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);

  if (Info.PImpl)
    getImpl(Info.PImpl, Info.AC, F.getParent()).clear();

  // Fully lazy.
  return false;
}

void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
}

LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }

LazyValueInfo::~LazyValueInfo() { releaseMemory(); }

void LazyValueInfo::releaseMemory() {
  // If the cache was allocated, free it.
  if (PImpl) {
    delete &getImpl(PImpl, AC, nullptr);
    PImpl = nullptr;
  }
}

bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                               FunctionAnalysisManager::Invalidator &Inv) {
  // We need to invalidate if we have either failed to preserve this analyses
  // result directly or if any of its dependencies have been invalidated.
  auto PAC = PA.getChecker<LazyValueAnalysis>();
  if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
    return true;

  return false;
}

void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }

LazyValueInfo LazyValueAnalysis::run(Function &F,
                                     FunctionAnalysisManager &FAM) {
  auto &AC = FAM.getResult<AssumptionAnalysis>(F);
  auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);

  return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
}

/// Returns true if we can statically tell that this value will never be a
/// "useful" constant.  In practice, this means we've got something like an
/// alloca or a malloc call for which a comparison against a constant can
/// only be guarding dead code.  Note that we are potentially giving up some
/// precision in dead code (a constant result) in favour of avoiding a
/// expensive search for a easily answered common query.
static bool isKnownNonConstant(Value *V) {
  V = V->stripPointerCasts();
  // The return val of alloc cannot be a Constant.
  if (isa<AllocaInst>(V))
    return true;
  return false;
}

Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
                                     Instruction *CxtI) {
  // Bail out early if V is known not to be a Constant.
  if (isKnownNonConstant(V))
    return nullptr;

  ValueLatticeElement Result =
      getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);

  if (Result.isConstant())
    return Result.getConstant();
  if (Result.isConstantRange()) {
    const ConstantRange &CR = Result.getConstantRange();
    if (const APInt *SingleVal = CR.getSingleElement())
      return ConstantInt::get(V->getContext(), *SingleVal);
  }
  return nullptr;
}

ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
                                              Instruction *CxtI,
                                              bool UndefAllowed) {
  assert(V->getType()->isIntegerTy());
  unsigned Width = V->getType()->getIntegerBitWidth();
  ValueLatticeElement Result =
      getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
  if (Result.isUnknown())
    return ConstantRange::getEmpty(Width);
  if (Result.isConstantRange(UndefAllowed))
    return Result.getConstantRange(UndefAllowed);
  // We represent ConstantInt constants as constant ranges but other kinds
  // of integer constants, i.e. ConstantExpr will be tagged as constants
  assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
         "ConstantInt value must be represented as constantrange");
  return ConstantRange::getFull(Width);
}

/// Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
                                           BasicBlock *ToBB,
                                           Instruction *CxtI) {
  Module *M = FromBB->getModule();
  ValueLatticeElement Result =
      getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);

  if (Result.isConstant())
    return Result.getConstant();
  if (Result.isConstantRange()) {
    const ConstantRange &CR = Result.getConstantRange();
    if (const APInt *SingleVal = CR.getSingleElement())
      return ConstantInt::get(V->getContext(), *SingleVal);
  }
  return nullptr;
}

ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
                                                    BasicBlock *FromBB,
                                                    BasicBlock *ToBB,
                                                    Instruction *CxtI) {
  unsigned Width = V->getType()->getIntegerBitWidth();
  Module *M = FromBB->getModule();
  ValueLatticeElement Result =
      getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);

  if (Result.isUnknown())
    return ConstantRange::getEmpty(Width);
  if (Result.isConstantRange())
    return Result.getConstantRange();
  // We represent ConstantInt constants as constant ranges but other kinds
  // of integer constants, i.e. ConstantExpr will be tagged as constants
  assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
         "ConstantInt value must be represented as constantrange");
  return ConstantRange::getFull(Width);
}

static LazyValueInfo::Tristate
getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
                   const DataLayout &DL, TargetLibraryInfo *TLI) {
  // If we know the value is a constant, evaluate the conditional.
  Constant *Res = nullptr;
  if (Val.isConstant()) {
    Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
    if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
      return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
    return LazyValueInfo::Unknown;
  }

