SyntheticSections.cpp 135 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
//===- SyntheticSections.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains linker-synthesized sections. Currently,
// synthetic sections are created either output sections or input sections,
// but we are rewriting code so that all synthetic sections are created as
// input sections.
//
//===----------------------------------------------------------------------===//

#include "SyntheticSections.h"
#include "Config.h"
#include "InputFiles.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Target.h"
#include "Writer.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "lld/Common/Version.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/TimeProfiler.h"
#include <cstdlib>
#include <thread>

using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace lld;
using namespace lld::elf;

using llvm::support::endian::read32le;
using llvm::support::endian::write32le;
using llvm::support::endian::write64le;

constexpr size_t MergeNoTailSection::numShards;

static uint64_t readUint(uint8_t *buf) {
  return config->is64 ? read64(buf) : read32(buf);
}

static void writeUint(uint8_t *buf, uint64_t val) {
  if (config->is64)
    write64(buf, val);
  else
    write32(buf, val);
}

// Returns an LLD version string.
static ArrayRef<uint8_t> getVersion() {
  // Check LLD_VERSION first for ease of testing.
  // You can get consistent output by using the environment variable.
  // This is only for testing.
  StringRef s = getenv("LLD_VERSION");
  if (s.empty())
    s = saver.save(Twine("Linker: ") + getLLDVersion());

  // +1 to include the terminating '\0'.
  return {(const uint8_t *)s.data(), s.size() + 1};
}

// Creates a .comment section containing LLD version info.
// With this feature, you can identify LLD-generated binaries easily
// by "readelf --string-dump .comment <file>".
// The returned object is a mergeable string section.
MergeInputSection *elf::createCommentSection() {
  return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
                                 getVersion(), ".comment");
}

// .MIPS.abiflags section.
template <class ELFT>
MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
    : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
      flags(flags) {
  this->entsize = sizeof(Elf_Mips_ABIFlags);
}

template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
  memcpy(buf, &flags, sizeof(flags));
}

template <class ELFT>
MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
  Elf_Mips_ABIFlags flags = {};
  bool create = false;

  for (InputSectionBase *sec : inputSections) {
    if (sec->type != SHT_MIPS_ABIFLAGS)
      continue;
    sec->markDead();
    create = true;

    std::string filename = toString(sec->file);
    const size_t size = sec->data().size();
    // Older version of BFD (such as the default FreeBSD linker) concatenate
    // .MIPS.abiflags instead of merging. To allow for this case (or potential
    // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
    if (size < sizeof(Elf_Mips_ABIFlags)) {
      error(filename + ": invalid size of .MIPS.abiflags section: got " +
            Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
      return nullptr;
    }
    auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data());
    if (s->version != 0) {
      error(filename + ": unexpected .MIPS.abiflags version " +
            Twine(s->version));
      return nullptr;
    }

    // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
    // select the highest number of ISA/Rev/Ext.
    flags.isa_level = std::max(flags.isa_level, s->isa_level);
    flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
    flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
    flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
    flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
    flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
    flags.ases |= s->ases;
    flags.flags1 |= s->flags1;
    flags.flags2 |= s->flags2;
    flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
  };

  if (create)
    return make<MipsAbiFlagsSection<ELFT>>(flags);
  return nullptr;
}

// .MIPS.options section.
template <class ELFT>
MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
    : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
      reginfo(reginfo) {
  this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
}

template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
  auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
  options->kind = ODK_REGINFO;
  options->size = getSize();

  if (!config->relocatable)
    reginfo.ri_gp_value = in.mipsGot->getGp();
  memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
}

template <class ELFT>
MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
  // N64 ABI only.
  if (!ELFT::Is64Bits)
    return nullptr;

  std::vector<InputSectionBase *> sections;
  for (InputSectionBase *sec : inputSections)
    if (sec->type == SHT_MIPS_OPTIONS)
      sections.push_back(sec);

  if (sections.empty())
    return nullptr;

  Elf_Mips_RegInfo reginfo = {};
  for (InputSectionBase *sec : sections) {
    sec->markDead();

    std::string filename = toString(sec->file);
    ArrayRef<uint8_t> d = sec->data();

    while (!d.empty()) {
      if (d.size() < sizeof(Elf_Mips_Options)) {
        error(filename + ": invalid size of .MIPS.options section");
        break;
      }

      auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
      if (opt->kind == ODK_REGINFO) {
        reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
        sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
        break;
      }

      if (!opt->size)
        fatal(filename + ": zero option descriptor size");
      d = d.slice(opt->size);
    }
  };

  return make<MipsOptionsSection<ELFT>>(reginfo);
}

// MIPS .reginfo section.
template <class ELFT>
MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
    : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
      reginfo(reginfo) {
  this->entsize = sizeof(Elf_Mips_RegInfo);
}

template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
  if (!config->relocatable)
    reginfo.ri_gp_value = in.mipsGot->getGp();
  memcpy(buf, &reginfo, sizeof(reginfo));
}

template <class ELFT>
MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
  // Section should be alive for O32 and N32 ABIs only.
  if (ELFT::Is64Bits)
    return nullptr;

  std::vector<InputSectionBase *> sections;
  for (InputSectionBase *sec : inputSections)
    if (sec->type == SHT_MIPS_REGINFO)
      sections.push_back(sec);

  if (sections.empty())
    return nullptr;

  Elf_Mips_RegInfo reginfo = {};
  for (InputSectionBase *sec : sections) {
    sec->markDead();

    if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) {
      error(toString(sec->file) + ": invalid size of .reginfo section");
      return nullptr;
    }

    auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data());
    reginfo.ri_gprmask |= r->ri_gprmask;
    sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
  };

  return make<MipsReginfoSection<ELFT>>(reginfo);
}

InputSection *elf::createInterpSection() {
  // StringSaver guarantees that the returned string ends with '\0'.
  StringRef s = saver.save(config->dynamicLinker);
  ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};

  return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
                            ".interp");
}

Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
                                uint64_t size, InputSectionBase &section) {
  auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type,
                          value, size, &section);
  if (in.symTab)
    in.symTab->addSymbol(s);
  return s;
}

static size_t getHashSize() {
  switch (config->buildId) {
  case BuildIdKind::Fast:
    return 8;
  case BuildIdKind::Md5:
  case BuildIdKind::Uuid:
    return 16;
  case BuildIdKind::Sha1:
    return 20;
  case BuildIdKind::Hexstring:
    return config->buildIdVector.size();
  default:
    llvm_unreachable("unknown BuildIdKind");
  }
}

// This class represents a linker-synthesized .note.gnu.property section.
//
// In x86 and AArch64, object files may contain feature flags indicating the
// features that they have used. The flags are stored in a .note.gnu.property
// section.
//
// lld reads the sections from input files and merges them by computing AND of
// the flags. The result is written as a new .note.gnu.property section.
//
// If the flag is zero (which indicates that the intersection of the feature
// sets is empty, or some input files didn't have .note.gnu.property sections),
// we don't create this section.
GnuPropertySection::GnuPropertySection()
    : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
                       config->wordsize, ".note.gnu.property") {}

void GnuPropertySection::writeTo(uint8_t *buf) {
  uint32_t featureAndType = config->emachine == EM_AARCH64
                                ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
                                : GNU_PROPERTY_X86_FEATURE_1_AND;

  write32(buf, 4);                                   // Name size
  write32(buf + 4, config->is64 ? 16 : 12);          // Content size
  write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
  memcpy(buf + 12, "GNU", 4);                        // Name string
  write32(buf + 16, featureAndType);                 // Feature type
  write32(buf + 20, 4);                              // Feature size
  write32(buf + 24, config->andFeatures);            // Feature flags
  if (config->is64)
    write32(buf + 28, 0); // Padding
}

size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }

BuildIdSection::BuildIdSection()
    : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
      hashSize(getHashSize()) {}

void BuildIdSection::writeTo(uint8_t *buf) {
  write32(buf, 4);                      // Name size
  write32(buf + 4, hashSize);           // Content size
  write32(buf + 8, NT_GNU_BUILD_ID);    // Type
  memcpy(buf + 12, "GNU", 4);           // Name string
  hashBuf = buf + 16;
}

void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
  assert(buf.size() == hashSize);
  memcpy(hashBuf, buf.data(), hashSize);
}

BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
  this->bss = true;
  this->size = size;
}

EhFrameSection::EhFrameSection()
    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}

// Search for an existing CIE record or create a new one.
// CIE records from input object files are uniquified by their contents
// and where their relocations point to.
template <class ELFT, class RelTy>
CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
  Symbol *personality = nullptr;
  unsigned firstRelI = cie.firstRelocation;
  if (firstRelI != (unsigned)-1)
    personality =
        &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);

  // Search for an existing CIE by CIE contents/relocation target pair.
  CieRecord *&rec = cieMap[{cie.data(), personality}];

  // If not found, create a new one.
  if (!rec) {
    rec = make<CieRecord>();
    rec->cie = &cie;
    cieRecords.push_back(rec);
  }
  return rec;
}

// There is one FDE per function. Returns true if a given FDE
// points to a live function.
template <class ELFT, class RelTy>
bool EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
  auto *sec = cast<EhInputSection>(fde.sec);
  unsigned firstRelI = fde.firstRelocation;

  // An FDE should point to some function because FDEs are to describe
  // functions. That's however not always the case due to an issue of
  // ld.gold with -r. ld.gold may discard only functions and leave their
  // corresponding FDEs, which results in creating bad .eh_frame sections.
  // To deal with that, we ignore such FDEs.
  if (firstRelI == (unsigned)-1)
    return false;

  const RelTy &rel = rels[firstRelI];
  Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);

  // FDEs for garbage-collected or merged-by-ICF sections, or sections in
  // another partition, are dead.
  if (auto *d = dyn_cast<Defined>(&b))
    if (SectionBase *sec = d->section)
      return sec->partition == partition;
  return false;
}

// .eh_frame is a sequence of CIE or FDE records. In general, there
// is one CIE record per input object file which is followed by
// a list of FDEs. This function searches an existing CIE or create a new
// one and associates FDEs to the CIE.
template <class ELFT, class RelTy>
void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
  offsetToCie.clear();
  for (EhSectionPiece &piece : sec->pieces) {
    // The empty record is the end marker.
    if (piece.size == 4)
      return;

    size_t offset = piece.inputOff;
    uint32_t id = read32(piece.data().data() + 4);
    if (id == 0) {
      offsetToCie[offset] = addCie<ELFT>(piece, rels);
      continue;
    }

    uint32_t cieOffset = offset + 4 - id;
    CieRecord *rec = offsetToCie[cieOffset];
    if (!rec)
      fatal(toString(sec) + ": invalid CIE reference");

    if (!isFdeLive<ELFT>(piece, rels))
      continue;
    rec->fdes.push_back(&piece);
    numFdes++;
  }
}

template <class ELFT>
void EhFrameSection::addSectionAux(EhInputSection *sec) {
  if (!sec->isLive())
    return;
  if (sec->areRelocsRela)
    addRecords<ELFT>(sec, sec->template relas<ELFT>());
  else
    addRecords<ELFT>(sec, sec->template rels<ELFT>());
}

void EhFrameSection::addSection(EhInputSection *sec) {
  sec->parent = this;

  alignment = std::max(alignment, sec->alignment);
  sections.push_back(sec);

  for (auto *ds : sec->dependentSections)
    dependentSections.push_back(ds);
}

static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
  memcpy(buf, d.data(), d.size());

  size_t aligned = alignTo(d.size(), config->wordsize);

  // Zero-clear trailing padding if it exists.
  memset(buf + d.size(), 0, aligned - d.size());

  // Fix the size field. -4 since size does not include the size field itself.
  write32(buf, aligned - 4);
}

void EhFrameSection::finalizeContents() {
  assert(!this->size); // Not finalized.

  switch (config->ekind) {
  case ELFNoneKind:
    llvm_unreachable("invalid ekind");
  case ELF32LEKind:
    for (EhInputSection *sec : sections)
      addSectionAux<ELF32LE>(sec);
    break;
  case ELF32BEKind:
    for (EhInputSection *sec : sections)
      addSectionAux<ELF32BE>(sec);
    break;
  case ELF64LEKind:
    for (EhInputSection *sec : sections)
      addSectionAux<ELF64LE>(sec);
    break;
  case ELF64BEKind:
    for (EhInputSection *sec : sections)
      addSectionAux<ELF64BE>(sec);
    break;
  }

  size_t off = 0;
  for (CieRecord *rec : cieRecords) {
    rec->cie->outputOff = off;
    off += alignTo(rec->cie->size, config->wordsize);

    for (EhSectionPiece *fde : rec->fdes) {
      fde->outputOff = off;
      off += alignTo(fde->size, config->wordsize);
    }
  }

  // The LSB standard does not allow a .eh_frame section with zero
  // Call Frame Information records. glibc unwind-dw2-fde.c
  // classify_object_over_fdes expects there is a CIE record length 0 as a
  // terminator. Thus we add one unconditionally.
  off += 4;

  this->size = off;
}

// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
// to get an FDE from an address to which FDE is applied. This function
// returns a list of such pairs.
std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const {
  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
  std::vector<FdeData> ret;

  uint64_t va = getPartition().ehFrameHdr->getVA();
  for (CieRecord *rec : cieRecords) {
    uint8_t enc = getFdeEncoding(rec->cie);
    for (EhSectionPiece *fde : rec->fdes) {
      uint64_t pc = getFdePc(buf, fde->outputOff, enc);
      uint64_t fdeVA = getParent()->addr + fde->outputOff;
      if (!isInt<32>(pc - va))
        fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
              Twine::utohexstr(pc - va));
      ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
    }
  }

  // Sort the FDE list by their PC and uniqueify. Usually there is only
  // one FDE for a PC (i.e. function), but if ICF merges two functions
  // into one, there can be more than one FDEs pointing to the address.
  auto less = [](const FdeData &a, const FdeData &b) {
    return a.pcRel < b.pcRel;
  };
  llvm::stable_sort(ret, less);
  auto eq = [](const FdeData &a, const FdeData &b) {
    return a.pcRel == b.pcRel;
  };
  ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());

  return ret;
}

static uint64_t readFdeAddr(uint8_t *buf, int size) {
  switch (size) {
  case DW_EH_PE_udata2:
    return read16(buf);
  case DW_EH_PE_sdata2:
    return (int16_t)read16(buf);
  case DW_EH_PE_udata4:
    return read32(buf);
  case DW_EH_PE_sdata4:
    return (int32_t)read32(buf);
  case DW_EH_PE_udata8:
  case DW_EH_PE_sdata8:
    return read64(buf);
  case DW_EH_PE_absptr:
    return readUint(buf);
  }
  fatal("unknown FDE size encoding");
}

// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
// We need it to create .eh_frame_hdr section.
uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
                                  uint8_t enc) const {
  // The starting address to which this FDE applies is
  // stored at FDE + 8 byte.
  size_t off = fdeOff + 8;
  uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
  if ((enc & 0x70) == DW_EH_PE_absptr)
    return addr;
  if ((enc & 0x70) == DW_EH_PE_pcrel)
    return addr + getParent()->addr + off;
  fatal("unknown FDE size relative encoding");
}

void EhFrameSection::writeTo(uint8_t *buf) {
  // Write CIE and FDE records.
  for (CieRecord *rec : cieRecords) {
    size_t cieOffset = rec->cie->outputOff;
    writeCieFde(buf + cieOffset, rec->cie->data());

    for (EhSectionPiece *fde : rec->fdes) {
      size_t off = fde->outputOff;
      writeCieFde(buf + off, fde->data());

      // FDE's second word should have the offset to an associated CIE.
      // Write it.
      write32(buf + off + 4, off + 4 - cieOffset);
    }
  }

  // Apply relocations. .eh_frame section contents are not contiguous
  // in the output buffer, but relocateAlloc() still works because
  // getOffset() takes care of discontiguous section pieces.
  for (EhInputSection *s : sections)
    s->relocateAlloc(buf, nullptr);

  if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
    getPartition().ehFrameHdr->write();
}

GotSection::GotSection()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
                       ".got") {
  // If ElfSym::globalOffsetTable is relative to .got and is referenced,
  // increase numEntries by the number of entries used to emit
  // ElfSym::globalOffsetTable.
  if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt)
    numEntries += target->gotHeaderEntriesNum;
}

void GotSection::addEntry(Symbol &sym) {
  sym.gotIndex = numEntries;
  ++numEntries;
}

bool GotSection::addDynTlsEntry(Symbol &sym) {
  if (sym.globalDynIndex != -1U)
    return false;
  sym.globalDynIndex = numEntries;
  // Global Dynamic TLS entries take two GOT slots.
  numEntries += 2;
  return true;
}

// Reserves TLS entries for a TLS module ID and a TLS block offset.
// In total it takes two GOT slots.
bool GotSection::addTlsIndex() {
  if (tlsIndexOff != uint32_t(-1))
    return false;
  tlsIndexOff = numEntries * config->wordsize;
  numEntries += 2;
  return true;
}

uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
  return this->getVA() + b.globalDynIndex * config->wordsize;
}

uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
  return b.globalDynIndex * config->wordsize;
}

void GotSection::finalizeContents() {
  size = numEntries * config->wordsize;
}

bool GotSection::isNeeded() const {
  // We need to emit a GOT even if it's empty if there's a relocation that is
  // relative to GOT(such as GOTOFFREL).
  return numEntries || hasGotOffRel;
}

void GotSection::writeTo(uint8_t *buf) {
  // Buf points to the start of this section's buffer,
  // whereas InputSectionBase::relocateAlloc() expects its argument
  // to point to the start of the output section.
  target->writeGotHeader(buf);
  relocateAlloc(buf - outSecOff, buf - outSecOff + size);
}

static uint64_t getMipsPageAddr(uint64_t addr) {
  return (addr + 0x8000) & ~0xffff;
}

static uint64_t getMipsPageCount(uint64_t size) {
  return (size + 0xfffe) / 0xffff + 1;
}

MipsGotSection::MipsGotSection()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
                       ".got") {}

void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
                              RelExpr expr) {
  FileGot &g = getGot(file);
  if (expr == R_MIPS_GOT_LOCAL_PAGE) {
    if (const OutputSection *os = sym.getOutputSection())
      g.pagesMap.insert({os, {}});
    else
      g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
  } else if (sym.isTls())
    g.tls.insert({&sym, 0});
  else if (sym.isPreemptible && expr == R_ABS)
    g.relocs.insert({&sym, 0});
  else if (sym.isPreemptible)
    g.global.insert({&sym, 0});
  else if (expr == R_MIPS_GOT_OFF32)
    g.local32.insert({{&sym, addend}, 0});
  else
    g.local16.insert({{&sym, addend}, 0});
}

void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
  getGot(file).dynTlsSymbols.insert({&sym, 0});
}

void MipsGotSection::addTlsIndex(InputFile &file) {
  getGot(file).dynTlsSymbols.insert({nullptr, 0});
}

size_t MipsGotSection::FileGot::getEntriesNum() const {
  return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
         tls.size() + dynTlsSymbols.size() * 2;
}

size_t MipsGotSection::FileGot::getPageEntriesNum() const {
  size_t num = 0;
  for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
    num += p.second.count;
  return num;
}

size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
  size_t count = getPageEntriesNum() + local16.size() + global.size();
  // If there are relocation-only entries in the GOT, TLS entries
  // are allocated after them. TLS entries should be addressable
  // by 16-bit index so count both reloc-only and TLS entries.
  if (!tls.empty() || !dynTlsSymbols.empty())
    count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
  return count;
}

MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
  if (!f.mipsGotIndex.hasValue()) {
    gots.emplace_back();
    gots.back().file = &f;
    f.mipsGotIndex = gots.size() - 1;
  }
  return gots[*f.mipsGotIndex];
}

uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
                                            const Symbol &sym,
                                            int64_t addend) const {
  const FileGot &g = gots[*f->mipsGotIndex];
  uint64_t index = 0;
  if (const OutputSection *outSec = sym.getOutputSection()) {
    uint64_t secAddr = getMipsPageAddr(outSec->addr);
    uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
    index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
  } else {
    index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
  }
  return index * config->wordsize;
}

uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
                                           int64_t addend) const {
  const FileGot &g = gots[*f->mipsGotIndex];
  Symbol *sym = const_cast<Symbol *>(&s);
  if (sym->isTls())
    return g.tls.lookup(sym) * config->wordsize;
  if (sym->isPreemptible)
    return g.global.lookup(sym) * config->wordsize;
  return g.local16.lookup({sym, addend}) * config->wordsize;
}

uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
  const FileGot &g = gots[*f->mipsGotIndex];
  return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
}

uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
                                            const Symbol &s) const {
  const FileGot &g = gots[*f->mipsGotIndex];
  Symbol *sym = const_cast<Symbol *>(&s);
  return g.dynTlsSymbols.lookup(sym) * config->wordsize;
}

const Symbol *MipsGotSection::getFirstGlobalEntry() const {
  if (gots.empty())
    return nullptr;
  const FileGot &primGot = gots.front();
  if (!primGot.global.empty())
    return primGot.global.front().first;
  if (!primGot.relocs.empty())
    return primGot.relocs.front().first;
  return nullptr;
}

unsigned MipsGotSection::getLocalEntriesNum() const {
  if (gots.empty())
    return headerEntriesNum;
  return headerEntriesNum + gots.front().getPageEntriesNum() +
         gots.front().local16.size();
}

bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
  FileGot tmp = dst;
  set_union(tmp.pagesMap, src.pagesMap);
  set_union(tmp.local16, src.local16);
  set_union(tmp.global, src.global);
  set_union(tmp.relocs, src.relocs);
  set_union(tmp.tls, src.tls);
  set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);

  size_t count = isPrimary ? headerEntriesNum : 0;
  count += tmp.getIndexedEntriesNum();

  if (count * config->wordsize > config->mipsGotSize)
    return false;

  std::swap(tmp, dst);
  return true;
}

void MipsGotSection::finalizeContents() { updateAllocSize(); }

bool MipsGotSection::updateAllocSize() {
  size = headerEntriesNum * config->wordsize;
  for (const FileGot &g : gots)
    size += g.getEntriesNum() * config->wordsize;
  return false;
}

void MipsGotSection::build() {
  if (gots.empty())
    return;

  std::vector<FileGot> mergedGots(1);

  // For each GOT move non-preemptible symbols from the `Global`
  // to `Local16` list. Preemptible symbol might become non-preemptible
  // one if, for example, it gets a related copy relocation.
  for (FileGot &got : gots) {
    for (auto &p: got.global)
      if (!p.first->isPreemptible)
        got.local16.insert({{p.first, 0}, 0});
    got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
      return !p.first->isPreemptible;
    });
  }

  // For each GOT remove "reloc-only" entry if there is "global"
  // entry for the same symbol. And add local entries which indexed
  // using 32-bit value at the end of 16-bit entries.
  for (FileGot &got : gots) {
    got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
      return got.global.count(p.first);
    });
    set_union(got.local16, got.local32);
    got.local32.clear();
  }

  // Evaluate number of "reloc-only" entries in the resulting GOT.
  // To do that put all unique "reloc-only" and "global" entries
  // from all GOTs to the future primary GOT.
  FileGot *primGot = &mergedGots.front();
  for (FileGot &got : gots) {
    set_union(primGot->relocs, got.global);
    set_union(primGot->relocs, got.relocs);
    got.relocs.clear();
  }

  // Evaluate number of "page" entries in each GOT.
  for (FileGot &got : gots) {
    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
         got.pagesMap) {
      const OutputSection *os = p.first;
      uint64_t secSize = 0;
      for (BaseCommand *cmd : os->sectionCommands) {
        if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
          for (InputSection *isec : isd->sections) {
            uint64_t off = alignTo(secSize, isec->alignment);
            secSize = off + isec->getSize();
          }
      }
      p.second.count = getMipsPageCount(secSize);
    }
  }

  // Merge GOTs. Try to join as much as possible GOTs but do not exceed
  // maximum GOT size. At first, try to fill the primary GOT because
  // the primary GOT can be accessed in the most effective way. If it
  // is not possible, try to fill the last GOT in the list, and finally
  // create a new GOT if both attempts failed.
  for (FileGot &srcGot : gots) {
    InputFile *file = srcGot.file;
    if (tryMergeGots(mergedGots.front(), srcGot, true)) {
      file->mipsGotIndex = 0;
    } else {
      // If this is the first time we failed to merge with the primary GOT,
      // MergedGots.back() will also be the primary GOT. We must make sure not
      // to try to merge again with isPrimary=false, as otherwise, if the
      // inputs are just right, we could allow the primary GOT to become 1 or 2
      // words bigger due to ignoring the header size.
      if (mergedGots.size() == 1 ||
          !tryMergeGots(mergedGots.back(), srcGot, false)) {
        mergedGots.emplace_back();
        std::swap(mergedGots.back(), srcGot);
      }
      file->mipsGotIndex = mergedGots.size() - 1;
    }
  }
  std::swap(gots, mergedGots);

  // Reduce number of "reloc-only" entries in the primary GOT
  // by subtracting "global" entries in the primary GOT.
  primGot = &gots.front();
  primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
    return primGot->global.count(p.first);
  });

  // Calculate indexes for each GOT entry.
  size_t index = headerEntriesNum;
  for (FileGot &got : gots) {
    got.startIndex = &got == primGot ? 0 : index;
    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
         got.pagesMap) {
      // For each output section referenced by GOT page relocations calculate
      // and save into pagesMap an upper bound of MIPS GOT entries required
      // to store page addresses of local symbols. We assume the worst case -
      // each 64kb page of the output section has at least one GOT relocation
      // against it. And take in account the case when the section intersects
      // page boundaries.
      p.second.firstIndex = index;
      index += p.second.count;
    }
    for (auto &p: got.local16)
      p.second = index++;
    for (auto &p: got.global)
      p.second = index++;
    for (auto &p: got.relocs)
      p.second = index++;
    for (auto &p: got.tls)
      p.second = index++;
    for (auto &p: got.dynTlsSymbols) {
      p.second = index;
      index += 2;
    }
  }

  // Update Symbol::gotIndex field to use this
  // value later in the `sortMipsSymbols` function.
  for (auto &p : primGot->global)
    p.first->gotIndex = p.second;
  for (auto &p : primGot->relocs)
    p.first->gotIndex = p.second;

  // Create dynamic relocations.
  for (FileGot &got : gots) {
    // Create dynamic relocations for TLS entries.
    for (std::pair<Symbol *, size_t> &p : got.tls) {
      Symbol *s = p.first;
      uint64_t offset = p.second * config->wordsize;
      if (s->isPreemptible)
        mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s);
    }
    for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
      Symbol *s = p.first;
      uint64_t offset = p.second * config->wordsize;
      if (s == nullptr) {
        if (!config->isPic)
          continue;
        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
      } else {
        // When building a shared library we still need a dynamic relocation
        // for the module index. Therefore only checking for
        // S->isPreemptible is not sufficient (this happens e.g. for
        // thread-locals that have been marked as local through a linker script)
        if (!s->isPreemptible && !config->isPic)
          continue;
        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
        // However, we can skip writing the TLS offset reloc for non-preemptible
        // symbols since it is known even in shared libraries
        if (!s->isPreemptible)
          continue;
        offset += config->wordsize;
        mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s);
      }
    }

    // Do not create dynamic relocations for non-TLS
    // entries in the primary GOT.
    if (&got == primGot)
      continue;

