Inliner.cpp 23.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
//===- Inliner.cpp - Pass to inline function calls ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a basic inlining algorithm that operates bottom up over
// the Strongly Connect Components(SCCs) of the CallGraph. This enables a more
// incremental propagation of inlining decisions from the leafs to the roots of
// the callgraph.
//
//===----------------------------------------------------------------------===//

#include "PassDetail.h"
#include "mlir/Analysis/CallGraph.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Transforms/InliningUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"

#define DEBUG_TYPE "inlining"

using namespace mlir;

//===----------------------------------------------------------------------===//
// Symbol Use Tracking
//===----------------------------------------------------------------------===//

/// Walk all of the used symbol callgraph nodes referenced with the given op.
static void walkReferencedSymbolNodes(
    Operation *op, CallGraph &cg,
    DenseMap<Attribute, CallGraphNode *> &resolvedRefs,
    function_ref<void(CallGraphNode *, Operation *)> callback) {
  auto symbolUses = SymbolTable::getSymbolUses(op);
  assert(symbolUses && "expected uses to be valid");

  Operation *symbolTableOp = op->getParentOp();
  for (const SymbolTable::SymbolUse &use : *symbolUses) {
    auto refIt = resolvedRefs.insert({use.getSymbolRef(), nullptr});
    CallGraphNode *&node = refIt.first->second;

    // If this is the first instance of this reference, try to resolve a
    // callgraph node for it.
    if (refIt.second) {
      auto *symbolOp = SymbolTable::lookupNearestSymbolFrom(symbolTableOp,
                                                            use.getSymbolRef());
      auto callableOp = dyn_cast_or_null<CallableOpInterface>(symbolOp);
      if (!callableOp)
        continue;
      node = cg.lookupNode(callableOp.getCallableRegion());
    }
    if (node)
      callback(node, use.getUser());
  }
}

//===----------------------------------------------------------------------===//
// CGUseList

namespace {
/// This struct tracks the uses of callgraph nodes that can be dropped when
/// use_empty. It directly tracks and manages a use-list for all of the
/// call-graph nodes. This is necessary because many callgraph nodes are
/// referenced by SymbolRefAttr, which has no mechanism akin to the SSA `Use`
/// class.
struct CGUseList {
  /// This struct tracks the uses of callgraph nodes within a specific
  /// operation.
  struct CGUser {
    /// Any nodes referenced in the top-level attribute list of this user. We
    /// use a set here because the number of references does not matter.
    DenseSet<CallGraphNode *> topLevelUses;

    /// Uses of nodes referenced by nested operations.
    DenseMap<CallGraphNode *, int> innerUses;
  };

  CGUseList(Operation *op, CallGraph &cg);

  /// Drop uses of nodes referred to by the given call operation that resides
  /// within 'userNode'.
  void dropCallUses(CallGraphNode *userNode, Operation *callOp, CallGraph &cg);

  /// Remove the given node from the use list.
  void eraseNode(CallGraphNode *node);

  /// Returns true if the given callgraph node has no uses and can be pruned.
  bool isDead(CallGraphNode *node) const;

  /// Returns true if the given callgraph node has a single use and can be
  /// discarded.
  bool hasOneUseAndDiscardable(CallGraphNode *node) const;

  /// Recompute the uses held by the given callgraph node.
  void recomputeUses(CallGraphNode *node, CallGraph &cg);

  /// Merge the uses of 'lhs' with the uses of the 'rhs' after inlining a copy
  /// of 'lhs' into 'rhs'.
  void mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs);

private:
  /// Decrement the uses of discardable nodes referenced by the given user.
  void decrementDiscardableUses(CGUser &uses);

  /// A mapping between a discardable callgraph node (that is a symbol) and the
  /// number of uses for this node.
  DenseMap<CallGraphNode *, int> discardableSymNodeUses;
  /// A mapping between a callgraph node and the symbol callgraph nodes that it
  /// uses.
  DenseMap<CallGraphNode *, CGUser> nodeUses;
};
} // end anonymous namespace

