AliasAnalysis.cpp 33.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified.  This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation.  Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>

using namespace llvm;

/// Allow disabling BasicAA from the AA results. This is particularly useful
/// when testing to isolate a single AA implementation.
static cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden,
                                    cl::init(false));

AAResults::AAResults(AAResults &&Arg)
    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
  for (auto &AA : AAs)
    AA->setAAResults(this);
}

AAResults::~AAResults() {
// FIXME; It would be nice to at least clear out the pointers back to this
// aggregation here, but we end up with non-nesting lifetimes in the legacy
// pass manager that prevent this from working. In the legacy pass manager
// we'll end up with dangling references here in some cases.
#if 0
  for (auto &AA : AAs)
    AA->setAAResults(nullptr);
#endif
}

bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
                           FunctionAnalysisManager::Invalidator &Inv) {
  // AAResults preserves the AAManager by default, due to the stateless nature
  // of AliasAnalysis. There is no need to check whether it has been preserved
  // explicitly. Check if any module dependency was invalidated and caused the
  // AAManager to be invalidated. Invalidate ourselves in that case.
  auto PAC = PA.getChecker<AAManager>();
  if (!PAC.preservedWhenStateless())
    return true;

  // Check if any of the function dependencies were invalidated, and invalidate
  // ourselves in that case.
  for (AnalysisKey *ID : AADeps)
    if (Inv.invalidate(ID, F, PA))
      return true;

  // Everything we depend on is still fine, so are we. Nothing to invalidate.
  return false;
}

//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//

AliasResult AAResults::alias(const MemoryLocation &LocA,
                             const MemoryLocation &LocB) {
  AAQueryInfo AAQIP;
  return alias(LocA, LocB, AAQIP);
}

AliasResult AAResults::alias(const MemoryLocation &LocA,
                             const MemoryLocation &LocB, AAQueryInfo &AAQI) {
  for (const auto &AA : AAs) {
    auto Result = AA->alias(LocA, LocB, AAQI);
    if (Result != MayAlias)
      return Result;
  }
  return MayAlias;
}

bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
                                       bool OrLocal) {
  AAQueryInfo AAQIP;
  return pointsToConstantMemory(Loc, AAQIP, OrLocal);
}

bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
                                       AAQueryInfo &AAQI, bool OrLocal) {
  for (const auto &AA : AAs)
    if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
      return true;

  return false;
}

ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
  ModRefInfo Result = ModRefInfo::ModRef;

  for (const auto &AA : AAs) {
    Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));

    // Early-exit the moment we reach the bottom of the lattice.
    if (isNoModRef(Result))
      return ModRefInfo::NoModRef;
  }

  return Result;
}

ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
  AAQueryInfo AAQIP;
  return getModRefInfo(I, Call2, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
                                    AAQueryInfo &AAQI) {
  // We may have two calls.
  if (const auto *Call1 = dyn_cast<CallBase>(I)) {
    // Check if the two calls modify the same memory.
    return getModRefInfo(Call1, Call2, AAQI);
  } else if (I->isFenceLike()) {
    // If this is a fence, just return ModRef.
    return ModRefInfo::ModRef;
  } else {
    // Otherwise, check if the call modifies or references the
    // location this memory access defines.  The best we can say
    // is that if the call references what this instruction
    // defines, it must be clobbered by this location.
    const MemoryLocation DefLoc = MemoryLocation::get(I);
    ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
    if (isModOrRefSet(MR))
      return setModAndRef(MR);
  }
  return ModRefInfo::NoModRef;
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(Call, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  ModRefInfo Result = ModRefInfo::ModRef;

  for (const auto &AA : AAs) {
    Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));

    // Early-exit the moment we reach the bottom of the lattice.
    if (isNoModRef(Result))
      return ModRefInfo::NoModRef;
  }

  // Try to refine the mod-ref info further using other API entry points to the
  // aggregate set of AA results.
  auto MRB = getModRefBehavior(Call);
  if (onlyAccessesInaccessibleMem(MRB))
    return ModRefInfo::NoModRef;

  if (onlyReadsMemory(MRB))
    Result = clearMod(Result);
  else if (doesNotReadMemory(MRB))
    Result = clearRef(Result);

  if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
    bool IsMustAlias = true;
    ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
    if (doesAccessArgPointees(MRB)) {
      for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
        const Value *Arg = *AI;
        if (!Arg->getType()->isPointerTy())
          continue;
        unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
        MemoryLocation ArgLoc =
            MemoryLocation::getForArgument(Call, ArgIdx, TLI);
        AliasResult ArgAlias = alias(ArgLoc, Loc);
        if (ArgAlias != NoAlias) {
          ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
          AllArgsMask = unionModRef(AllArgsMask, ArgMask);
        }
        // Conservatively clear IsMustAlias unless only MustAlias is found.
        IsMustAlias &= (ArgAlias == MustAlias);
      }
    }
    // Return NoModRef if no alias found with any argument.
    if (isNoModRef(AllArgsMask))
      return ModRefInfo::NoModRef;
    // Logical & between other AA analyses and argument analysis.
    Result = intersectModRef(Result, AllArgsMask);
    // If only MustAlias found above, set Must bit.
    Result = IsMustAlias ? setMust(Result) : clearMust(Result);
  }

