divtc3.c
3.23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "../int_math.h"
#include "DD.h"
// Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper
// half of the long doubles), even though this file defines complex division for
// 128-bit floats.
#define DOUBLE_PRECISION
#include "../fp_lib.h"
#if !defined(CRT_INFINITY) && defined(HUGE_VAL)
#define CRT_INFINITY HUGE_VAL
#endif // CRT_INFINITY
#define makeFinite(x) \
{ \
(x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
(x).s.lo = 0.0; \
}
long double _Complex __divtc3(long double a, long double b, long double c,
long double d) {
DD cDD = {.ld = c};
DD dDD = {.ld = d};
int ilogbw = 0;
const double logbw =
__compiler_rt_logb(crt_fmax(crt_fabs(cDD.s.hi), crt_fabs(dDD.s.hi)));
if (crt_isfinite(logbw)) {
ilogbw = (int)logbw;
cDD.s.hi = crt_scalbn(cDD.s.hi, -ilogbw);
cDD.s.lo = crt_scalbn(cDD.s.lo, -ilogbw);
dDD.s.hi = crt_scalbn(dDD.s.hi, -ilogbw);
dDD.s.lo = crt_scalbn(dDD.s.lo, -ilogbw);
}
const long double denom =
__gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld));
const long double realNumerator =
__gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld));
const long double imagNumerator =
__gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld));
DD real = {.ld = __gcc_qdiv(realNumerator, denom)};
DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)};
real.s.hi = crt_scalbn(real.s.hi, -ilogbw);
real.s.lo = crt_scalbn(real.s.lo, -ilogbw);
imag.s.hi = crt_scalbn(imag.s.hi, -ilogbw);
imag.s.lo = crt_scalbn(imag.s.lo, -ilogbw);
if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) {
DD aDD = {.ld = a};
DD bDD = {.ld = b};
DD rDD = {.ld = denom};
if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) {
real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi;
real.s.lo = 0.0;
imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi;
imag.s.lo = 0.0;
}
else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) &&
crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) {
makeFinite(aDD);
makeFinite(bDD);
real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi);
real.s.lo = 0.0;
imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi);
imag.s.lo = 0.0;
}
else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) &&
crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) {
makeFinite(cDD);
makeFinite(dDD);
real.s.hi =
crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi));
real.s.lo = 0.0;
imag.s.hi =
crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi));
imag.s.lo = 0.0;
}
}
long double _Complex z;
__real__ z = real.ld;
__imag__ z = imag.ld;
return z;
}