CGUseList::CGUseList(Operation *op, CallGraph &cg) {
  /// A set of callgraph nodes that are always known to be live during inlining.
  DenseMap<Attribute, CallGraphNode *> alwaysLiveNodes;

  // Walk each of the symbol tables looking for discardable callgraph nodes.
  auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
    for (Operation &op : symbolTableOp->getRegion(0).getOps()) {
      // If this is a callgraph operation, check to see if it is discardable.
      if (auto callable = dyn_cast<CallableOpInterface>(&op)) {
        if (auto *node = cg.lookupNode(callable.getCallableRegion())) {
          SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(&op);
          if (symbol && (allUsesVisible || symbol.isPrivate()) &&
              symbol.canDiscardOnUseEmpty()) {
            discardableSymNodeUses.try_emplace(node, 0);
          }
          continue;
        }
      }
      // Otherwise, check for any referenced nodes. These will be always-live.
      walkReferencedSymbolNodes(&op, cg, alwaysLiveNodes,
                                [](CallGraphNode *, Operation *) {});
    }
  };
  SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
                                walkFn);

  // Drop the use information for any discardable nodes that are always live.
  for (auto &it : alwaysLiveNodes)
    discardableSymNodeUses.erase(it.second);

  // Compute the uses for each of the callable nodes in the graph.
  for (CallGraphNode *node : cg)
    recomputeUses(node, cg);
}

void CGUseList::dropCallUses(CallGraphNode *userNode, Operation *callOp,
                             CallGraph &cg) {
  auto &userRefs = nodeUses[userNode].innerUses;
  auto walkFn = [&](CallGraphNode *node, Operation *user) {
    auto parentIt = userRefs.find(node);
    if (parentIt == userRefs.end())
      return;
    --parentIt->second;
    --discardableSymNodeUses[node];
  };
  DenseMap<Attribute, CallGraphNode *> resolvedRefs;
  walkReferencedSymbolNodes(callOp, cg, resolvedRefs, walkFn);
}

void CGUseList::eraseNode(CallGraphNode *node) {
  // Drop all child nodes.
  for (auto &edge : *node)
    if (edge.isChild())
      eraseNode(edge.getTarget());

  // Drop the uses held by this node and erase it.
  auto useIt = nodeUses.find(node);
  assert(useIt != nodeUses.end() && "expected node to be valid");
  decrementDiscardableUses(useIt->getSecond());
  nodeUses.erase(useIt);
  discardableSymNodeUses.erase(node);
}

bool CGUseList::isDead(CallGraphNode *node) const {
  // If the parent operation isn't a symbol, simply check normal SSA deadness.
  Operation *nodeOp = node->getCallableRegion()->getParentOp();
  if (!isa<SymbolOpInterface>(nodeOp))
    return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->use_empty();

  // Otherwise, check the number of symbol uses.
  auto symbolIt = discardableSymNodeUses.find(node);
  return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 0;
}

bool CGUseList::hasOneUseAndDiscardable(CallGraphNode *node) const {
  // If this isn't a symbol node, check for side-effects and SSA use count.
  Operation *nodeOp = node->getCallableRegion()->getParentOp();
  if (!isa<SymbolOpInterface>(nodeOp))
    return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->hasOneUse();

  // Otherwise, check the number of symbol uses.
  auto symbolIt = discardableSymNodeUses.find(node);
  return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 1;
}

void CGUseList::recomputeUses(CallGraphNode *node, CallGraph &cg) {
  Operation *parentOp = node->getCallableRegion()->getParentOp();
  CGUser &uses = nodeUses[node];
  decrementDiscardableUses(uses);