  // If Loc is a constant memory location, the call definitely could not
  // modify the memory location.
  if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
    Result = clearMod(Result);

  return Result;
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
                                    const CallBase *Call2) {
  AAQueryInfo AAQIP;
  return getModRefInfo(Call1, Call2, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
                                    const CallBase *Call2, AAQueryInfo &AAQI) {
  ModRefInfo Result = ModRefInfo::ModRef;

  for (const auto &AA : AAs) {
    Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));

    // Early-exit the moment we reach the bottom of the lattice.
    if (isNoModRef(Result))
      return ModRefInfo::NoModRef;
  }

  // Try to refine the mod-ref info further using other API entry points to the
  // aggregate set of AA results.

  // If Call1 or Call2 are readnone, they don't interact.
  auto Call1B = getModRefBehavior(Call1);
  if (Call1B == FMRB_DoesNotAccessMemory)
    return ModRefInfo::NoModRef;

  auto Call2B = getModRefBehavior(Call2);
  if (Call2B == FMRB_DoesNotAccessMemory)
    return ModRefInfo::NoModRef;

  // If they both only read from memory, there is no dependence.
  if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
    return ModRefInfo::NoModRef;

  // If Call1 only reads memory, the only dependence on Call2 can be
  // from Call1 reading memory written by Call2.
  if (onlyReadsMemory(Call1B))
    Result = clearMod(Result);
  else if (doesNotReadMemory(Call1B))
    Result = clearRef(Result);

  // If Call2 only access memory through arguments, accumulate the mod/ref
  // information from Call1's references to the memory referenced by
  // Call2's arguments.
  if (onlyAccessesArgPointees(Call2B)) {
    if (!doesAccessArgPointees(Call2B))
      return ModRefInfo::NoModRef;
    ModRefInfo R = ModRefInfo::NoModRef;
    bool IsMustAlias = true;
    for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
      const Value *Arg = *I;
      if (!Arg->getType()->isPointerTy())
        continue;
      unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
      auto Call2ArgLoc =
          MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);

      // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
      // dependence of Call1 on that location is the inverse:
      // - If Call2 modifies location, dependence exists if Call1 reads or
      //   writes.
      // - If Call2 only reads location, dependence exists if Call1 writes.
      ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
      ModRefInfo ArgMask = ModRefInfo::NoModRef;
      if (isModSet(ArgModRefC2))
        ArgMask = ModRefInfo::ModRef;
      else if (isRefSet(ArgModRefC2))
        ArgMask = ModRefInfo::Mod;

      // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
      // above ArgMask to update dependence info.
      ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
      ArgMask = intersectModRef(ArgMask, ModRefC1);

      // Conservatively clear IsMustAlias unless only MustAlias is found.
      IsMustAlias &= isMustSet(ModRefC1);

      R = intersectModRef(unionModRef(R, ArgMask), Result);
      if (R == Result) {
        // On early exit, not all args were checked, cannot set Must.
        if (I + 1 != E)
          IsMustAlias = false;
        break;
      }
    }

    if (isNoModRef(R))
      return ModRefInfo::NoModRef;

    // If MustAlias found above, set Must bit.
    return IsMustAlias ? setMust(R) : clearMust(R);
  }

  // If Call1 only accesses memory through arguments, check if Call2 references
  // any of the memory referenced by Call1's arguments. If not, return NoModRef.
  if (onlyAccessesArgPointees(Call1B)) {
    if (!doesAccessArgPointees(Call1B))
      return ModRefInfo::NoModRef;
    ModRefInfo R = ModRefInfo::NoModRef;
    bool IsMustAlias = true;
    for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
      const Value *Arg = *I;
      if (!Arg->getType()->isPointerTy())
        continue;
      unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
      auto Call1ArgLoc =
          MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);

      // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
      // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
      // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
      ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
      ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
      if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
          (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
        R = intersectModRef(unionModRef(R, ArgModRefC1), Result);

      // Conservatively clear IsMustAlias unless only MustAlias is found.
      IsMustAlias &= isMustSet(ModRefC2);

      if (R == Result) {
        // On early exit, not all args were checked, cannot set Must.
        if (I + 1 != E)
          IsMustAlias = false;
        break;
      }
    }

    if (isNoModRef(R))
      return ModRefInfo::NoModRef;