    // Dynamic relocations for "global" entries.
    for (const std::pair<Symbol *, size_t> &p : got.global) {
      uint64_t offset = p.second * config->wordsize;
      mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first);
    }
    if (!config->isPic)
      continue;
    // Dynamic relocations for "local" entries in case of PIC.
    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
         got.pagesMap) {
      size_t pageCount = l.second.count;
      for (size_t pi = 0; pi < pageCount; ++pi) {
        uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
        mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
                                 int64_t(pi * 0x10000)});
      }
    }
    for (const std::pair<GotEntry, size_t> &p : got.local16) {
      uint64_t offset = p.second * config->wordsize;
      mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true,
                               p.first.first, p.first.second});
    }
  }
}

bool MipsGotSection::isNeeded() const {
  // We add the .got section to the result for dynamic MIPS target because
  // its address and properties are mentioned in the .dynamic section.
  return !config->relocatable;
}

uint64_t MipsGotSection::getGp(const InputFile *f) const {
  // For files without related GOT or files refer a primary GOT
  // returns "common" _gp value. For secondary GOTs calculate
  // individual _gp values.
  if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0)
    return ElfSym::mipsGp->getVA(0);
  return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize +
         0x7ff0;
}

void MipsGotSection::writeTo(uint8_t *buf) {
  // Set the MSB of the second GOT slot. This is not required by any
  // MIPS ABI documentation, though.
  //
  // There is a comment in glibc saying that "The MSB of got[1] of a
  // gnu object is set to identify gnu objects," and in GNU gold it
  // says "the second entry will be used by some runtime loaders".
  // But how this field is being used is unclear.
  //
  // We are not really willing to mimic other linkers behaviors
  // without understanding why they do that, but because all files
  // generated by GNU tools have this special GOT value, and because
  // we've been doing this for years, it is probably a safe bet to
  // keep doing this for now. We really need to revisit this to see
  // if we had to do this.
  writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
  for (const FileGot &g : gots) {
    auto write = [&](size_t i, const Symbol *s, int64_t a) {
      uint64_t va = a;
      if (s)
        va = s->getVA(a);
      writeUint(buf + i * config->wordsize, va);
    };
    // Write 'page address' entries to the local part of the GOT.
    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
         g.pagesMap) {
      size_t pageCount = l.second.count;
      uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
      for (size_t pi = 0; pi < pageCount; ++pi)
        write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
    }
    // Local, global, TLS, reloc-only  entries.
    // If TLS entry has a corresponding dynamic relocations, leave it
    // initialized by zero. Write down adjusted TLS symbol's values otherwise.
    // To calculate the adjustments use offsets for thread-local storage.
    // https://www.linux-mips.org/wiki/NPTL
    for (const std::pair<GotEntry, size_t> &p : g.local16)
      write(p.second, p.first.first, p.first.second);
    // Write VA to the primary GOT only. For secondary GOTs that
    // will be done by REL32 dynamic relocations.
    if (&g == &gots.front())
      for (const std::pair<Symbol *, size_t> &p : g.global)
        write(p.second, p.first, 0);
    for (const std::pair<Symbol *, size_t> &p : g.relocs)
      write(p.second, p.first, 0);
    for (const std::pair<Symbol *, size_t> &p : g.tls)
      write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000);
    for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
      if (p.first == nullptr && !config->isPic)
        write(p.second, nullptr, 1);
      else if (p.first && !p.first->isPreemptible) {
        // If we are emitting PIC code with relocations we mustn't write
        // anything to the GOT here. When using Elf_Rel relocations the value
        // one will be treated as an addend and will cause crashes at runtime
        if (!config->isPic)
          write(p.second, nullptr, 1);
        write(p.second + 1, p.first, -0x8000);
      }
    }
  }
}

// On PowerPC the .plt section is used to hold the table of function addresses
// instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
// section. I don't know why we have a BSS style type for the section but it is
// consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
GotPltSection::GotPltSection()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
                       ".got.plt") {
  if (config->emachine == EM_PPC) {
    name = ".plt";
  } else if (config->emachine == EM_PPC64) {
    type = SHT_NOBITS;
    name = ".plt";
  }
}

void GotPltSection::addEntry(Symbol &sym) {
  assert(sym.pltIndex == entries.size());
  entries.push_back(&sym);
}

size_t GotPltSection::getSize() const {
  return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize;
}

void GotPltSection::writeTo(uint8_t *buf) {
  target->writeGotPltHeader(buf);
  buf += target->gotPltHeaderEntriesNum * config->wordsize;
  for (const Symbol *b : entries) {
    target->writeGotPlt(buf, *b);
    buf += config->wordsize;
  }
}

bool GotPltSection::isNeeded() const {
  // We need to emit GOTPLT even if it's empty if there's a relocation relative
  // to it.
  return !entries.empty() || hasGotPltOffRel;
}

static StringRef getIgotPltName() {
  // On ARM the IgotPltSection is part of the GotSection.
  if (config->emachine == EM_ARM)
    return ".got";

  // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
  // needs to be named the same.
  if (config->emachine == EM_PPC64)
    return ".plt";

  return ".got.plt";
}

// On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
// with the IgotPltSection.
IgotPltSection::IgotPltSection()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
                       config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
                       config->wordsize, getIgotPltName()) {}

void IgotPltSection::addEntry(Symbol &sym) {
  assert(sym.pltIndex == entries.size());
  entries.push_back(&sym);
}

size_t IgotPltSection::getSize() const {
  return entries.size() * config->wordsize;
}

void IgotPltSection::writeTo(uint8_t *buf) {
  for (const Symbol *b : entries) {
    target->writeIgotPlt(buf, *b);
    buf += config->wordsize;
  }
}

StringTableSection::StringTableSection(StringRef name, bool dynamic)
    : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
      dynamic(dynamic) {
  // ELF string tables start with a NUL byte.
  addString("");
}

// Adds a string to the string table. If `hashIt` is true we hash and check for
// duplicates. It is optional because the name of global symbols are already
// uniqued and hashing them again has a big cost for a small value: uniquing
// them with some other string that happens to be the same.
unsigned StringTableSection::addString(StringRef s, bool hashIt) {
  if (hashIt) {
    auto r = stringMap.insert(std::make_pair(s, this->size));
    if (!r.second)
      return r.first->second;
  }
  unsigned ret = this->size;
  this->size = this->size + s.size() + 1;
  strings.push_back(s);
  return ret;
}

void StringTableSection::writeTo(uint8_t *buf) {
  for (StringRef s : strings) {
    memcpy(buf, s.data(), s.size());
    buf[s.size()] = '\0';
    buf += s.size() + 1;
  }
}

// Returns the number of entries in .gnu.version_d: the number of
// non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
// Note that we don't support vd_cnt > 1 yet.
static unsigned getVerDefNum() {
  return namedVersionDefs().size() + 1;
}

template <class ELFT>
DynamicSection<ELFT>::DynamicSection()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
                       ".dynamic") {
  this->entsize = ELFT::Is64Bits ? 16 : 8;

  // .dynamic section is not writable on MIPS and on Fuchsia OS
  // which passes -z rodynamic.
  // See "Special Section" in Chapter 4 in the following document:
  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (config->emachine == EM_MIPS || config->zRodynamic)
    this->flags = SHF_ALLOC;
}

template <class ELFT>
void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) {
  entries.push_back({tag, fn});
}

template <class ELFT>
void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) {
  entries.push_back({tag, [=] { return val; }});
}

template <class ELFT>
void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) {
  entries.push_back({tag, [=] { return sec->getVA(0); }});
}

template <class ELFT>
void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) {
  size_t tagOffset = entries.size() * entsize;
  entries.push_back(
      {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }});
}

template <class ELFT>
void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) {
  entries.push_back({tag, [=] { return sec->addr; }});
}

template <class ELFT>
void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) {
  entries.push_back({tag, [=] { return sec->size; }});
}

template <class ELFT>
void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) {
  entries.push_back({tag, [=] { return sym->getVA(); }});
}

// The output section .rela.dyn may include these synthetic sections:
//
// - part.relaDyn
// - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
// - in.relaPlt: this is included if a linker script places .rela.plt inside
//   .rela.dyn
//
// DT_RELASZ is the total size of the included sections.
static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) {
  return [=]() {
    size_t size = relaDyn->getSize();
    if (in.relaIplt->getParent() == relaDyn->getParent())
      size += in.relaIplt->getSize();
    if (in.relaPlt->getParent() == relaDyn->getParent())
      size += in.relaPlt->getSize();
    return size;
  };
}

// A Linker script may assign the RELA relocation sections to the same
// output section. When this occurs we cannot just use the OutputSection
// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
static uint64_t addPltRelSz() {
  size_t size = in.relaPlt->getSize();
  if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
      in.relaIplt->name == in.relaPlt->name)
    size += in.relaIplt->getSize();
  return size;
}

// Add remaining entries to complete .dynamic contents.
template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
  elf::Partition &part = getPartition();
  bool isMain = part.name.empty();

  for (StringRef s : config->filterList)
    addInt(DT_FILTER, part.dynStrTab->addString(s));
  for (StringRef s : config->auxiliaryList)
    addInt(DT_AUXILIARY, part.dynStrTab->addString(s));

  if (!config->rpath.empty())
    addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
           part.dynStrTab->addString(config->rpath));

  for (SharedFile *file : sharedFiles)
    if (file->isNeeded)
      addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));

  if (isMain) {
    if (!config->soName.empty())
      addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
  } else {
    if (!config->soName.empty())
      addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
    addInt(DT_SONAME, part.dynStrTab->addString(part.name));
  }

  // Set DT_FLAGS and DT_FLAGS_1.
  uint32_t dtFlags = 0;
  uint32_t dtFlags1 = 0;
  if (config->bsymbolic)
    dtFlags |= DF_SYMBOLIC;
  if (config->zGlobal)
    dtFlags1 |= DF_1_GLOBAL;
  if (config->zInitfirst)
    dtFlags1 |= DF_1_INITFIRST;
  if (config->zInterpose)
    dtFlags1 |= DF_1_INTERPOSE;
  if (config->zNodefaultlib)
    dtFlags1 |= DF_1_NODEFLIB;
  if (config->zNodelete)
    dtFlags1 |= DF_1_NODELETE;
  if (config->zNodlopen)
    dtFlags1 |= DF_1_NOOPEN;
  if (config->pie)
    dtFlags1 |= DF_1_PIE;
  if (config->zNow) {
    dtFlags |= DF_BIND_NOW;
    dtFlags1 |= DF_1_NOW;
  }
  if (config->zOrigin) {
    dtFlags |= DF_ORIGIN;
    dtFlags1 |= DF_1_ORIGIN;
  }
  if (!config->zText)
    dtFlags |= DF_TEXTREL;
  if (config->hasStaticTlsModel)
    dtFlags |= DF_STATIC_TLS;

  if (dtFlags)
    addInt(DT_FLAGS, dtFlags);
  if (dtFlags1)
    addInt(DT_FLAGS_1, dtFlags1);

  // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
  // need it for each process, so we don't write it for DSOs. The loader writes
  // the pointer into this entry.
  //
  // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
  // systems (currently only Fuchsia OS) provide other means to give the
  // debugger this information. Such systems may choose make .dynamic read-only.
  // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
  if (!config->shared && !config->relocatable && !config->zRodynamic)
    addInt(DT_DEBUG, 0);

  if (OutputSection *sec = part.dynStrTab->getParent())
    this->link = sec->sectionIndex;

  if (part.relaDyn->isNeeded() ||
      (in.relaIplt->isNeeded() &&
       part.relaDyn->getParent() == in.relaIplt->getParent())) {
    addInSec(part.relaDyn->dynamicTag, part.relaDyn);
    entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)});

    bool isRela = config->isRela;
    addInt(isRela ? DT_RELAENT : DT_RELENT,
           isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));

    // MIPS dynamic loader does not support RELCOUNT tag.
    // The problem is in the tight relation between dynamic
    // relocations and GOT. So do not emit this tag on MIPS.
    if (config->emachine != EM_MIPS) {
      size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
      if (config->zCombreloc && numRelativeRels)
        addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
    }
  }
  if (part.relrDyn && !part.relrDyn->relocs.empty()) {
    addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
             part.relrDyn);
    addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
            part.relrDyn->getParent());
    addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
           sizeof(Elf_Relr));
  }
  // .rel[a].plt section usually consists of two parts, containing plt and
  // iplt relocations. It is possible to have only iplt relocations in the
  // output. In that case relaPlt is empty and have zero offset, the same offset
  // as relaIplt has. And we still want to emit proper dynamic tags for that
  // case, so here we always use relaPlt as marker for the beginning of
  // .rel[a].plt section.
  if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
    addInSec(DT_JMPREL, in.relaPlt);
    entries.push_back({DT_PLTRELSZ, addPltRelSz});
    switch (config->emachine) {
    case EM_MIPS:
      addInSec(DT_MIPS_PLTGOT, in.gotPlt);
      break;
    case EM_SPARCV9:
      addInSec(DT_PLTGOT, in.plt);
      break;
    default:
      addInSec(DT_PLTGOT, in.gotPlt);
      break;
    }
    addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
  }

  if (config->emachine == EM_AARCH64) {
    if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
      addInt(DT_AARCH64_BTI_PLT, 0);
    if (config->zPacPlt)
      addInt(DT_AARCH64_PAC_PLT, 0);
  }

  addInSec(DT_SYMTAB, part.dynSymTab);
  addInt(DT_SYMENT, sizeof(Elf_Sym));
  addInSec(DT_STRTAB, part.dynStrTab);
  addInt(DT_STRSZ, part.dynStrTab->getSize());
  if (!config->zText)
    addInt(DT_TEXTREL, 0);
  if (part.gnuHashTab)
    addInSec(DT_GNU_HASH, part.gnuHashTab);
  if (part.hashTab)
    addInSec(DT_HASH, part.hashTab);

  if (isMain) {
    if (Out::preinitArray) {
      addOutSec(DT_PREINIT_ARRAY, Out::preinitArray);
      addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray);
    }
    if (Out::initArray) {
      addOutSec(DT_INIT_ARRAY, Out::initArray);
      addSize(DT_INIT_ARRAYSZ, Out::initArray);
    }
    if (Out::finiArray) {
      addOutSec(DT_FINI_ARRAY, Out::finiArray);
      addSize(DT_FINI_ARRAYSZ, Out::finiArray);
    }

    if (Symbol *b = symtab->find(config->init))
      if (b->isDefined())
        addSym(DT_INIT, b);
    if (Symbol *b = symtab->find(config->fini))
      if (b->isDefined())
        addSym(DT_FINI, b);
  }

  if (part.verSym && part.verSym->isNeeded())
    addInSec(DT_VERSYM, part.verSym);
  if (part.verDef && part.verDef->isLive()) {
    addInSec(DT_VERDEF, part.verDef);
    addInt(DT_VERDEFNUM, getVerDefNum());
  }
  if (part.verNeed && part.verNeed->isNeeded()) {
    addInSec(DT_VERNEED, part.verNeed);
    unsigned needNum = 0;
    for (SharedFile *f : sharedFiles)
      if (!f->vernauxs.empty())
        ++needNum;
    addInt(DT_VERNEEDNUM, needNum);
  }

  if (config->emachine == EM_MIPS) {
    addInt(DT_MIPS_RLD_VERSION, 1);
    addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
    addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
    addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());

    add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); });

    if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
      addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
    else
      addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
    addInSec(DT_PLTGOT, in.mipsGot);
    if (in.mipsRldMap) {
      if (!config->pie)
        addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap);
      // Store the offset to the .rld_map section
      // relative to the address of the tag.
      addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap);
    }
  }

  // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
  // glibc assumes the old-style BSS PLT layout which we don't support.
  if (config->emachine == EM_PPC)
    add(DT_PPC_GOT, [] { return in.got->getVA(); });

  // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
  if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
    // The Glink tag points to 32 bytes before the first lazy symbol resolution
    // stub, which starts directly after the header.
    entries.push_back({DT_PPC64_GLINK, [=] {
                         unsigned offset = target->pltHeaderSize - 32;
                         return in.plt->getVA(0) + offset;
                       }});
  }

  addInt(DT_NULL, 0);

  getParent()->link = this->link;
  this->size = entries.size() * this->entsize;
}

template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
  auto *p = reinterpret_cast<Elf_Dyn *>(buf);

  for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) {
    p->d_tag = kv.first;
    p->d_un.d_val = kv.second();
    ++p;
  }
}

uint64_t DynamicReloc::getOffset() const {
  return inputSec->getVA(offsetInSec);
}

int64_t DynamicReloc::computeAddend() const {
  if (useSymVA)
    return sym->getVA(addend);
  if (!outputSec)
    return addend;
  // See the comment in the DynamicReloc ctor.
  return getMipsPageAddr(outputSec->addr) + addend;
}

uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
  if (sym && !useSymVA)
    return symTab->getSymbolIndex(sym);
  return 0;
}

RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
                                             int32_t dynamicTag,
                                             int32_t sizeDynamicTag)
    : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
      dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {}

void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec,
                                     uint64_t offsetInSec, Symbol *sym) {
  addReloc({dynType, isec, offsetInSec, false, sym, 0});
}

void RelocationBaseSection::addReloc(RelType dynType,
                                     InputSectionBase *inputSec,
                                     uint64_t offsetInSec, Symbol *sym,
                                     int64_t addend, RelExpr expr,
                                     RelType type) {
  // Write the addends to the relocated address if required. We skip
  // it if the written value would be zero.
  if (config->writeAddends && (expr != R_ADDEND || addend != 0))
    inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym});
  addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend});
}

void RelocationBaseSection::addReloc(const DynamicReloc &reloc) {
  if (reloc.type == target->relativeRel)
    ++numRelativeRelocs;
  relocs.push_back(reloc);
}

void RelocationBaseSection::finalizeContents() {
  SymbolTableBaseSection *symTab = getPartition().dynSymTab;

  // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
  // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
  // case.
  if (symTab && symTab->getParent())
    getParent()->link = symTab->getParent()->sectionIndex;
  else
    getParent()->link = 0;

  if (in.relaPlt == this)
    getParent()->info = in.gotPlt->getParent()->sectionIndex;
  if (in.relaIplt == this)
    getParent()->info = in.igotPlt->getParent()->sectionIndex;
}

RelrBaseSection::RelrBaseSection()
    : SyntheticSection(SHF_ALLOC,
                       config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
                       config->wordsize, ".relr.dyn") {}

template <class ELFT>
static void encodeDynamicReloc(SymbolTableBaseSection *symTab,
                               typename ELFT::Rela *p,
                               const DynamicReloc &rel) {
  if (config->isRela)
    p->r_addend = rel.computeAddend();
  p->r_offset = rel.getOffset();
  p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL);
}

template <class ELFT>
RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort)
    : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
                            config->isRela ? DT_RELA : DT_REL,
                            config->isRela ? DT_RELASZ : DT_RELSZ),
      sort(sort) {
  this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
}

template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
  SymbolTableBaseSection *symTab = getPartition().dynSymTab;

  // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
  // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
  // is to make results easier to read.
  if (sort)
    llvm::stable_sort(
        relocs, [&](const DynamicReloc &a, const DynamicReloc &b) {
          return std::make_tuple(a.type != target->relativeRel,
                                 a.getSymIndex(symTab), a.getOffset()) <
                 std::make_tuple(b.type != target->relativeRel,
                                 b.getSymIndex(symTab), b.getOffset());
        });

  for (const DynamicReloc &rel : relocs) {
    encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel);
    buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
  }
}

template <class ELFT>
AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
    StringRef name)
    : RelocationBaseSection(
          name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
          config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
          config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) {
  this->entsize = 1;
}

template <class ELFT>
bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
  // This function computes the contents of an Android-format packed relocation
  // section.
  //
  // This format compresses relocations by using relocation groups to factor out
  // fields that are common between relocations and storing deltas from previous
  // relocations in SLEB128 format (which has a short representation for small
  // numbers). A good example of a relocation type with common fields is
  // R_*_RELATIVE, which is normally used to represent function pointers in
  // vtables. In the REL format, each relative relocation has the same r_info
  // field, and is only different from other relative relocations in terms of
  // the r_offset field. By sorting relocations by offset, grouping them by
  // r_info and representing each relocation with only the delta from the
  // previous offset, each 8-byte relocation can be compressed to as little as 1
  // byte (or less with run-length encoding). This relocation packer was able to
  // reduce the size of the relocation section in an Android Chromium DSO from
  // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
  //
  // A relocation section consists of a header containing the literal bytes
  // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
  // elements are the total number of relocations in the section and an initial
  // r_offset value. The remaining elements define a sequence of relocation
  // groups. Each relocation group starts with a header consisting of the
  // following elements:
  //
  // - the number of relocations in the relocation group
  // - flags for the relocation group
  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
  //   for each relocation in the group.
  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
  //   field for each relocation in the group.
  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
  //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
  //   each relocation in the group.
  //
  // Following the relocation group header are descriptions of each of the
  // relocations in the group. They consist of the following elements:
  //
  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
  //   delta for this relocation.
  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
  //   field for this relocation.
  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
  //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
  //   this relocation.

  size_t oldSize = relocData.size();

  relocData = {'A', 'P', 'S', '2'};
  raw_svector_ostream os(relocData);
  auto add = [&](int64_t v) { encodeSLEB128(v, os); };

  // The format header includes the number of relocations and the initial
  // offset (we set this to zero because the first relocation group will
  // perform the initial adjustment).
  add(relocs.size());
  add(0);

  std::vector<Elf_Rela> relatives, nonRelatives;

  for (const DynamicReloc &rel : relocs) {
    Elf_Rela r;
    encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel);

    if (r.getType(config->isMips64EL) == target->relativeRel)
      relatives.push_back(r);
    else
      nonRelatives.push_back(r);
  }

  llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
    return a.r_offset < b.r_offset;
  });

  // Try to find groups of relative relocations which are spaced one word
  // apart from one another. These generally correspond to vtable entries. The
  // format allows these groups to be encoded using a sort of run-length
  // encoding, but each group will cost 7 bytes in addition to the offset from
  // the previous group, so it is only profitable to do this for groups of
  // size 8 or larger.
  std::vector<Elf_Rela> ungroupedRelatives;
  std::vector<std::vector<Elf_Rela>> relativeGroups;
  for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
    std::vector<Elf_Rela> group;
    do {
      group.push_back(*i++);
    } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);

    if (group.size() < 8)
      ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
                                group.end());
    else
      relativeGroups.emplace_back(std::move(group));
  }

  // For non-relative relocations, we would like to:
  //   1. Have relocations with the same symbol offset to be consecutive, so
  //      that the runtime linker can speed-up symbol lookup by implementing an
  //      1-entry cache.
  //   2. Group relocations by r_info to reduce the size of the relocation
  //      section.
  // Since the symbol offset is the high bits in r_info, sorting by r_info
  // allows us to do both.
  //
  // For Rela, we also want to sort by r_addend when r_info is the same. This
  // enables us to group by r_addend as well.
  llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
    if (a.r_info != b.r_info)
      return a.r_info < b.r_info;
    if (config->isRela)
      return a.r_addend < b.r_addend;
    return false;
  });

  // Group relocations with the same r_info. Note that each group emits a group
  // header and that may make the relocation section larger. It is hard to
  // estimate the size of a group header as the encoded size of that varies
  // based on r_info. However, we can approximate this trade-off by the number
  // of values encoded. Each group header contains 3 values, and each relocation
  // in a group encodes one less value, as compared to when it is not grouped.
  // Therefore, we only group relocations if there are 3 or more of them with
  // the same r_info.
  //
  // For Rela, the addend for most non-relative relocations is zero, and thus we
  // can usually get a smaller relocation section if we group relocations with 0
  // addend as well.
  std::vector<Elf_Rela> ungroupedNonRelatives;
  std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
  for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
    auto j = i + 1;
    while (j != e && i->r_info == j->r_info &&
           (!config->isRela || i->r_addend == j->r_addend))
      ++j;
    if (j - i < 3 || (config->isRela && i->r_addend != 0))
      ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
    else
      nonRelativeGroups.emplace_back(i, j);
    i = j;
  }

  // Sort ungrouped relocations by offset to minimize the encoded length.
  llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
    return a.r_offset < b.r_offset;
  });

  unsigned hasAddendIfRela =
      config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;

  uint64_t offset = 0;
  uint64_t addend = 0;

  // Emit the run-length encoding for the groups of adjacent relative
  // relocations. Each group is represented using two groups in the packed
  // format. The first is used to set the current offset to the start of the
  // group (and also encodes the first relocation), and the second encodes the
  // remaining relocations.
  for (std::vector<Elf_Rela> &g : relativeGroups) {
    // The first relocation in the group.
    add(1);
    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
    add(g[0].r_offset - offset);
    add(target->relativeRel);
    if (config->isRela) {
      add(g[0].r_addend - addend);
      addend = g[0].r_addend;
    }

    // The remaining relocations.
    add(g.size() - 1);
    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
    add(config->wordsize);
    add(target->relativeRel);
    if (config->isRela) {
      for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
        add(i->r_addend - addend);
        addend = i->r_addend;
      }
    }

    offset = g.back().r_offset;
  }

  // Now the ungrouped relatives.
  if (!ungroupedRelatives.empty()) {
    add(ungroupedRelatives.size());
    add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
    add(target->relativeRel);
    for (Elf_Rela &r : ungroupedRelatives) {
      add(r.r_offset - offset);
      offset = r.r_offset;
      if (config->isRela) {
        add(r.r_addend - addend);
        addend = r.r_addend;
      }
    }
  }

  // Grouped non-relatives.
  for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
    add(g.size());
    add(RELOCATION_GROUPED_BY_INFO_FLAG);
    add(g[0].r_info);
    for (const Elf_Rela &r : g) {
      add(r.r_offset - offset);
      offset = r.r_offset;
    }
    addend = 0;
  }

  // Finally the ungrouped non-relative relocations.
  if (!ungroupedNonRelatives.empty()) {
    add(ungroupedNonRelatives.size());
    add(hasAddendIfRela);
    for (Elf_Rela &r : ungroupedNonRelatives) {
      add(r.r_offset - offset);
      offset = r.r_offset;
      add(r.r_info);
      if (config->isRela) {
        add(r.r_addend - addend);
        addend = r.r_addend;
      }
    }
  }

  // Don't allow the section to shrink; otherwise the size of the section can
  // oscillate infinitely.
  if (relocData.size() < oldSize)
    relocData.append(oldSize - relocData.size(), 0);

  // Returns whether the section size changed. We need to keep recomputing both
  // section layout and the contents of this section until the size converges
  // because changing this section's size can affect section layout, which in
  // turn can affect the sizes of the LEB-encoded integers stored in this
  // section.
  return relocData.size() != oldSize;
}

template <class ELFT> RelrSection<ELFT>::RelrSection() {
  this->entsize = config->wordsize;
}

template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
  // This function computes the contents of an SHT_RELR packed relocation
  // section.
  //
  // Proposal for adding SHT_RELR sections to generic-abi is here:
  //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
  //
  // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
  // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
  //
  // i.e. start with an address, followed by any number of bitmaps. The address
  // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
  // relocations each, at subsequent offsets following the last address entry.
  //
  // The bitmap entries must have 1 in the least significant bit. The assumption
  // here is that an address cannot have 1 in lsb. Odd addresses are not
  // supported.
  //
  // Excluding the least significant bit in the bitmap, each non-zero bit in
  // the bitmap represents a relocation to be applied to a corresponding machine
  // word that follows the base address word. The second least significant bit
  // represents the machine word immediately following the initial address, and
  // each bit that follows represents the next word, in linear order. As such,
  // a single bitmap can encode up to 31 relocations in a 32-bit object, and
  // 63 relocations in a 64-bit object.
  //
  // This encoding has a couple of interesting properties:
  // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
  //    even means address, odd means bitmap.
  // 2. Just a simple list of addresses is a valid encoding.

  size_t oldSize = relrRelocs.size();
  relrRelocs.clear();

  // Same as Config->Wordsize but faster because this is a compile-time
  // constant.
  const size_t wordsize = sizeof(typename ELFT::uint);

  // Number of bits to use for the relocation offsets bitmap.
  // Must be either 63 or 31.
  const size_t nBits = wordsize * 8 - 1;

  // Get offsets for all relative relocations and sort them.
  std::vector<uint64_t> offsets;
  for (const RelativeReloc &rel : relocs)
    offsets.push_back(rel.getOffset());
  llvm::sort(offsets);

  // For each leading relocation, find following ones that can be folded
  // as a bitmap and fold them.
  for (size_t i = 0, e = offsets.size(); i < e;) {
    // Add a leading relocation.
    relrRelocs.push_back(Elf_Relr(offsets[i]));
    uint64_t base = offsets[i] + wordsize;
    ++i;

    // Find foldable relocations to construct bitmaps.
    while (i < e) {
      uint64_t bitmap = 0;

      while (i < e) {
        uint64_t delta = offsets[i] - base;

        // If it is too far, it cannot be folded.
        if (delta >= nBits * wordsize)
          break;

        // If it is not a multiple of wordsize away, it cannot be folded.
        if (delta % wordsize)
          break;

        // Fold it.
        bitmap |= 1ULL << (delta / wordsize);
        ++i;
      }

      if (!bitmap)
        break;

      relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
      base += nBits * wordsize;
    }
  }

  // Don't allow the section to shrink; otherwise the size of the section can
  // oscillate infinitely. Trailing 1s do not decode to more relocations.
  if (relrRelocs.size() < oldSize) {
    log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
        " padding word(s)");
    relrRelocs.resize(oldSize, Elf_Relr(1));
  }

  return relrRelocs.size() != oldSize;
}

SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
    : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
                       strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
                       config->wordsize,
                       strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
      strTabSec(strTabSec) {}

// Orders symbols according to their positions in the GOT,
// in compliance with MIPS ABI rules.
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed description:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
static bool sortMipsSymbols(const SymbolTableEntry &l,
                            const SymbolTableEntry &r) {
  // Sort entries related to non-local preemptible symbols by GOT indexes.
  // All other entries go to the beginning of a dynsym in arbitrary order.
  if (l.sym->isInGot() && r.sym->isInGot())
    return l.sym->gotIndex < r.sym->gotIndex;
  if (!l.sym->isInGot() && !r.sym->isInGot())
    return false;
  return !l.sym->isInGot();
}

void SymbolTableBaseSection::finalizeContents() {
  if (OutputSection *sec = strTabSec.getParent())
    getParent()->link = sec->sectionIndex;

  if (this->type != SHT_DYNSYM) {
    sortSymTabSymbols();
    return;
  }

  // If it is a .dynsym, there should be no local symbols, but we need
  // to do a few things for the dynamic linker.