  // Collect the new discardable uses within this node.
  uses = CGUser();
  DenseMap<Attribute, CallGraphNode *> resolvedRefs;
  auto walkFn = [&](CallGraphNode *refNode, Operation *user) {
    auto discardSymIt = discardableSymNodeUses.find(refNode);
    if (discardSymIt == discardableSymNodeUses.end())
      return;

    if (user != parentOp)
      ++uses.innerUses[refNode];
    else if (!uses.topLevelUses.insert(refNode).second)
      return;
    ++discardSymIt->second;
  };
  walkReferencedSymbolNodes(parentOp, cg, resolvedRefs, walkFn);
}

void CGUseList::mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs) {
  auto &lhsUses = nodeUses[lhs], &rhsUses = nodeUses[rhs];
  for (auto &useIt : lhsUses.innerUses) {
    rhsUses.innerUses[useIt.first] += useIt.second;
    discardableSymNodeUses[useIt.first] += useIt.second;
  }
}

void CGUseList::decrementDiscardableUses(CGUser &uses) {
  for (CallGraphNode *node : uses.topLevelUses)
    --discardableSymNodeUses[node];
  for (auto &it : uses.innerUses)
    discardableSymNodeUses[it.first] -= it.second;
}

//===----------------------------------------------------------------------===//
// CallGraph traversal
//===----------------------------------------------------------------------===//

namespace {
/// This class represents a specific callgraph SCC.
class CallGraphSCC {
public:
  CallGraphSCC(llvm::scc_iterator<const CallGraph *> &parentIterator)
      : parentIterator(parentIterator) {}
  /// Return a range over the nodes within this SCC.
  std::vector<CallGraphNode *>::iterator begin() { return nodes.begin(); }
  std::vector<CallGraphNode *>::iterator end() { return nodes.end(); }

  /// Reset the nodes of this SCC with those provided.
  void reset(const std::vector<CallGraphNode *> &newNodes) { nodes = newNodes; }

  /// Remove the given node from this SCC.
  void remove(CallGraphNode *node) {
    auto it = llvm::find(nodes, node);
    if (it != nodes.end()) {
      nodes.erase(it);
      parentIterator.ReplaceNode(node, nullptr);
    }
  }

private:
  std::vector<CallGraphNode *> nodes;
  llvm::scc_iterator<const CallGraph *> &parentIterator;
};
} // end anonymous namespace

/// Run a given transformation over the SCCs of the callgraph in a bottom up
/// traversal.
static void
runTransformOnCGSCCs(const CallGraph &cg,
                     function_ref<void(CallGraphSCC &)> sccTransformer) {
  llvm::scc_iterator<const CallGraph *> cgi = llvm::scc_begin(&cg);
  CallGraphSCC currentSCC(cgi);
  while (!cgi.isAtEnd()) {
    // Copy the current SCC and increment so that the transformer can modify the
    // SCC without invalidating our iterator.
    currentSCC.reset(*cgi);
    ++cgi;
    sccTransformer(currentSCC);
  }
}

namespace {
/// This struct represents a resolved call to a given callgraph node. Given that
/// the call does not actually contain a direct reference to the
/// Region(CallGraphNode) that it is dispatching to, we need to resolve them
/// explicitly.
struct ResolvedCall {
  ResolvedCall(CallOpInterface call, CallGraphNode *sourceNode,
               CallGraphNode *targetNode)
      : call(call), sourceNode(sourceNode), targetNode(targetNode) {}
  CallOpInterface call;
  CallGraphNode *sourceNode, *targetNode;
};
} // end anonymous namespace