  if (Val.isConstantRange()) {
    ConstantInt *CI = dyn_cast<ConstantInt>(C);
    if (!CI) return LazyValueInfo::Unknown;

    const ConstantRange &CR = Val.getConstantRange();
    if (Pred == ICmpInst::ICMP_EQ) {
      if (!CR.contains(CI->getValue()))
        return LazyValueInfo::False;

      if (CR.isSingleElement())
        return LazyValueInfo::True;
    } else if (Pred == ICmpInst::ICMP_NE) {
      if (!CR.contains(CI->getValue()))
        return LazyValueInfo::True;

      if (CR.isSingleElement())
        return LazyValueInfo::False;
    } else {
      // Handle more complex predicates.
      ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
          (ICmpInst::Predicate)Pred, CI->getValue());
      if (TrueValues.contains(CR))
        return LazyValueInfo::True;
      if (TrueValues.inverse().contains(CR))
        return LazyValueInfo::False;
    }
    return LazyValueInfo::Unknown;
  }

  if (Val.isNotConstant()) {
    // If this is an equality comparison, we can try to fold it knowing that
    // "V != C1".
    if (Pred == ICmpInst::ICMP_EQ) {
      // !C1 == C -> false iff C1 == C.
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
                                            Val.getNotConstant(), C, DL,
                                            TLI);
      if (Res->isNullValue())
        return LazyValueInfo::False;
    } else if (Pred == ICmpInst::ICMP_NE) {
      // !C1 != C -> true iff C1 == C.
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
                                            Val.getNotConstant(), C, DL,
                                            TLI);
      if (Res->isNullValue())
        return LazyValueInfo::True;
    }
    return LazyValueInfo::Unknown;
  }

  return LazyValueInfo::Unknown;
}

/// Determine whether the specified value comparison with a constant is known to
/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
                                  BasicBlock *FromBB, BasicBlock *ToBB,
                                  Instruction *CxtI) {
  Module *M = FromBB->getModule();
  ValueLatticeElement Result =
      getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);

  return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
}

LazyValueInfo::Tristate
LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
                              Instruction *CxtI) {
  // Is or is not NonNull are common predicates being queried. If
  // isKnownNonZero can tell us the result of the predicate, we can
  // return it quickly. But this is only a fastpath, and falling
  // through would still be correct.
  Module *M = CxtI->getModule();
  const DataLayout &DL = M->getDataLayout();
  if (V->getType()->isPointerTy() && C->isNullValue() &&
      isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
    if (Pred == ICmpInst::ICMP_EQ)
      return LazyValueInfo::False;
    else if (Pred == ICmpInst::ICMP_NE)
      return LazyValueInfo::True;
  }
  ValueLatticeElement Result = getImpl(PImpl, AC, M).getValueAt(V, CxtI);
  Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
  if (Ret != Unknown)
    return Ret;

  // Note: The following bit of code is somewhat distinct from the rest of LVI;
  // LVI as a whole tries to compute a lattice value which is conservatively
  // correct at a given location.  In this case, we have a predicate which we
  // weren't able to prove about the merged result, and we're pushing that
  // predicate back along each incoming edge to see if we can prove it
  // separately for each input.  As a motivating example, consider:
  // bb1:
  //   %v1 = ... ; constantrange<1, 5>
  //   br label %merge
  // bb2:
  //   %v2 = ... ; constantrange<10, 20>
  //   br label %merge
  // merge:
  //   %phi = phi [%v1, %v2] ; constantrange<1,20>
  //   %pred = icmp eq i32 %phi, 8
  // We can't tell from the lattice value for '%phi' that '%pred' is false
  // along each path, but by checking the predicate over each input separately,
  // we can.
  // We limit the search to one step backwards from the current BB and value.
  // We could consider extending this to search further backwards through the
  // CFG and/or value graph, but there are non-obvious compile time vs quality
  // tradeoffs.
  if (CxtI) {
    BasicBlock *BB = CxtI->getParent();

    // Function entry or an unreachable block.  Bail to avoid confusing
    // analysis below.
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    if (PI == PE)
      return Unknown;

    // If V is a PHI node in the same block as the context, we need to ask
    // questions about the predicate as applied to the incoming value along
    // each edge. This is useful for eliminating cases where the predicate is
    // known along all incoming edges.
    if (auto *PHI = dyn_cast<PHINode>(V))
      if (PHI->getParent() == BB) {
        Tristate Baseline = Unknown;
        for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
          Value *Incoming = PHI->getIncomingValue(i);
          BasicBlock *PredBB = PHI->getIncomingBlock(i);
          // Note that PredBB may be BB itself.
          Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
                                               CxtI);