    // If MustAlias found above, set Must bit.
    return IsMustAlias ? setMust(R) : clearMust(R);
  }

  return Result;
}

FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;

  for (const auto &AA : AAs) {
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == FMRB_DoesNotAccessMemory)
      return Result;
  }

  return Result;
}

FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;

  for (const auto &AA : AAs) {
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == FMRB_DoesNotAccessMemory)
      return Result;
  }

  return Result;
}

raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
  switch (AR) {
  case NoAlias:
    OS << "NoAlias";
    break;
  case MustAlias:
    OS << "MustAlias";
    break;
  case MayAlias:
    OS << "MayAlias";
    break;
  case PartialAlias:
    OS << "PartialAlias";
    break;
  }
  return OS;
}

//===----------------------------------------------------------------------===//
// Helper method implementation
//===----------------------------------------------------------------------===//

ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(L, Loc, AAQIP);
}
ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Be conservative in the face of atomic.
  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
    return ModRefInfo::ModRef;

  // If the load address doesn't alias the given address, it doesn't read
  // or write the specified memory.
  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;
    if (AR == MustAlias)
      return ModRefInfo::MustRef;
  }
  // Otherwise, a load just reads.
  return ModRefInfo::Ref;
}

ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(S, Loc, AAQIP);
}
ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Be conservative in the face of atomic.
  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
    return ModRefInfo::ModRef;

  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
    // If the store address cannot alias the pointer in question, then the
    // specified memory cannot be modified by the store.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the pointer is a pointer to constant memory, then it could not have
    // been modified by this store.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;

    // If the store address aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustMod;
  }

  // Otherwise, a store just writes.
  return ModRefInfo::Mod;
}

ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(S, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // If we know that the location is a constant memory location, the fence
  // cannot modify this location.
  if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
    return ModRefInfo::Ref;
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(V, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
    // If the va_arg address cannot alias the pointer in question, then the
    // specified memory cannot be accessed by the va_arg.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the pointer is a pointer to constant memory, then it could not have
    // been modified by this va_arg.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;

    // If the va_arg aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustModRef;
  }

  // Otherwise, a va_arg reads and writes.
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(CatchPad, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  if (Loc.Ptr) {
    // If the pointer is a pointer to constant memory,
    // then it could not have been modified by this catchpad.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;
  }

  // Otherwise, a catchpad reads and writes.
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(CatchRet, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  if (Loc.Ptr) {
    // If the pointer is a pointer to constant memory,
    // then it could not have been modified by this catchpad.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;
  }

  // Otherwise, a catchret reads and writes.
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(CX, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
    return ModRefInfo::ModRef;

  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
    // If the cmpxchg address does not alias the location, it does not access
    // it.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the cmpxchg address aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustModRef;
  }

  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(RMW, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
  if (isStrongerThanMonotonic(RMW->getOrdering()))
    return ModRefInfo::ModRef;

  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
    // If the atomicrmw address does not alias the location, it does not access
    // it.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the atomicrmw address aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustModRef;
  }

  return ModRefInfo::ModRef;
}

/// Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock.
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
/// BasicAA isn't willing to spend linear time determining whether an alloca
/// was captured before or after this particular call, while we are. However,
/// with a smarter AA in place, this test is just wasting compile time.
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
                                         const MemoryLocation &MemLoc,
                                         DominatorTree *DT) {
  if (!DT)
    return ModRefInfo::ModRef;

  const Value *Object =
      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
      isa<Constant>(Object))
    return ModRefInfo::ModRef;

  const auto *Call = dyn_cast<CallBase>(I);
  if (!Call || Call == Object)
    return ModRefInfo::ModRef;

  if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
                                 /* StoreCaptures */ true, I, DT,
                                 /* include Object */ true))
    return ModRefInfo::ModRef;

  unsigned ArgNo = 0;
  ModRefInfo R = ModRefInfo::NoModRef;
  bool IsMustAlias = true;
  // Set flag only if no May found and all operands processed.
  for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
       CI != CE; ++CI, ++ArgNo) {
    // Only look at the no-capture or byval pointer arguments.  If this
    // pointer were passed to arguments that were neither of these, then it
    // couldn't be no-capture.
    if (!(*CI)->getType()->isPointerTy() ||
        (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
         !Call->isByValArgument(ArgNo)))
      continue;

    AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
    // If this is a no-capture pointer argument, see if we can tell that it
    // is impossible to alias the pointer we're checking.  If not, we have to
    // assume that the call could touch the pointer, even though it doesn't
    // escape.
    if (AR != MustAlias)
      IsMustAlias = false;
    if (AR == NoAlias)
      continue;
    if (Call->doesNotAccessMemory(ArgNo))
      continue;
    if (Call->onlyReadsMemory(ArgNo)) {
      R = ModRefInfo::Ref;
      continue;
    }
    // Not returning MustModRef since we have not seen all the arguments.
    return ModRefInfo::ModRef;
  }
  return IsMustAlias ? setMust(R) : clearMust(R);
}