/// Collect all of the callable operations within the given range of blocks. If
/// `traverseNestedCGNodes` is true, this will also collect call operations
/// inside of nested callgraph nodes.
static void collectCallOps(iterator_range<Region::iterator> blocks,
                           CallGraphNode *sourceNode, CallGraph &cg,
                           SmallVectorImpl<ResolvedCall> &calls,
                           bool traverseNestedCGNodes) {
  SmallVector<std::pair<Block *, CallGraphNode *>, 8> worklist;
  auto addToWorklist = [&](CallGraphNode *node,
                           iterator_range<Region::iterator> blocks) {
    for (Block &block : blocks)
      worklist.emplace_back(&block, node);
  };

  addToWorklist(sourceNode, blocks);
  while (!worklist.empty()) {
    Block *block;
    std::tie(block, sourceNode) = worklist.pop_back_val();

    for (Operation &op : *block) {
      if (auto call = dyn_cast<CallOpInterface>(op)) {
        // TODO: Support inlining nested call references.
        CallInterfaceCallable callable = call.getCallableForCallee();
        if (SymbolRefAttr symRef = callable.dyn_cast<SymbolRefAttr>()) {
          if (!symRef.isa<FlatSymbolRefAttr>())
            continue;
        }

        CallGraphNode *targetNode = cg.resolveCallable(call);
        if (!targetNode->isExternal())
          calls.emplace_back(call, sourceNode, targetNode);
        continue;
      }

      // If this is not a call, traverse the nested regions. If
      // `traverseNestedCGNodes` is false, then don't traverse nested call graph
      // regions.
      for (auto &nestedRegion : op.getRegions()) {
        CallGraphNode *nestedNode = cg.lookupNode(&nestedRegion);
        if (traverseNestedCGNodes || !nestedNode)
          addToWorklist(nestedNode ? nestedNode : sourceNode, nestedRegion);
      }
    }
  }
}

//===----------------------------------------------------------------------===//
// Inliner
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a specialization of the main inlining interface.
struct Inliner : public InlinerInterface {
  Inliner(MLIRContext *context, CallGraph &cg)
      : InlinerInterface(context), cg(cg) {}

  /// Process a set of blocks that have been inlined. This callback is invoked
  /// *before* inlined terminator operations have been processed.
  void
  processInlinedBlocks(iterator_range<Region::iterator> inlinedBlocks) final {
    // Find the closest callgraph node from the first block.
    CallGraphNode *node;
    Region *region = inlinedBlocks.begin()->getParent();
    while (!(node = cg.lookupNode(region))) {
      region = region->getParentRegion();
      assert(region && "expected valid parent node");
    }

    collectCallOps(inlinedBlocks, node, cg, calls,
                   /*traverseNestedCGNodes=*/true);
  }

  /// Mark the given callgraph node for deletion.
  void markForDeletion(CallGraphNode *node) { deadNodes.insert(node); }

  /// This method properly disposes of callables that became dead during
  /// inlining. This should not be called while iterating over the SCCs.
  void eraseDeadCallables() {
    for (CallGraphNode *node : deadNodes)
      node->getCallableRegion()->getParentOp()->erase();
  }

  /// The set of callables known to be dead.
  SmallPtrSet<CallGraphNode *, 8> deadNodes;

  /// The current set of call instructions to consider for inlining.
  SmallVector<ResolvedCall, 8> calls;

  /// The callgraph being operated on.
  CallGraph &cg;
};
} // namespace

/// Returns true if the given call should be inlined.
static bool shouldInline(ResolvedCall &resolvedCall) {
  // Don't allow inlining terminator calls. We currently don't support this
  // case.
  if (resolvedCall.call.getOperation()->isKnownTerminator())
    return false;

  // Don't allow inlining if the target is an ancestor of the call. This
  // prevents inlining recursively.
  if (resolvedCall.targetNode->getCallableRegion()->isAncestor(
          resolvedCall.call.getParentRegion()))
    return false;

  // Otherwise, inline.
  return true;
}

/// Attempt to inline calls within the given scc. This function returns
/// success if any calls were inlined, failure otherwise.
static LogicalResult inlineCallsInSCC(Inliner &inliner, CGUseList &useList,
                                      CallGraphSCC &currentSCC) {
  CallGraph &cg = inliner.cg;
  auto &calls = inliner.calls;