          // Keep going as long as we've seen a consistent known result for
          // all inputs.
          Baseline = (i == 0) ? Result /* First iteration */
            : (Baseline == Result ? Baseline : Unknown); /* All others */
          if (Baseline == Unknown)
            break;
        }
        if (Baseline != Unknown)
          return Baseline;
      }

    // For a comparison where the V is outside this block, it's possible
    // that we've branched on it before. Look to see if the value is known
    // on all incoming edges.
    if (!isa<Instruction>(V) ||
        cast<Instruction>(V)->getParent() != BB) {
      // For predecessor edge, determine if the comparison is true or false
      // on that edge. If they're all true or all false, we can conclude
      // the value of the comparison in this block.
      Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
      if (Baseline != Unknown) {
        // Check that all remaining incoming values match the first one.
        while (++PI != PE) {
          Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
          if (Ret != Baseline) break;
        }
        // If we terminated early, then one of the values didn't match.
        if (PI == PE) {
          return Baseline;
        }
      }
    }
  }
  return Unknown;
}

void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
                               BasicBlock *NewSucc) {
  if (PImpl) {
    getImpl(PImpl, AC, PredBB->getModule())
        .threadEdge(PredBB, OldSucc, NewSucc);
  }
}

void LazyValueInfo::eraseBlock(BasicBlock *BB) {
  if (PImpl) {
    getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
  }
}


void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
  if (PImpl) {
    getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
  }
}

// Print the LVI for the function arguments at the start of each basic block.
void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
    const BasicBlock *BB, formatted_raw_ostream &OS) {
  // Find if there are latticevalues defined for arguments of the function.
  auto *F = BB->getParent();
  for (auto &Arg : F->args()) {
    ValueLatticeElement Result = LVIImpl->getValueInBlock(
        const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
    if (Result.isUnknown())
      continue;
    OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
  }
}

// This function prints the LVI analysis for the instruction I at the beginning
// of various basic blocks. It relies on calculated values that are stored in
// the LazyValueInfoCache, and in the absence of cached values, recalculate the
// LazyValueInfo for `I`, and print that info.
void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
    const Instruction *I, formatted_raw_ostream &OS) {

  auto *ParentBB = I->getParent();
  SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
  // We can generate (solve) LVI values only for blocks that are dominated by
  // the I's parent. However, to avoid generating LVI for all dominating blocks,
  // that contain redundant/uninteresting information, we print LVI for
  // blocks that may use this LVI information (such as immediate successor
  // blocks, and blocks that contain uses of `I`).
  auto printResult = [&](const BasicBlock *BB) {
    if (!BlocksContainingLVI.insert(BB).second)
      return;
    ValueLatticeElement Result = LVIImpl->getValueInBlock(
        const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
      OS << "; LatticeVal for: '" << *I << "' in BB: '";
      BB->printAsOperand(OS, false);
      OS << "' is: " << Result << "\n";
  };

  printResult(ParentBB);
  // Print the LVI analysis results for the immediate successor blocks, that
  // are dominated by `ParentBB`.
  for (auto *BBSucc : successors(ParentBB))
    if (DT.dominates(ParentBB, BBSucc))
      printResult(BBSucc);

  // Print LVI in blocks where `I` is used.
  for (auto *U : I->users())
    if (auto *UseI = dyn_cast<Instruction>(U))
      if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
        printResult(UseI->getParent());

}

namespace {
// Printer class for LazyValueInfo results.
class LazyValueInfoPrinter : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid
  LazyValueInfoPrinter() : FunctionPass(ID) {
    initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
    AU.addRequired<LazyValueInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
  }

  // Get the mandatory dominator tree analysis and pass this in to the
  // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
  bool runOnFunction(Function &F) override {
    dbgs() << "LVI for function '" << F.getName() << "':\n";
    auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
    auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LVI.printLVI(F, DTree, dbgs());
    return false;
  }
};
}

char LazyValueInfoPrinter::ID = 0;
INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
                "Lazy Value Info Printer Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
                "Lazy Value Info Printer Pass", false, false)