  // Section's Info field has the index of the first non-local symbol.
  // Because the first symbol entry is a null entry, 1 is the first.
  getParent()->info = 1;

  if (getPartition().gnuHashTab) {
    // NB: It also sorts Symbols to meet the GNU hash table requirements.
    getPartition().gnuHashTab->addSymbols(symbols);
  } else if (config->emachine == EM_MIPS) {
    llvm::stable_sort(symbols, sortMipsSymbols);
  }

  // Only the main partition's dynsym indexes are stored in the symbols
  // themselves. All other partitions use a lookup table.
  if (this == mainPart->dynSymTab) {
    size_t i = 0;
    for (const SymbolTableEntry &s : symbols)
      s.sym->dynsymIndex = ++i;
  }
}

// The ELF spec requires that all local symbols precede global symbols, so we
// sort symbol entries in this function. (For .dynsym, we don't do that because
// symbols for dynamic linking are inherently all globals.)
//
// Aside from above, we put local symbols in groups starting with the STT_FILE
// symbol. That is convenient for purpose of identifying where are local symbols
// coming from.
void SymbolTableBaseSection::sortSymTabSymbols() {
  // Move all local symbols before global symbols.
  auto e = std::stable_partition(
      symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) {
        return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL;
      });
  size_t numLocals = e - symbols.begin();
  getParent()->info = numLocals + 1;

  // We want to group the local symbols by file. For that we rebuild the local
  // part of the symbols vector. We do not need to care about the STT_FILE
  // symbols, they are already naturally placed first in each group. That
  // happens because STT_FILE is always the first symbol in the object and hence
  // precede all other local symbols we add for a file.
  MapVector<InputFile *, std::vector<SymbolTableEntry>> arr;
  for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
    arr[s.sym->file].push_back(s);

  auto i = symbols.begin();
  for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr)
    for (SymbolTableEntry &entry : p.second)
      *i++ = entry;
}

void SymbolTableBaseSection::addSymbol(Symbol *b) {
  // Adding a local symbol to a .dynsym is a bug.
  assert(this->type != SHT_DYNSYM || !b->isLocal());

  bool hashIt = b->isLocal();
  symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)});
}

size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
  if (this == mainPart->dynSymTab)
    return sym->dynsymIndex;

  // Initializes symbol lookup tables lazily. This is used only for -r,
  // -emit-relocs and dynsyms in partitions other than the main one.
  llvm::call_once(onceFlag, [&] {
    symbolIndexMap.reserve(symbols.size());
    size_t i = 0;
    for (const SymbolTableEntry &e : symbols) {
      if (e.sym->type == STT_SECTION)
        sectionIndexMap[e.sym->getOutputSection()] = ++i;
      else
        symbolIndexMap[e.sym] = ++i;
    }
  });

  // Section symbols are mapped based on their output sections
  // to maintain their semantics.
  if (sym->type == STT_SECTION)
    return sectionIndexMap.lookup(sym->getOutputSection());
  return symbolIndexMap.lookup(sym);
}

template <class ELFT>
SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
    : SymbolTableBaseSection(strTabSec) {
  this->entsize = sizeof(Elf_Sym);
}

static BssSection *getCommonSec(Symbol *sym) {
  if (!config->defineCommon)
    if (auto *d = dyn_cast<Defined>(sym))
      return dyn_cast_or_null<BssSection>(d->section);
  return nullptr;
}

static uint32_t getSymSectionIndex(Symbol *sym) {
  if (getCommonSec(sym))
    return SHN_COMMON;
  if (!isa<Defined>(sym) || sym->needsPltAddr)
    return SHN_UNDEF;
  if (const OutputSection *os = sym->getOutputSection())
    return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
                                             : os->sectionIndex;
  return SHN_ABS;
}

// Write the internal symbol table contents to the output symbol table.
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
  // The first entry is a null entry as per the ELF spec.
  memset(buf, 0, sizeof(Elf_Sym));
  buf += sizeof(Elf_Sym);

  auto *eSym = reinterpret_cast<Elf_Sym *>(buf);

  for (SymbolTableEntry &ent : symbols) {
    Symbol *sym = ent.sym;
    bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;

    // Set st_info and st_other.
    eSym->st_other = 0;
    if (sym->isLocal()) {
      eSym->setBindingAndType(STB_LOCAL, sym->type);
    } else {
      eSym->setBindingAndType(sym->computeBinding(), sym->type);
      eSym->setVisibility(sym->visibility);
    }

    // The 3 most significant bits of st_other are used by OpenPOWER ABI.
    // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
    if (config->emachine == EM_PPC64)
      eSym->st_other |= sym->stOther & 0xe0;

    eSym->st_name = ent.strTabOffset;
    if (isDefinedHere)
      eSym->st_shndx = getSymSectionIndex(ent.sym);
    else
      eSym->st_shndx = 0;

    // Copy symbol size if it is a defined symbol. st_size is not significant
    // for undefined symbols, so whether copying it or not is up to us if that's
    // the case. We'll leave it as zero because by not setting a value, we can
    // get the exact same outputs for two sets of input files that differ only
    // in undefined symbol size in DSOs.
    if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere)
      eSym->st_size = 0;
    else
      eSym->st_size = sym->getSize();

    // st_value is usually an address of a symbol, but that has a
    // special meaning for uninstantiated common symbols (this can
    // occur if -r is given).
    if (BssSection *commonSec = getCommonSec(ent.sym))
      eSym->st_value = commonSec->alignment;
    else if (isDefinedHere)
      eSym->st_value = sym->getVA();
    else
      eSym->st_value = 0;

    ++eSym;
  }

  // On MIPS we need to mark symbol which has a PLT entry and requires
  // pointer equality by STO_MIPS_PLT flag. That is necessary to help
  // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
  // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
  if (config->emachine == EM_MIPS) {
    auto *eSym = reinterpret_cast<Elf_Sym *>(buf);

    for (SymbolTableEntry &ent : symbols) {
      Symbol *sym = ent.sym;
      if (sym->isInPlt() && sym->needsPltAddr)
        eSym->st_other |= STO_MIPS_PLT;
      if (isMicroMips()) {
        // We already set the less-significant bit for symbols
        // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
        // records. That allows us to distinguish such symbols in
        // the `MIPS<ELFT>::relocate()` routine. Now we should
        // clear that bit for non-dynamic symbol table, so tools
        // like `objdump` will be able to deal with a correct
        // symbol position.
        if (sym->isDefined() &&
            ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) {
          if (!strTabSec.isDynamic())
            eSym->st_value &= ~1;
          eSym->st_other |= STO_MIPS_MICROMIPS;
        }
      }
      if (config->relocatable)
        if (auto *d = dyn_cast<Defined>(sym))
          if (isMipsPIC<ELFT>(d))
            eSym->st_other |= STO_MIPS_PIC;
      ++eSym;
    }
  }
}

SymtabShndxSection::SymtabShndxSection()
    : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
  this->entsize = 4;
}

void SymtabShndxSection::writeTo(uint8_t *buf) {
  // We write an array of 32 bit values, where each value has 1:1 association
  // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
  // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
  buf += 4; // Ignore .symtab[0] entry.
  for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
    if (getSymSectionIndex(entry.sym) == SHN_XINDEX)
      write32(buf, entry.sym->getOutputSection()->sectionIndex);
    buf += 4;
  }
}

bool SymtabShndxSection::isNeeded() const {
  // SHT_SYMTAB can hold symbols with section indices values up to
  // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
  // section. Problem is that we reveal the final section indices a bit too
  // late, and we do not know them here. For simplicity, we just always create
  // a .symtab_shndx section when the amount of output sections is huge.
  size_t size = 0;
  for (BaseCommand *base : script->sectionCommands)
    if (isa<OutputSection>(base))
      ++size;
  return size >= SHN_LORESERVE;
}

void SymtabShndxSection::finalizeContents() {
  getParent()->link = in.symTab->getParent()->sectionIndex;
}

size_t SymtabShndxSection::getSize() const {
  return in.symTab->getNumSymbols() * 4;
}

// .hash and .gnu.hash sections contain on-disk hash tables that map
// symbol names to their dynamic symbol table indices. Their purpose
// is to help the dynamic linker resolve symbols quickly. If ELF files
// don't have them, the dynamic linker has to do linear search on all
// dynamic symbols, which makes programs slower. Therefore, a .hash
// section is added to a DSO by default. A .gnu.hash is added if you
// give the -hash-style=gnu or -hash-style=both option.
//
// The Unix semantics of resolving dynamic symbols is somewhat expensive.
// Each ELF file has a list of DSOs that the ELF file depends on and a
// list of dynamic symbols that need to be resolved from any of the
// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
// where m is the number of DSOs and n is the number of dynamic
// symbols. For modern large programs, both m and n are large.  So
// making each step faster by using hash tables substantially
// improves time to load programs.
//
// (Note that this is not the only way to design the shared library.
// For instance, the Windows DLL takes a different approach. On
// Windows, each dynamic symbol has a name of DLL from which the symbol
// has to be resolved. That makes the cost of symbol resolution O(n).
// This disables some hacky techniques you can use on Unix such as
// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
//
// Due to historical reasons, we have two different hash tables, .hash
// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
// and better version of .hash. .hash is just an on-disk hash table, but
// .gnu.hash has a bloom filter in addition to a hash table to skip
// DSOs very quickly. If you are sure that your dynamic linker knows
// about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a
// safe bet is to specify -hash-style=both for backward compatibility.
GnuHashTableSection::GnuHashTableSection()
    : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
}

void GnuHashTableSection::finalizeContents() {
  if (OutputSection *sec = getPartition().dynSymTab->getParent())
    getParent()->link = sec->sectionIndex;

  // Computes bloom filter size in word size. We want to allocate 12
  // bits for each symbol. It must be a power of two.
  if (symbols.empty()) {
    maskWords = 1;
  } else {
    uint64_t numBits = symbols.size() * 12;
    maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
  }

  size = 16;                            // Header
  size += config->wordsize * maskWords; // Bloom filter
  size += nBuckets * 4;                 // Hash buckets
  size += symbols.size() * 4;           // Hash values
}

void GnuHashTableSection::writeTo(uint8_t *buf) {
  // The output buffer is not guaranteed to be zero-cleared because we pre-
  // fill executable sections with trap instructions. This is a precaution
  // for that case, which happens only when -no-rosegment is given.
  memset(buf, 0, size);

  // Write a header.
  write32(buf, nBuckets);
  write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
  write32(buf + 8, maskWords);
  write32(buf + 12, Shift2);
  buf += 16;

  // Write a bloom filter and a hash table.
  writeBloomFilter(buf);
  buf += config->wordsize * maskWords;
  writeHashTable(buf);
}

// This function writes a 2-bit bloom filter. This bloom filter alone
// usually filters out 80% or more of all symbol lookups [1].
// The dynamic linker uses the hash table only when a symbol is not
// filtered out by a bloom filter.
//
// [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2),
//     p.9, https://www.akkadia.org/drepper/dsohowto.pdf
void GnuHashTableSection::writeBloomFilter(uint8_t *buf) {
  unsigned c = config->is64 ? 64 : 32;
  for (const Entry &sym : symbols) {
    // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
    // the word using bits [0:5] and [26:31].
    size_t i = (sym.hash / c) & (maskWords - 1);
    uint64_t val = readUint(buf + i * config->wordsize);
    val |= uint64_t(1) << (sym.hash % c);
    val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
    writeUint(buf + i * config->wordsize, val);
  }
}

void GnuHashTableSection::writeHashTable(uint8_t *buf) {
  uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
  uint32_t oldBucket = -1;
  uint32_t *values = buckets + nBuckets;
  for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
    // Write a hash value. It represents a sequence of chains that share the
    // same hash modulo value. The last element of each chain is terminated by
    // LSB 1.
    uint32_t hash = i->hash;
    bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
    hash = isLastInChain ? hash | 1 : hash & ~1;
    write32(values++, hash);

    if (i->bucketIdx == oldBucket)
      continue;
    // Write a hash bucket. Hash buckets contain indices in the following hash
    // value table.
    write32(buckets + i->bucketIdx,
            getPartition().dynSymTab->getSymbolIndex(i->sym));
    oldBucket = i->bucketIdx;
  }
}

static uint32_t hashGnu(StringRef name) {
  uint32_t h = 5381;
  for (uint8_t c : name)
    h = (h << 5) + h + c;
  return h;
}

// Add symbols to this symbol hash table. Note that this function
// destructively sort a given vector -- which is needed because
// GNU-style hash table places some sorting requirements.
void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) {
  // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
  // its type correctly.
  std::vector<SymbolTableEntry>::iterator mid =
      std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
        return !s.sym->isDefined() || s.sym->partition != partition;
      });

  // We chose load factor 4 for the on-disk hash table. For each hash
  // collision, the dynamic linker will compare a uint32_t hash value.
  // Since the integer comparison is quite fast, we believe we can
  // make the load factor even larger. 4 is just a conservative choice.
  //
  // Note that we don't want to create a zero-sized hash table because
  // Android loader as of 2018 doesn't like a .gnu.hash containing such
  // table. If that's the case, we create a hash table with one unused
  // dummy slot.
  nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);

  if (mid == v.end())
    return;

  for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
    Symbol *b = ent.sym;
    uint32_t hash = hashGnu(b->getName());
    uint32_t bucketIdx = hash % nBuckets;
    symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
  }

  llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) {
    return l.bucketIdx < r.bucketIdx;
  });

  v.erase(mid, v.end());
  for (const Entry &ent : symbols)
    v.push_back({ent.sym, ent.strTabOffset});
}

HashTableSection::HashTableSection()
    : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
  this->entsize = 4;
}

void HashTableSection::finalizeContents() {
  SymbolTableBaseSection *symTab = getPartition().dynSymTab;

  if (OutputSection *sec = symTab->getParent())
    getParent()->link = sec->sectionIndex;

  unsigned numEntries = 2;               // nbucket and nchain.
  numEntries += symTab->getNumSymbols(); // The chain entries.