  // A set of dead nodes to remove after inlining.
  SmallVector<CallGraphNode *, 1> deadNodes;

  // Collect all of the direct calls within the nodes of the current SCC. We
  // don't traverse nested callgraph nodes, because they are handled separately
  // likely within a different SCC.
  for (CallGraphNode *node : currentSCC) {
    if (node->isExternal())
      continue;

    // Don't collect calls if the node is already dead.
    if (useList.isDead(node))
      deadNodes.push_back(node);
    else
      collectCallOps(*node->getCallableRegion(), node, cg, calls,
                     /*traverseNestedCGNodes=*/false);
  }

  // Try to inline each of the call operations. Don't cache the end iterator
  // here as more calls may be added during inlining.
  bool inlinedAnyCalls = false;
  for (unsigned i = 0; i != calls.size(); ++i) {
    ResolvedCall it = calls[i];
    bool doInline = shouldInline(it);
    CallOpInterface call = it.call;
    LLVM_DEBUG({
      if (doInline)
        llvm::dbgs() << "* Inlining call: " << call << "\n";
      else
        llvm::dbgs() << "* Not inlining call: " << call << "\n";
    });
    if (!doInline)
      continue;
    Region *targetRegion = it.targetNode->getCallableRegion();

    // If this is the last call to the target node and the node is discardable,
    // then inline it in-place and delete the node if successful.
    bool inlineInPlace = useList.hasOneUseAndDiscardable(it.targetNode);

    LogicalResult inlineResult = inlineCall(
        inliner, call, cast<CallableOpInterface>(targetRegion->getParentOp()),
        targetRegion, /*shouldCloneInlinedRegion=*/!inlineInPlace);
    if (failed(inlineResult)) {
      LLVM_DEBUG(llvm::dbgs() << "** Failed to inline\n");
      continue;
    }
    inlinedAnyCalls = true;

    // If the inlining was successful, Merge the new uses into the source node.
    useList.dropCallUses(it.sourceNode, call.getOperation(), cg);
    useList.mergeUsesAfterInlining(it.targetNode, it.sourceNode);

    // then erase the call.
    call.erase();

    // If we inlined in place, mark the node for deletion.
    if (inlineInPlace) {
      useList.eraseNode(it.targetNode);
      deadNodes.push_back(it.targetNode);
    }
  }

  for (CallGraphNode *node : deadNodes) {
    currentSCC.remove(node);
    inliner.markForDeletion(node);
  }
  calls.clear();
  return success(inlinedAnyCalls);
}

/// Canonicalize the nodes within the given SCC with the given set of
/// canonicalization patterns.
static void canonicalizeSCC(CallGraph &cg, CGUseList &useList,
                            CallGraphSCC &currentSCC, MLIRContext *context,
                            const OwningRewritePatternList &canonPatterns) {
  // Collect the sets of nodes to canonicalize.
  SmallVector<CallGraphNode *, 4> nodesToCanonicalize;
  for (auto *node : currentSCC) {
    // Don't canonicalize the external node, it has no valid callable region.
    if (node->isExternal())
      continue;

    // Don't canonicalize nodes with children. Nodes with children
    // require special handling as we may remove the node during
    // canonicalization. In the future, we should be able to handle this
    // case with proper node deletion tracking.
    if (node->hasChildren())
      continue;

    // We also won't apply canonicalizations for nodes that are not
    // isolated. This avoids potentially mutating the regions of nodes defined
    // above, this is also a stipulation of the 'applyPatternsAndFoldGreedily'
    // driver.
    auto *region = node->getCallableRegion();
    if (!region->getParentOp()->isKnownIsolatedFromAbove())
      continue;
    nodesToCanonicalize.push_back(node);
  }
  if (nodesToCanonicalize.empty())
    return;