/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the location Loc.
///
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
                                    const MemoryLocation &Loc) {
  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
}

/// canInstructionRangeModRef - Return true if it is possible for the
/// execution of the specified instructions to mod\ref (according to the
/// mode) the location Loc. The instructions to consider are all
/// of the instructions in the range of [I1,I2] INCLUSIVE.
/// I1 and I2 must be in the same basic block.
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
                                          const Instruction &I2,
                                          const MemoryLocation &Loc,
                                          const ModRefInfo Mode) {
  assert(I1.getParent() == I2.getParent() &&
         "Instructions not in same basic block!");
  BasicBlock::const_iterator I = I1.getIterator();
  BasicBlock::const_iterator E = I2.getIterator();
  ++E;  // Convert from inclusive to exclusive range.

  for (; I != E; ++I) // Check every instruction in range
    if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
      return true;
  return false;
}

// Provide a definition for the root virtual destructor.
AAResults::Concept::~Concept() = default;

// Provide a definition for the static object used to identify passes.
AnalysisKey AAManager::Key;

namespace {


} // end anonymous namespace

ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
  initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
    : ImmutablePass(ID), CB(std::move(CB)) {
  initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

char ExternalAAWrapperPass::ID = 0;

INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
                false, true)

ImmutablePass *
llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
  return new ExternalAAWrapperPass(std::move(Callback));
}

AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
}

char AAResultsWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
                      "Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
                    "Function Alias Analysis Results", false, true)

FunctionPass *llvm::createAAResultsWrapperPass() {
  return new AAResultsWrapperPass();
}

/// Run the wrapper pass to rebuild an aggregation over known AA passes.
///
/// This is the legacy pass manager's interface to the new-style AA results
/// aggregation object. Because this is somewhat shoe-horned into the legacy
/// pass manager, we hard code all the specific alias analyses available into
/// it. While the particular set enabled is configured via commandline flags,
/// adding a new alias analysis to LLVM will require adding support for it to
/// this list.
bool AAResultsWrapperPass::runOnFunction(Function &F) {
  // NB! This *must* be reset before adding new AA results to the new
  // AAResults object because in the legacy pass manager, each instance
  // of these will refer to the *same* immutable analyses, registering and
  // unregistering themselves with them. We need to carefully tear down the
  // previous object first, in this case replacing it with an empty one, before
  // registering new results.
  AAR.reset(
      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));

  // BasicAA is always available for function analyses. Also, we add it first
  // so that it can trump TBAA results when it proves MustAlias.
  // FIXME: TBAA should have an explicit mode to support this and then we
  // should reconsider the ordering here.
  if (!DisableBasicAA)
    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());

  // Populate the results with the currently available AAs.
  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass =
          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());

  // If available, run an external AA providing callback over the results as
  // well.
  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
    if (WrapperPass->CB)
      WrapperPass->CB(*this, F, *AAR);

  // Analyses don't mutate the IR, so return false.
  return false;
}

void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<BasicAAWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();

  // We also need to mark all the alias analysis passes we will potentially
  // probe in runOnFunction as used here to ensure the legacy pass manager
  // preserves them. This hard coding of lists of alias analyses is specific to
  // the legacy pass manager.
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
  AU.addUsedIfAvailable<ExternalAAWrapperPass>();
}

AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
                                        BasicAAResult &BAR) {
  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));

  // Add in our explicitly constructed BasicAA results.
  if (!DisableBasicAA)
    AAR.addAAResult(BAR);

  // Populate the results with the other currently available AAs.
  if (auto *WrapperPass =
          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass =
          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
    if (WrapperPass->CB)
      WrapperPass->CB(P, F, AAR);

  return AAR;
}

bool llvm::isNoAliasCall(const Value *V) {
  if (const auto *Call = dyn_cast<CallBase>(V))
    return Call->hasRetAttr(Attribute::NoAlias);
  return false;
}

bool llvm::isNoAliasArgument(const Value *V) {
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasNoAliasAttr();
  return false;
}

bool llvm::isIdentifiedObject(const Value *V) {
  if (isa<AllocaInst>(V))
    return true;
  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    return true;
  if (isNoAliasCall(V))
    return true;
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasNoAliasAttr() || A->hasByValAttr();
  return false;
}

bool llvm::isIdentifiedFunctionLocal(const Value *V) {
  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
}

void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
  // to be added here also.
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
  AU.addUsedIfAvailable<ExternalAAWrapperPass>();
}