  // Create as many buckets as there are symbols.
  numEntries += symTab->getNumSymbols();
  this->size = numEntries * 4;
}

void HashTableSection::writeTo(uint8_t *buf) {
  SymbolTableBaseSection *symTab = getPartition().dynSymTab;

  // See comment in GnuHashTableSection::writeTo.
  memset(buf, 0, size);

  unsigned numSymbols = symTab->getNumSymbols();

  uint32_t *p = reinterpret_cast<uint32_t *>(buf);
  write32(p++, numSymbols); // nbucket
  write32(p++, numSymbols); // nchain

  uint32_t *buckets = p;
  uint32_t *chains = p + numSymbols;

  for (const SymbolTableEntry &s : symTab->getSymbols()) {
    Symbol *sym = s.sym;
    StringRef name = sym->getName();
    unsigned i = sym->dynsymIndex;
    uint32_t hash = hashSysV(name) % numSymbols;
    chains[i] = buckets[hash];
    write32(buckets + hash, i);
  }
}

PltSection::PltSection()
    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
      headerSize(target->pltHeaderSize) {
  // On PowerPC, this section contains lazy symbol resolvers.
  if (config->emachine == EM_PPC64) {
    name = ".glink";
    alignment = 4;
  }

  // On x86 when IBT is enabled, this section contains the second PLT (lazy
  // symbol resolvers).
  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
    name = ".plt.sec";

  // The PLT needs to be writable on SPARC as the dynamic linker will
  // modify the instructions in the PLT entries.
  if (config->emachine == EM_SPARCV9)
    this->flags |= SHF_WRITE;
}

void PltSection::writeTo(uint8_t *buf) {
  // At beginning of PLT, we have code to call the dynamic
  // linker to resolve dynsyms at runtime. Write such code.
  target->writePltHeader(buf);
  size_t off = headerSize;

  for (const Symbol *sym : entries) {
    target->writePlt(buf + off, *sym, getVA() + off);
    off += target->pltEntrySize;
  }
}

void PltSection::addEntry(Symbol &sym) {
  sym.pltIndex = entries.size();
  entries.push_back(&sym);
}

size_t PltSection::getSize() const {
  return headerSize + entries.size() * target->pltEntrySize;
}

bool PltSection::isNeeded() const {
  // For -z retpolineplt, .iplt needs the .plt header.
  return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
}

// Used by ARM to add mapping symbols in the PLT section, which aid
// disassembly.
void PltSection::addSymbols() {
  target->addPltHeaderSymbols(*this);

  size_t off = headerSize;
  for (size_t i = 0; i < entries.size(); ++i) {
    target->addPltSymbols(*this, off);
    off += target->pltEntrySize;
  }
}

IpltSection::IpltSection()
    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
  if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
    name = ".glink";
    alignment = 4;
  }
}

void IpltSection::writeTo(uint8_t *buf) {
  uint32_t off = 0;
  for (const Symbol *sym : entries) {
    target->writeIplt(buf + off, *sym, getVA() + off);
    off += target->ipltEntrySize;
  }
}

size_t IpltSection::getSize() const {
  return entries.size() * target->ipltEntrySize;
}

void IpltSection::addEntry(Symbol &sym) {
  sym.pltIndex = entries.size();
  entries.push_back(&sym);
}

// ARM uses mapping symbols to aid disassembly.
void IpltSection::addSymbols() {
  size_t off = 0;
  for (size_t i = 0, e = entries.size(); i != e; ++i) {
    target->addPltSymbols(*this, off);
    off += target->pltEntrySize;
  }
}

PPC32GlinkSection::PPC32GlinkSection() {
  name = ".glink";
  alignment = 4;
}

void PPC32GlinkSection::writeTo(uint8_t *buf) {
  writePPC32GlinkSection(buf, entries.size());
}

size_t PPC32GlinkSection::getSize() const {
  return headerSize + entries.size() * target->pltEntrySize + footerSize;
}

// This is an x86-only extra PLT section and used only when a security
// enhancement feature called CET is enabled. In this comment, I'll explain what
// the feature is and why we have two PLT sections if CET is enabled.
//
// So, what does CET do? CET introduces a new restriction to indirect jump
// instructions. CET works this way. Assume that CET is enabled. Then, if you
// execute an indirect jump instruction, the processor verifies that a special
// "landing pad" instruction (which is actually a repurposed NOP instruction and
// now called "endbr32" or "endbr64") is at the jump target. If the jump target
// does not start with that instruction, the processor raises an exception
// instead of continuing executing code.
//
// If CET is enabled, the compiler emits endbr to all locations where indirect
// jumps may jump to.
//
// This mechanism makes it extremely hard to transfer the control to a middle of
// a function that is not supporsed to be a indirect jump target, preventing
// certain types of attacks such as ROP or JOP.
//
// Note that the processors in the market as of 2019 don't actually support the
// feature. Only the spec is available at the moment.
//
// Now, I'll explain why we have this extra PLT section for CET.
//
// Since you can indirectly jump to a PLT entry, we have to make PLT entries
// start with endbr. The problem is there's no extra space for endbr (which is 4
// bytes long), as the PLT entry is only 16 bytes long and all bytes are already
// used.
//
// In order to deal with the issue, we split a PLT entry into two PLT entries.
// Remember that each PLT entry contains code to jump to an address read from
// .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
// the former code is written to .plt.sec, and the latter code is written to
// .plt.
//
// Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
// that the regular .plt is now called .plt.sec and .plt is repurposed to
// contain only code for lazy symbol resolution.
//
// In other words, this is how the 2-PLT scheme works. Application code is
// supposed to jump to .plt.sec to call an external function. Each .plt.sec
// entry contains code to read an address from a corresponding .got.plt entry
// and jump to that address. Addresses in .got.plt initially point to .plt, so
// when an application calls an external function for the first time, the
// control is transferred to a function that resolves a symbol name from
// external shared object files. That function then rewrites a .got.plt entry
// with a resolved address, so that the subsequent function calls directly jump
// to a desired location from .plt.sec.
//
// There is an open question as to whether the 2-PLT scheme was desirable or
// not. We could have simply extended the PLT entry size to 32-bytes to
// accommodate endbr, and that scheme would have been much simpler than the
// 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
// code (.plt.sec) from cold code (.plt). But as far as I know no one proved
// that the optimization actually makes a difference.
//
// That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
// depend on it, so we implement the ABI.
IBTPltSection::IBTPltSection()
    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}

void IBTPltSection::writeTo(uint8_t *buf) {
  target->writeIBTPlt(buf, in.plt->getNumEntries());
}

size_t IBTPltSection::getSize() const {
  // 16 is the header size of .plt.
  return 16 + in.plt->getNumEntries() * target->pltEntrySize;
}

// The string hash function for .gdb_index.
static uint32_t computeGdbHash(StringRef s) {
  uint32_t h = 0;
  for (uint8_t c : s)
    h = h * 67 + toLower(c) - 113;
  return h;
}

GdbIndexSection::GdbIndexSection()
    : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}

// Returns the desired size of an on-disk hash table for a .gdb_index section.
// There's a tradeoff between size and collision rate. We aim 75% utilization.
size_t GdbIndexSection::computeSymtabSize() const {
  return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
}

// Compute the output section size.
void GdbIndexSection::initOutputSize() {
  size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;

  for (GdbChunk &chunk : chunks)
    size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;

  // Add the constant pool size if exists.
  if (!symbols.empty()) {
    GdbSymbol &sym = symbols.back();
    size += sym.nameOff + sym.name.size() + 1;
  }
}

static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) {
  std::vector<GdbIndexSection::CuEntry> ret;
  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
    ret.push_back({cu->getOffset(), cu->getLength() + 4});
  return ret;
}

static std::vector<GdbIndexSection::AddressEntry>
readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
  std::vector<GdbIndexSection::AddressEntry> ret;

  uint32_t cuIdx = 0;
  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
    if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
      warn(toString(sec) + ": " + toString(std::move(e)));
      return {};
    }
    Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
    if (!ranges) {
      warn(toString(sec) + ": " + toString(ranges.takeError()));
      return {};
    }

    ArrayRef<InputSectionBase *> sections = sec->file->getSections();
    for (DWARFAddressRange &r : *ranges) {
      if (r.SectionIndex == -1ULL)
        continue;
      // Range list with zero size has no effect.
      InputSectionBase *s = sections[r.SectionIndex];
      if (s && s != &InputSection::discarded && s->isLive())
        if (r.LowPC != r.HighPC)
          ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
    }
    ++cuIdx;
  }

  return ret;
}

template <class ELFT>
static std::vector<GdbIndexSection::NameAttrEntry>
readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
                     const std::vector<GdbIndexSection::CuEntry> &cus) {
  const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
  const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();

  std::vector<GdbIndexSection::NameAttrEntry> ret;
  for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
    DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
    DWARFDebugPubTable table;
    table.extract(data, /*GnuStyle=*/true, [&](Error e) {
      warn(toString(pub->sec) + ": " + toString(std::move(e)));
    });
    for (const DWARFDebugPubTable::Set &set : table.getData()) {
      // The value written into the constant pool is kind << 24 | cuIndex. As we
      // don't know how many compilation units precede this object to compute
      // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
      // the number of preceding compilation units later.
      uint32_t i = llvm::partition_point(cus,
                                         [&](GdbIndexSection::CuEntry cu) {
                                           return cu.cuOffset < set.Offset;
                                         }) -
                   cus.begin();
      for (const DWARFDebugPubTable::Entry &ent : set.Entries)
        ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
                       (ent.Descriptor.toBits() << 24) | i});
    }
  }
  return ret;
}

// Create a list of symbols from a given list of symbol names and types
// by uniquifying them by name.
static std::vector<GdbIndexSection::GdbSymbol>
createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs,
              const std::vector<GdbIndexSection::GdbChunk> &chunks) {
  using GdbSymbol = GdbIndexSection::GdbSymbol;
  using NameAttrEntry = GdbIndexSection::NameAttrEntry;

  // For each chunk, compute the number of compilation units preceding it.
  uint32_t cuIdx = 0;
  std::vector<uint32_t> cuIdxs(chunks.size());
  for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
    cuIdxs[i] = cuIdx;
    cuIdx += chunks[i].compilationUnits.size();
  }

  // The number of symbols we will handle in this function is of the order
  // of millions for very large executables, so we use multi-threading to
  // speed it up.
  constexpr size_t numShards = 32;
  size_t concurrency = PowerOf2Floor(
      std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
                           .compute_thread_count(),
                       numShards));

  // A sharded map to uniquify symbols by name.
  std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards);
  size_t shift = 32 - countTrailingZeros(numShards);

  // Instantiate GdbSymbols while uniqufying them by name.
  std::vector<std::vector<GdbSymbol>> symbols(numShards);
  parallelForEachN(0, concurrency, [&](size_t threadId) {
    uint32_t i = 0;
    for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
      for (const NameAttrEntry &ent : entries) {
        size_t shardId = ent.name.hash() >> shift;
        if ((shardId & (concurrency - 1)) != threadId)
          continue;

        uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
        size_t &idx = map[shardId][ent.name];
        if (idx) {
          symbols[shardId][idx - 1].cuVector.push_back(v);
          continue;
        }

        idx = symbols[shardId].size() + 1;
        symbols[shardId].push_back({ent.name, {v}, 0, 0});
      }
      ++i;
    }
  });

  size_t numSymbols = 0;
  for (ArrayRef<GdbSymbol> v : symbols)
    numSymbols += v.size();

  // The return type is a flattened vector, so we'll copy each vector
  // contents to Ret.
  std::vector<GdbSymbol> ret;
  ret.reserve(numSymbols);
  for (std::vector<GdbSymbol> &vec : symbols)
    for (GdbSymbol &sym : vec)
      ret.push_back(std::move(sym));

  // CU vectors and symbol names are adjacent in the output file.
  // We can compute their offsets in the output file now.
  size_t off = 0;
  for (GdbSymbol &sym : ret) {
    sym.cuVectorOff = off;
    off += (sym.cuVector.size() + 1) * 4;
  }
  for (GdbSymbol &sym : ret) {
    sym.nameOff = off;
    off += sym.name.size() + 1;
  }

  return ret;
}

// Returns a newly-created .gdb_index section.
template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
  // Collect InputFiles with .debug_info. See the comment in
  // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
  // note that isec->data() may uncompress the full content, which should be
  // parallelized.
  SetVector<InputFile *> files;
  for (InputSectionBase *s : inputSections) {
    InputSection *isec = dyn_cast<InputSection>(s);
    if (!isec)
      continue;
    // .debug_gnu_pub{names,types} are useless in executables.
    // They are present in input object files solely for creating
    // a .gdb_index. So we can remove them from the output.
    if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
      s->markDead();
    else if (isec->name == ".debug_info")
      files.insert(isec->file);
  }

  std::vector<GdbChunk> chunks(files.size());
  std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size());

  parallelForEachN(0, files.size(), [&](size_t i) {
    // To keep memory usage low, we don't want to keep cached DWARFContext, so
    // avoid getDwarf() here.
    ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
    DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
    auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());

    // If the are multiple compile units .debug_info (very rare ld -r --unique),
    // this only picks the last one. Other address ranges are lost.
    chunks[i].sec = dobj.getInfoSection();
    chunks[i].compilationUnits = readCuList(dwarf);
    chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
    nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
  });

  auto *ret = make<GdbIndexSection>();
  ret->chunks = std::move(chunks);
  ret->symbols = createSymbols(nameAttrs, ret->chunks);
  ret->initOutputSize();
  return ret;
}

void GdbIndexSection::writeTo(uint8_t *buf) {
  // Write the header.
  auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
  uint8_t *start = buf;
  hdr->version = 7;
  buf += sizeof(*hdr);