  // Canonicalize each of the nodes within the SCC in parallel.
  // NOTE: This is simple now, because we don't enable canonicalizing nodes
  // within children. When we remove this restriction, this logic will need to
  // be reworked.
  if (context->isMultithreadingEnabled()) {
    ParallelDiagnosticHandler canonicalizationHandler(context);
    llvm::parallelForEachN(
        /*Begin=*/0, /*End=*/nodesToCanonicalize.size(), [&](size_t index) {
          // Set the order for this thread so that diagnostics will be properly
          // ordered.
          canonicalizationHandler.setOrderIDForThread(index);

          // Apply the canonicalization patterns to this region.
          auto *node = nodesToCanonicalize[index];
          applyPatternsAndFoldGreedily(*node->getCallableRegion(),
                                       canonPatterns);

          // Make sure to reset the order ID for the diagnostic handler, as this
          // thread may be used in a different context.
          canonicalizationHandler.eraseOrderIDForThread();
        });
  } else {
    for (CallGraphNode *node : nodesToCanonicalize)
      applyPatternsAndFoldGreedily(*node->getCallableRegion(), canonPatterns);
  }

  // Recompute the uses held by each of the nodes.
  for (CallGraphNode *node : nodesToCanonicalize)
    useList.recomputeUses(node, cg);
}

//===----------------------------------------------------------------------===//
// InlinerPass
//===----------------------------------------------------------------------===//

namespace {
struct InlinerPass : public InlinerBase<InlinerPass> {
  void runOnOperation() override;

  /// Attempt to inline calls within the given scc, and run canonicalizations
  /// with the given patterns, until a fixed point is reached. This allows for
  /// the inlining of newly devirtualized calls.
  void inlineSCC(Inliner &inliner, CGUseList &useList, CallGraphSCC &currentSCC,
                 MLIRContext *context,
                 const OwningRewritePatternList &canonPatterns);
};
} // end anonymous namespace

void InlinerPass::runOnOperation() {
  CallGraph &cg = getAnalysis<CallGraph>();
  auto *context = &getContext();

  // The inliner should only be run on operations that define a symbol table,
  // as the callgraph will need to resolve references.
  Operation *op = getOperation();
  if (!op->hasTrait<OpTrait::SymbolTable>()) {
    op->emitOpError() << " was scheduled to run under the inliner, but does "
                         "not define a symbol table";
    return signalPassFailure();
  }

  // Collect a set of canonicalization patterns to use when simplifying
  // callable regions within an SCC.
  OwningRewritePatternList canonPatterns;
  for (auto *op : context->getRegisteredOperations())
    op->getCanonicalizationPatterns(canonPatterns, context);

  // Run the inline transform in post-order over the SCCs in the callgraph.
  Inliner inliner(context, cg);
  CGUseList useList(getOperation(), cg);
  runTransformOnCGSCCs(cg, [&](CallGraphSCC &scc) {
    inlineSCC(inliner, useList, scc, context, canonPatterns);
  });

  // After inlining, make sure to erase any callables proven to be dead.
  inliner.eraseDeadCallables();
}

void InlinerPass::inlineSCC(Inliner &inliner, CGUseList &useList,
                            CallGraphSCC &currentSCC, MLIRContext *context,
                            const OwningRewritePatternList &canonPatterns) {
  // If we successfully inlined any calls, run some simplifications on the
  // nodes of the scc. Continue attempting to inline until we reach a fixed
  // point, or a maximum iteration count. We canonicalize here as it may
  // devirtualize new calls, as well as give us a better cost model.
  unsigned iterationCount = 0;
  while (succeeded(inlineCallsInSCC(inliner, useList, currentSCC))) {
    // If we aren't allowing simplifications or the max iteration count was
    // reached, then bail out early.
    if (disableCanonicalization || ++iterationCount >= maxInliningIterations)
      break;
    canonicalizeSCC(inliner.cg, useList, currentSCC, context, canonPatterns);
  }
}

std::unique_ptr<Pass> mlir::createInlinerPass() {
  return std::make_unique<InlinerPass>();
}