divtc3.c 3.23 KB
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

#include "../int_math.h"
#include "DD.h"
// Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper
// half of the long doubles), even though this file defines complex division for
// 128-bit floats.
#define DOUBLE_PRECISION
#include "../fp_lib.h"

#if !defined(CRT_INFINITY) && defined(HUGE_VAL)
#define CRT_INFINITY HUGE_VAL
#endif // CRT_INFINITY

#define makeFinite(x)                                                          \
  {                                                                            \
    (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi);        \
    (x).s.lo = 0.0;                                                            \
  }

long double _Complex __divtc3(long double a, long double b, long double c,
                              long double d) {
  DD cDD = {.ld = c};
  DD dDD = {.ld = d};

  int ilogbw = 0;
  const double logbw =
      __compiler_rt_logb(crt_fmax(crt_fabs(cDD.s.hi), crt_fabs(dDD.s.hi)));

  if (crt_isfinite(logbw)) {
    ilogbw = (int)logbw;

    cDD.s.hi = crt_scalbn(cDD.s.hi, -ilogbw);
    cDD.s.lo = crt_scalbn(cDD.s.lo, -ilogbw);
    dDD.s.hi = crt_scalbn(dDD.s.hi, -ilogbw);
    dDD.s.lo = crt_scalbn(dDD.s.lo, -ilogbw);
  }

  const long double denom =
      __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld));
  const long double realNumerator =
      __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld));
  const long double imagNumerator =
      __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld));

  DD real = {.ld = __gcc_qdiv(realNumerator, denom)};
  DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)};

  real.s.hi = crt_scalbn(real.s.hi, -ilogbw);
  real.s.lo = crt_scalbn(real.s.lo, -ilogbw);
  imag.s.hi = crt_scalbn(imag.s.hi, -ilogbw);
  imag.s.lo = crt_scalbn(imag.s.lo, -ilogbw);

  if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) {
    DD aDD = {.ld = a};
    DD bDD = {.ld = b};
    DD rDD = {.ld = denom};

    if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) {
      real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi;
      real.s.lo = 0.0;
      imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi;
      imag.s.lo = 0.0;
    }

    else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) &&
             crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) {
      makeFinite(aDD);
      makeFinite(bDD);
      real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi);
      real.s.lo = 0.0;
      imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi);
      imag.s.lo = 0.0;
    }

    else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) &&
             crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) {
      makeFinite(cDD);
      makeFinite(dDD);
      real.s.hi =
          crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi));
      real.s.lo = 0.0;
      imag.s.hi =
          crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi));
      imag.s.lo = 0.0;
    }
  }

  long double _Complex z;
  __real__ z = real.ld;
  __imag__ z = imag.ld;

  return z;
}