  // Write the CU list.
  hdr->cuListOff = buf - start;
  for (GdbChunk &chunk : chunks) {
    for (CuEntry &cu : chunk.compilationUnits) {
      write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
      write64le(buf + 8, cu.cuLength);
      buf += 16;
    }
  }

  // Write the address area.
  hdr->cuTypesOff = buf - start;
  hdr->addressAreaOff = buf - start;
  uint32_t cuOff = 0;
  for (GdbChunk &chunk : chunks) {
    for (AddressEntry &e : chunk.addressAreas) {
      uint64_t baseAddr = e.section->getVA(0);
      write64le(buf, baseAddr + e.lowAddress);
      write64le(buf + 8, baseAddr + e.highAddress);
      write32le(buf + 16, e.cuIndex + cuOff);
      buf += 20;
    }
    cuOff += chunk.compilationUnits.size();
  }

  // Write the on-disk open-addressing hash table containing symbols.
  hdr->symtabOff = buf - start;
  size_t symtabSize = computeSymtabSize();
  uint32_t mask = symtabSize - 1;

  for (GdbSymbol &sym : symbols) {
    uint32_t h = sym.name.hash();
    uint32_t i = h & mask;
    uint32_t step = ((h * 17) & mask) | 1;

    while (read32le(buf + i * 8))
      i = (i + step) & mask;

    write32le(buf + i * 8, sym.nameOff);
    write32le(buf + i * 8 + 4, sym.cuVectorOff);
  }

  buf += symtabSize * 8;

  // Write the string pool.
  hdr->constantPoolOff = buf - start;
  parallelForEach(symbols, [&](GdbSymbol &sym) {
    memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
  });

  // Write the CU vectors.
  for (GdbSymbol &sym : symbols) {
    write32le(buf, sym.cuVector.size());
    buf += 4;
    for (uint32_t val : sym.cuVector) {
      write32le(buf, val);
      buf += 4;
    }
  }
}

bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }

EhFrameHeader::EhFrameHeader()
    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}

void EhFrameHeader::writeTo(uint8_t *buf) {
  // Unlike most sections, the EhFrameHeader section is written while writing
  // another section, namely EhFrameSection, which calls the write() function
  // below from its writeTo() function. This is necessary because the contents
  // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
  // don't know which order the sections will be written in.
}

// .eh_frame_hdr contains a binary search table of pointers to FDEs.
// Each entry of the search table consists of two values,
// the starting PC from where FDEs covers, and the FDE's address.
// It is sorted by PC.
void EhFrameHeader::write() {
  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
  using FdeData = EhFrameSection::FdeData;

  std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData();

  buf[0] = 1;
  buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
  buf[2] = DW_EH_PE_udata4;
  buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
  write32(buf + 4,
          getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
  write32(buf + 8, fdes.size());
  buf += 12;

  for (FdeData &fde : fdes) {
    write32(buf, fde.pcRel);
    write32(buf + 4, fde.fdeVARel);
    buf += 8;
  }
}

size_t EhFrameHeader::getSize() const {
  // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
  return 12 + getPartition().ehFrame->numFdes * 8;
}

bool EhFrameHeader::isNeeded() const {
  return isLive() && getPartition().ehFrame->isNeeded();
}

VersionDefinitionSection::VersionDefinitionSection()
    : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
                       ".gnu.version_d") {}

StringRef VersionDefinitionSection::getFileDefName() {
  if (!getPartition().name.empty())
    return getPartition().name;
  if (!config->soName.empty())
    return config->soName;
  return config->outputFile;
}

void VersionDefinitionSection::finalizeContents() {
  fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
  for (const VersionDefinition &v : namedVersionDefs())
    verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));

  if (OutputSection *sec = getPartition().dynStrTab->getParent())
    getParent()->link = sec->sectionIndex;

  // sh_info should be set to the number of definitions. This fact is missed in
  // documentation, but confirmed by binutils community:
  // https://sourceware.org/ml/binutils/2014-11/msg00355.html
  getParent()->info = getVerDefNum();
}

void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
                                        StringRef name, size_t nameOff) {
  uint16_t flags = index == 1 ? VER_FLG_BASE : 0;

  // Write a verdef.
  write16(buf, 1);                  // vd_version
  write16(buf + 2, flags);          // vd_flags
  write16(buf + 4, index);          // vd_ndx
  write16(buf + 6, 1);              // vd_cnt
  write32(buf + 8, hashSysV(name)); // vd_hash
  write32(buf + 12, 20);            // vd_aux
  write32(buf + 16, 28);            // vd_next

  // Write a veraux.
  write32(buf + 20, nameOff); // vda_name
  write32(buf + 24, 0);       // vda_next
}

void VersionDefinitionSection::writeTo(uint8_t *buf) {
  writeOne(buf, 1, getFileDefName(), fileDefNameOff);

  auto nameOffIt = verDefNameOffs.begin();
  for (const VersionDefinition &v : namedVersionDefs()) {
    buf += EntrySize;
    writeOne(buf, v.id, v.name, *nameOffIt++);
  }

  // Need to terminate the last version definition.
  write32(buf + 16, 0); // vd_next
}

size_t VersionDefinitionSection::getSize() const {
  return EntrySize * getVerDefNum();
}

// .gnu.version is a table where each entry is 2 byte long.
VersionTableSection::VersionTableSection()
    : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
                       ".gnu.version") {
  this->entsize = 2;
}

void VersionTableSection::finalizeContents() {
  // At the moment of june 2016 GNU docs does not mention that sh_link field
  // should be set, but Sun docs do. Also readelf relies on this field.
  getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
}

size_t VersionTableSection::getSize() const {
  return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
}

void VersionTableSection::writeTo(uint8_t *buf) {
  buf += 2;
  for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
    write16(buf, s.sym->versionId);
    buf += 2;
  }
}

bool VersionTableSection::isNeeded() const {
  return isLive() &&
         (getPartition().verDef || getPartition().verNeed->isNeeded());
}

void elf::addVerneed(Symbol *ss) {
  auto &file = cast<SharedFile>(*ss->file);
  if (ss->verdefIndex == VER_NDX_GLOBAL) {
    ss->versionId = VER_NDX_GLOBAL;
    return;
  }

  if (file.vernauxs.empty())
    file.vernauxs.resize(file.verdefs.size());

  // Select a version identifier for the vernaux data structure, if we haven't
  // already allocated one. The verdef identifiers cover the range
  // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
  // getVerDefNum()+1.
  if (file.vernauxs[ss->verdefIndex] == 0)
    file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();

  ss->versionId = file.vernauxs[ss->verdefIndex];
}

template <class ELFT>
VersionNeedSection<ELFT>::VersionNeedSection()
    : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
                       ".gnu.version_r") {}

template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
  for (SharedFile *f : sharedFiles) {
    if (f->vernauxs.empty())
      continue;
    verneeds.emplace_back();
    Verneed &vn = verneeds.back();
    vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
    for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
      if (f->vernauxs[i] == 0)
        continue;
      auto *verdef =
          reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
      vn.vernauxs.push_back(
          {verdef->vd_hash, f->vernauxs[i],
           getPartition().dynStrTab->addString(f->getStringTable().data() +
                                               verdef->getAux()->vda_name)});
    }
  }

  if (OutputSection *sec = getPartition().dynStrTab->getParent())
    getParent()->link = sec->sectionIndex;
  getParent()->info = verneeds.size();
}

template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
  auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
  auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());

  for (auto &vn : verneeds) {
    // Create an Elf_Verneed for this DSO.
    verneed->vn_version = 1;
    verneed->vn_cnt = vn.vernauxs.size();
    verneed->vn_file = vn.nameStrTab;
    verneed->vn_aux =
        reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
    verneed->vn_next = sizeof(Elf_Verneed);
    ++verneed;

    // Create the Elf_Vernauxs for this Elf_Verneed.
    for (auto &vna : vn.vernauxs) {
      vernaux->vna_hash = vna.hash;
      vernaux->vna_flags = 0;
      vernaux->vna_other = vna.verneedIndex;
      vernaux->vna_name = vna.nameStrTab;
      vernaux->vna_next = sizeof(Elf_Vernaux);
      ++vernaux;
    }

    vernaux[-1].vna_next = 0;
  }
  verneed[-1].vn_next = 0;
}

template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
  return verneeds.size() * sizeof(Elf_Verneed) +
         SharedFile::vernauxNum * sizeof(Elf_Vernaux);
}

template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
  return isLive() && SharedFile::vernauxNum != 0;
}

void MergeSyntheticSection::addSection(MergeInputSection *ms) {
  ms->parent = this;
  sections.push_back(ms);
  assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
  alignment = std::max(alignment, ms->alignment);
}

MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
                                   uint64_t flags, uint32_t alignment)
    : MergeSyntheticSection(name, type, flags, alignment),
      builder(StringTableBuilder::RAW, alignment) {}

size_t MergeTailSection::getSize() const { return builder.getSize(); }

void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }

void MergeTailSection::finalizeContents() {
  // Add all string pieces to the string table builder to create section
  // contents.
  for (MergeInputSection *sec : sections)
    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
      if (sec->pieces[i].live)
        builder.add(sec->getData(i));

  // Fix the string table content. After this, the contents will never change.
  builder.finalize();

  // finalize() fixed tail-optimized strings, so we can now get
  // offsets of strings. Get an offset for each string and save it
  // to a corresponding SectionPiece for easy access.
  for (MergeInputSection *sec : sections)
    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
      if (sec->pieces[i].live)
        sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
}

void MergeNoTailSection::writeTo(uint8_t *buf) {
  for (size_t i = 0; i < numShards; ++i)
    shards[i].write(buf + shardOffsets[i]);
}

// This function is very hot (i.e. it can take several seconds to finish)
// because sometimes the number of inputs is in an order of magnitude of
// millions. So, we use multi-threading.
//
// For any strings S and T, we know S is not mergeable with T if S's hash
// value is different from T's. If that's the case, we can safely put S and
// T into different string builders without worrying about merge misses.
// We do it in parallel.
void MergeNoTailSection::finalizeContents() {
  // Initializes string table builders.
  for (size_t i = 0; i < numShards; ++i)
    shards.emplace_back(StringTableBuilder::RAW, alignment);

  // Concurrency level. Must be a power of 2 to avoid expensive modulo
  // operations in the following tight loop.
  size_t concurrency = PowerOf2Floor(
      std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
                           .compute_thread_count(),
                       numShards));

  // Add section pieces to the builders.
  parallelForEachN(0, concurrency, [&](size_t threadId) {
    for (MergeInputSection *sec : sections) {
      for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
        if (!sec->pieces[i].live)
          continue;
        size_t shardId = getShardId(sec->pieces[i].hash);
        if ((shardId & (concurrency - 1)) == threadId)
          sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
      }
    }
  });

  // Compute an in-section offset for each shard.
  size_t off = 0;
  for (size_t i = 0; i < numShards; ++i) {
    shards[i].finalizeInOrder();
    if (shards[i].getSize() > 0)
      off = alignTo(off, alignment);
    shardOffsets[i] = off;
    off += shards[i].getSize();
  }
  size = off;

  // So far, section pieces have offsets from beginning of shards, but
  // we want offsets from beginning of the whole section. Fix them.
  parallelForEach(sections, [&](MergeInputSection *sec) {
    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
      if (sec->pieces[i].live)
        sec->pieces[i].outputOff +=
            shardOffsets[getShardId(sec->pieces[i].hash)];
  });
}

MergeSyntheticSection *elf::createMergeSynthetic(StringRef name, uint32_t type,
                                                 uint64_t flags,
                                                 uint32_t alignment) {
  bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2;
  if (shouldTailMerge)
    return make<MergeTailSection>(name, type, flags, alignment);
  return make<MergeNoTailSection>(name, type, flags, alignment);
}

template <class ELFT> void elf::splitSections() {
  llvm::TimeTraceScope timeScope("Split sections");
  // splitIntoPieces needs to be called on each MergeInputSection
  // before calling finalizeContents().
  parallelForEach(inputSections, [](InputSectionBase *sec) {
    if (auto *s = dyn_cast<MergeInputSection>(sec))
      s->splitIntoPieces();
    else if (auto *eh = dyn_cast<EhInputSection>(sec))
      eh->split<ELFT>();
  });
}

MipsRldMapSection::MipsRldMapSection()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
                       ".rld_map") {}

ARMExidxSyntheticSection::ARMExidxSyntheticSection()
    : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
                       config->wordsize, ".ARM.exidx") {}

static InputSection *findExidxSection(InputSection *isec) {
  for (InputSection *d : isec->dependentSections)
    if (d->type == SHT_ARM_EXIDX && d->isLive())
      return d;
  return nullptr;
}

static bool isValidExidxSectionDep(InputSection *isec) {
  return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
         isec->getSize() > 0;
}

bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
  if (isec->type == SHT_ARM_EXIDX) {
    if (InputSection *dep = isec->getLinkOrderDep())
      if (isValidExidxSectionDep(dep)) {
        exidxSections.push_back(isec);
        // Every exidxSection is 8 bytes, we need an estimate of
        // size before assignAddresses can be called. Final size
        // will only be known after finalize is called.
        size += 8;
      }
    return true;
  }

  if (isValidExidxSectionDep(isec)) {
    executableSections.push_back(isec);
    return false;
  }

  // FIXME: we do not output a relocation section when --emit-relocs is used
  // as we do not have relocation sections for linker generated table entries
  // and we would have to erase at a late stage relocations from merged entries.
  // Given that exception tables are already position independent and a binary
  // analyzer could derive the relocations we choose to erase the relocations.
  if (config->emitRelocs && isec->type == SHT_REL)
    if (InputSectionBase *ex = isec->getRelocatedSection())
      if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
        return true;

  return false;
}

// References to .ARM.Extab Sections have bit 31 clear and are not the
// special EXIDX_CANTUNWIND bit-pattern.
static bool isExtabRef(uint32_t unwind) {
  return (unwind & 0x80000000) == 0 && unwind != 0x1;
}

// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
// section Prev, where Cur follows Prev in the table. This can be done if the
// unwinding instructions in Cur are identical to Prev. Linker generated
// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
// InputSection.
static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {

  struct ExidxEntry {
    ulittle32_t fn;
    ulittle32_t unwind;
  };
  // Get the last table Entry from the previous .ARM.exidx section. If Prev is
  // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
  ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
  if (prev)
    prevEntry = prev->getDataAs<ExidxEntry>().back();
  if (isExtabRef(prevEntry.unwind))
    return false;

  // We consider the unwind instructions of an .ARM.exidx table entry
  // a duplicate if the previous unwind instructions if:
  // - Both are the special EXIDX_CANTUNWIND.
  // - Both are the same inline unwind instructions.
  // We do not attempt to follow and check links into .ARM.extab tables as
  // consecutive identical entries are rare and the effort to check that they
  // are identical is high.

  // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
  if (cur == nullptr)
    return prevEntry.unwind == 1;

  for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
    if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
      return false;

  // All table entries in this .ARM.exidx Section can be merged into the
  // previous Section.
  return true;
}

// The .ARM.exidx table must be sorted in ascending order of the address of the
// functions the table describes. Optionally duplicate adjacent table entries
// can be removed. At the end of the function the executableSections must be
// sorted in ascending order of address, Sentinel is set to the InputSection
// with the highest address and any InputSections that have mergeable
// .ARM.exidx table entries are removed from it.
void ARMExidxSyntheticSection::finalizeContents() {
  // The executableSections and exidxSections that we use to derive the final
  // contents of this SyntheticSection are populated before
  // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
  // ICF may remove executable InputSections and their dependent .ARM.exidx
  // section that we recorded earlier.
  auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
  llvm::erase_if(exidxSections, isDiscarded);
  // We need to remove discarded InputSections and InputSections without
  // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
  // of range.
  auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
    if (!isec->isLive())
      return true;
    if (findExidxSection(isec))
      return false;
    int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
    return off != llvm::SignExtend64(off, 31);
  };
  llvm::erase_if(executableSections, isDiscardedOrOutOfRange);

  // Sort the executable sections that may or may not have associated
  // .ARM.exidx sections by order of ascending address. This requires the
  // relative positions of InputSections and OutputSections to be known.
  auto compareByFilePosition = [](const InputSection *a,
                                  const InputSection *b) {
    OutputSection *aOut = a->getParent();
    OutputSection *bOut = b->getParent();

    if (aOut != bOut)
      return aOut->addr < bOut->addr;
    return a->outSecOff < b->outSecOff;
  };
  llvm::stable_sort(executableSections, compareByFilePosition);
  sentinel = executableSections.back();
  // Optionally merge adjacent duplicate entries.
  if (config->mergeArmExidx) {
    std::vector<InputSection *> selectedSections;
    selectedSections.reserve(executableSections.size());
    selectedSections.push_back(executableSections[0]);
    size_t prev = 0;
    for (size_t i = 1; i < executableSections.size(); ++i) {
      InputSection *ex1 = findExidxSection(executableSections[prev]);
      InputSection *ex2 = findExidxSection(executableSections[i]);
      if (!isDuplicateArmExidxSec(ex1, ex2)) {
        selectedSections.push_back(executableSections[i]);
        prev = i;
      }
    }
    executableSections = std::move(selectedSections);
  }

  size_t offset = 0;
  size = 0;
  for (InputSection *isec : executableSections) {
    if (InputSection *d = findExidxSection(isec)) {
      d->outSecOff = offset;
      d->parent = getParent();
      offset += d->getSize();
    } else {
      offset += 8;
    }
  }
  // Size includes Sentinel.
  size = offset + 8;
}

InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
  return executableSections.front();
}

// To write the .ARM.exidx table from the ExecutableSections we have three cases
// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
//     We write the .ARM.exidx section contents and apply its relocations.
// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
//     must write the contents of an EXIDX_CANTUNWIND directly. We use the
//     start of the InputSection as the purpose of the linker generated
//     section is to terminate the address range of the previous entry.
// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
//     the table to terminate the address range of the final entry.
void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {

  const uint8_t cantUnwindData[8] = {0, 0, 0, 0,  // PREL31 to target
                                     1, 0, 0, 0}; // EXIDX_CANTUNWIND

  uint64_t offset = 0;
  for (InputSection *isec : executableSections) {
    assert(isec->getParent() != nullptr);
    if (InputSection *d = findExidxSection(isec)) {
      memcpy(buf + offset, d->data().data(), d->data().size());
      d->relocateAlloc(buf, buf + d->getSize());
      offset += d->getSize();
    } else {
      // A Linker generated CANTUNWIND section.
      memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
      uint64_t s = isec->getVA();
      uint64_t p = getVA() + offset;
      target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
      offset += 8;
    }
  }
  // Write Sentinel.
  memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
  uint64_t s = sentinel->getVA(sentinel->getSize());
  uint64_t p = getVA() + offset;
  target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
  assert(size == offset + 8);
}

bool ARMExidxSyntheticSection::isNeeded() const {
  return llvm::find_if(exidxSections, [](InputSection *isec) {
           return isec->isLive();
         }) != exidxSections.end();
}

bool ARMExidxSyntheticSection::classof(const SectionBase *d) {
  return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX;
}

ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
                       ".text.thunk") {
  this->parent = os;
  this->outSecOff = off;
}

size_t ThunkSection::getSize() const {
  if (roundUpSizeForErrata)
    return alignTo(size, 4096);
  return size;
}

void ThunkSection::addThunk(Thunk *t) {
  thunks.push_back(t);
  t->addSymbols(*this);
}

void ThunkSection::writeTo(uint8_t *buf) {
  for (Thunk *t : thunks)
    t->writeTo(buf + t->offset);
}

InputSection *ThunkSection::getTargetInputSection() const {
  if (thunks.empty())
    return nullptr;
  const Thunk *t = thunks.front();
  return t->getTargetInputSection();
}

bool ThunkSection::assignOffsets() {
  uint64_t off = 0;
  for (Thunk *t : thunks) {
    off = alignTo(off, t->alignment);
    t->setOffset(off);
    uint32_t size = t->size();
    t->getThunkTargetSym()->size = size;
    off += size;
  }
  bool changed = off != size;
  size = off;
  return changed;
}

PPC32Got2Section::PPC32Got2Section()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}

bool PPC32Got2Section::isNeeded() const {
  // See the comment below. This is not needed if there is no other
  // InputSection.
  for (BaseCommand *base : getParent()->sectionCommands)
    if (auto *isd = dyn_cast<InputSectionDescription>(base))
      for (InputSection *isec : isd->sections)
        if (isec != this)
          return true;
  return false;
}

void PPC32Got2Section::finalizeContents() {
  // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
  // .got2 . This function computes outSecOff of each .got2 to be used in
  // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
  // to collect input sections named ".got2".
  uint32_t offset = 0;
  for (BaseCommand *base : getParent()->sectionCommands)
    if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
      for (InputSection *isec : isd->sections) {
        if (isec == this)
          continue;
        isec->file->ppc32Got2OutSecOff = offset;
        offset += (uint32_t)isec->getSize();
      }
    }
}

// If linking position-dependent code then the table will store the addresses
// directly in the binary so the section has type SHT_PROGBITS. If linking
// position-independent code the section has type SHT_NOBITS since it will be
// allocated and filled in by the dynamic linker.
PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
                       config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
                       ".branch_lt") {}

uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
                                                  int64_t addend) {
  return getVA() + entry_index.find({sym, addend})->second * 8;
}

Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym,
                                                          int64_t addend) {
  auto res =
      entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
  if (!res.second)
    return None;
  entries.emplace_back(sym, addend);
  return res.first->second;
}

size_t PPC64LongBranchTargetSection::getSize() const {
  return entries.size() * 8;
}

void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
  // If linking non-pic we have the final addresses of the targets and they get
  // written to the table directly. For pic the dynamic linker will allocate
  // the section and fill it it.
  if (config->isPic)
    return;

  for (auto entry : entries) {
    const Symbol *sym = entry.first;
    int64_t addend = entry.second;
    assert(sym->getVA());
    // Need calls to branch to the local entry-point since a long-branch
    // must be a local-call.
    write64(buf, sym->getVA(addend) +
                     getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
    buf += 8;
  }
}

bool PPC64LongBranchTargetSection::isNeeded() const {
  // `removeUnusedSyntheticSections()` is called before thunk allocation which
  // is too early to determine if this section will be empty or not. We need
  // Finalized to keep the section alive until after thunk creation. Finalized
  // only gets set to true once `finalizeSections()` is called after thunk
  // creation. Because of this, if we don't create any long-branch thunks we end
  // up with an empty .branch_lt section in the binary.
  return !finalized || !entries.empty();
}

static uint8_t getAbiVersion() {
  // MIPS non-PIC executable gets ABI version 1.
  if (config->emachine == EM_MIPS) {
    if (!config->isPic && !config->relocatable &&
        (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
      return 1;
    return 0;
  }

  if (config->emachine == EM_AMDGPU) {
    uint8_t ver = objectFiles[0]->abiVersion;
    for (InputFile *file : makeArrayRef(objectFiles).slice(1))
      if (file->abiVersion != ver)
        error("incompatible ABI version: " + toString(file));
    return ver;
  }

  return 0;
}

template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
  // For executable segments, the trap instructions are written before writing
  // the header. Setting Elf header bytes to zero ensures that any unused bytes
  // in header are zero-cleared, instead of having trap instructions.
  memset(buf, 0, sizeof(typename ELFT::Ehdr));
  memcpy(buf, "\177ELF", 4);

  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
  eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
  eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
  eHdr->e_ident[EI_VERSION] = EV_CURRENT;
  eHdr->e_ident[EI_OSABI] = config->osabi;
  eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
  eHdr->e_machine = config->emachine;
  eHdr->e_version = EV_CURRENT;
  eHdr->e_flags = config->eflags;
  eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
  eHdr->e_phnum = part.phdrs.size();
  eHdr->e_shentsize = sizeof(typename ELFT::Shdr);

  if (!config->relocatable) {
    eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
    eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
  }
}

template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
  // Write the program header table.
  auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
  for (PhdrEntry *p : part.phdrs) {
    hBuf->p_type = p->p_type;
    hBuf->p_flags = p->p_flags;
    hBuf->p_offset = p->p_offset;
    hBuf->p_vaddr = p->p_vaddr;
    hBuf->p_paddr = p->p_paddr;
    hBuf->p_filesz = p->p_filesz;
    hBuf->p_memsz = p->p_memsz;
    hBuf->p_align = p->p_align;
    ++hBuf;
  }
}

template <typename ELFT>
PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}

template <typename ELFT>
size_t PartitionElfHeaderSection<ELFT>::getSize() const {
  return sizeof(typename ELFT::Ehdr);
}

template <typename ELFT>
void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
  writeEhdr<ELFT>(buf, getPartition());

  // Loadable partitions are always ET_DYN.
  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
  eHdr->e_type = ET_DYN;
}

template <typename ELFT>
PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}

template <typename ELFT>
size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
  return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
}

template <typename ELFT>
void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
  writePhdrs<ELFT>(buf, getPartition());
}

PartitionIndexSection::PartitionIndexSection()
    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}

size_t PartitionIndexSection::getSize() const {
  return 12 * (partitions.size() - 1);
}

void PartitionIndexSection::finalizeContents() {
  for (size_t i = 1; i != partitions.size(); ++i)
    partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
}

void PartitionIndexSection::writeTo(uint8_t *buf) {
  uint64_t va = getVA();
  for (size_t i = 1; i != partitions.size(); ++i) {
    write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
    write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));

    SyntheticSection *next =
        i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader;
    write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());

    va += 12;
    buf += 12;
  }
}

InStruct elf::in;

std::vector<Partition> elf::partitions;
Partition *elf::mainPart;

template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
template GdbIndexSection *GdbIndexSection::create<ELF64BE>();

template void elf::splitSections<ELF32LE>();
template void elf::splitSections<ELF32BE>();
template void elf::splitSections<ELF64LE>();
template void elf::splitSections<ELF64BE>();

template class elf::MipsAbiFlagsSection<ELF32LE>;
template class elf::MipsAbiFlagsSection<ELF32BE>;
template class elf::MipsAbiFlagsSection<ELF64LE>;
template class elf::MipsAbiFlagsSection<ELF64BE>;

template class elf::MipsOptionsSection<ELF32LE>;
template class elf::MipsOptionsSection<ELF32BE>;
template class elf::MipsOptionsSection<ELF64LE>;
template class elf::MipsOptionsSection<ELF64BE>;

template class elf::MipsReginfoSection<ELF32LE>;
template class elf::MipsReginfoSection<ELF32BE>;
template class elf::MipsReginfoSection<ELF64LE>;
template class elf::MipsReginfoSection<ELF64BE>;

template class elf::DynamicSection<ELF32LE>;
template class elf::DynamicSection<ELF32BE>;
template class elf::DynamicSection<ELF64LE>;
template class elf::DynamicSection<ELF64BE>;

template class elf::RelocationSection<ELF32LE>;
template class elf::RelocationSection<ELF32BE>;
template class elf::RelocationSection<ELF64LE>;
template class elf::RelocationSection<ELF64BE>;

template class elf::AndroidPackedRelocationSection<ELF32LE>;
template class elf::AndroidPackedRelocationSection<ELF32BE>;
template class elf::AndroidPackedRelocationSection<ELF64LE>;
template class elf::AndroidPackedRelocationSection<ELF64BE>;

template class elf::RelrSection<ELF32LE>;
template class elf::RelrSection<ELF32BE>;
template class elf::RelrSection<ELF64LE>;
template class elf::RelrSection<ELF64BE>;

template class elf::SymbolTableSection<ELF32LE>;
template class elf::SymbolTableSection<ELF32BE>;
template class elf::SymbolTableSection<ELF64LE>;
template class elf::SymbolTableSection<ELF64BE>;

template class elf::VersionNeedSection<ELF32LE>;
template class elf::VersionNeedSection<ELF32BE>;
template class elf::VersionNeedSection<ELF64LE>;
template class elf::VersionNeedSection<ELF64BE>;

template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);

template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);

template class elf::PartitionElfHeaderSection<ELF32LE>;
template class elf::PartitionElfHeaderSection<ELF32BE>;
template class elf::PartitionElfHeaderSection<ELF64LE>;
template class elf::PartitionElfHeaderSection<ELF64BE>;

template class elf::PartitionProgramHeadersSection<ELF32LE>;
template class elf::PartitionProgramHeadersSection<ELF32BE>;
template class elf::PartitionProgramHeadersSection<ELF64LE>;
template class elf::PartitionProgramHeadersSection<ELF64BE>;