DialectConversion.cpp 108 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Transforms/DialectConversion.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"

using namespace mlir;
using namespace mlir::detail;

#define DEBUG_TYPE "dialect-conversion"

/// Recursively collect all of the operations to convert from within 'region'.
/// If 'target' is nonnull, operations that are recursively legal have their
/// regions pre-filtered to avoid considering them for legalization.
static LogicalResult
computeConversionSet(iterator_range<Region::iterator> region,
                     Location regionLoc, std::vector<Operation *> &toConvert,
                     ConversionTarget *target = nullptr) {
  if (llvm::empty(region))
    return success();

  // Traverse starting from the entry block.
  SmallVector<Block *, 16> worklist(1, &*region.begin());
  DenseSet<Block *> visitedBlocks;
  visitedBlocks.insert(worklist.front());
  while (!worklist.empty()) {
    Block *block = worklist.pop_back_val();

    // Compute the conversion set of each of the nested operations.
    for (Operation &op : *block) {
      toConvert.emplace_back(&op);

      // Don't check this operation's children for conversion if the operation
      // is recursively legal.
      auto legalityInfo = target ? target->isLegal(&op)
                                 : Optional<ConversionTarget::LegalOpDetails>();
      if (legalityInfo && legalityInfo->isRecursivelyLegal)
        continue;
      for (auto &region : op.getRegions()) {
        if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
                                        toConvert, target)))
          return failure();
      }
    }

    // Recurse to children that haven't been visited.
    for (Block *succ : block->getSuccessors())
      if (visitedBlocks.insert(succ).second)
        worklist.push_back(succ);
  }

  // Check that all blocks in the region were visited.
  if (llvm::any_of(llvm::drop_begin(region, 1),
                   [&](Block &block) { return !visitedBlocks.count(&block); }))
    return emitError(regionLoc, "unreachable blocks were not converted");
  return success();
}

/// A utility function to log a successful result for the given reason.
template <typename... Args>
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt,
                       Args &&... args) {
  LLVM_DEBUG({
    os.unindent();
    os.startLine() << "} -> SUCCESS";
    if (!fmt.empty())
      os.getOStream() << " : "
                      << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
    os.getOStream() << "\n";
  });
}

/// A utility function to log a failure result for the given reason.
template <typename... Args>
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt,
                       Args &&... args) {
  LLVM_DEBUG({
    os.unindent();
    os.startLine() << "} -> FAILURE : "
                   << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
                   << "\n";
  });
}

//===----------------------------------------------------------------------===//
// ConversionValueMapping
//===----------------------------------------------------------------------===//

namespace {
/// This class wraps a BlockAndValueMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
  /// Lookup a mapped value within the map. If a mapping for the provided value
  /// does not exist then return the provided value. If `desiredType` is
  /// non-null, returns the most recently mapped value with that type. If an
  /// operand of that type does not exist, defaults to normal behavior.
  Value lookupOrDefault(Value from, Type desiredType = nullptr) const;

  /// Lookup a mapped value within the map, or return null if a mapping does not
  /// exist. If a mapping exists, this follows the same behavior of
  /// `lookupOrDefault`.
  Value lookupOrNull(Value from) const;

  /// Map a value to the one provided.
  void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }

  /// Drop the last mapping for the given value.
  void erase(Value value) { mapping.erase(value); }

private:
  /// Current value mappings.
  BlockAndValueMapping mapping;
};
} // end anonymous namespace

Value ConversionValueMapping::lookupOrDefault(Value from,
                                              Type desiredType) const {
  // If there was no desired type, simply find the leaf value.
  if (!desiredType) {
    // If this value had a valid mapping, unmap that value as well in the case
    // that it was also replaced.
    while (auto mappedValue = mapping.lookupOrNull(from))
      from = mappedValue;
    return from;
  }

  // Otherwise, try to find the deepest value that has the desired type.
  Value desiredValue;
  do {
    if (from.getType() == desiredType)
      desiredValue = from;

    Value mappedValue = mapping.lookupOrNull(from);
    if (!mappedValue)
      break;
    from = mappedValue;
  } while (true);

  // If the desired value was found use it, otherwise default to the leaf value.
  return desiredValue ? desiredValue : from;
}

Value ConversionValueMapping::lookupOrNull(Value from) const {
  Value result = lookupOrDefault(from);
  return result == from ? nullptr : result;
}

//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by creating a new block that contains the new legal
/// types and extracting the block that contains the old illegal types to allow
/// for undoing pending rewrites in the case of failure.
struct ArgConverter {
  ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {}

  /// This structure contains the information pertaining to an argument that has
  /// been converted.
  struct ConvertedArgInfo {
    ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
                     Value castValue = nullptr)
        : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}

    /// The start index of in the new argument list that contains arguments that
    /// replace the original.
    unsigned newArgIdx;

    /// The number of arguments that replaced the original argument.
    unsigned newArgSize;

    /// The cast value that was created to cast from the new arguments to the
    /// old. This only used if 'newArgSize' > 1.
    Value castValue;
  };

  /// This structure contains information pertaining to a block that has had its
  /// signature converted.
  struct ConvertedBlockInfo {
    ConvertedBlockInfo(Block *origBlock, TypeConverter &converter)
        : origBlock(origBlock), converter(&converter) {}

    /// The original block that was requested to have its signature converted.
    Block *origBlock;

    /// The conversion information for each of the arguments. The information is
    /// None if the argument was dropped during conversion.
    SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;

    /// The type converter used to convert the arguments.
    TypeConverter *converter;
  };

  /// Return if the signature of the given block has already been converted.
  bool hasBeenConverted(Block *block) const {
    return conversionInfo.count(block) || convertedBlocks.count(block);
  }

  /// Set the type converter to use for the given region.
  void setConverter(Region *region, TypeConverter *typeConverter) {
    assert(typeConverter && "expected valid type converter");
    regionToConverter[region] = typeConverter;
  }

  /// Return the type converter to use for the given region, or null if there
  /// isn't one.
  TypeConverter *getConverter(Region *region) {
    return regionToConverter.lookup(region);
  }

  //===--------------------------------------------------------------------===//
  // Rewrite Application
  //===--------------------------------------------------------------------===//

  /// Erase any rewrites registered for the blocks within the given operation
  /// which is about to be removed. This merely drops the rewrites without
  /// undoing them.
  void notifyOpRemoved(Operation *op);

  /// Cleanup and undo any generated conversions for the arguments of block.
  /// This method replaces the new block with the original, reverting the IR to
  /// its original state.
  void discardRewrites(Block *block);

  /// Fully replace uses of the old arguments with the new.
  void applyRewrites(ConversionValueMapping &mapping);

  /// Materialize any necessary conversions for converted arguments that have
  /// live users, using the provided `findLiveUser` to search for a user that
  /// survives the conversion process.
  LogicalResult
  materializeLiveConversions(ConversionValueMapping &mapping,
                             OpBuilder &builder,
                             function_ref<Operation *(Value)> findLiveUser);

  //===--------------------------------------------------------------------===//
  // Conversion
  //===--------------------------------------------------------------------===//

  /// Attempt to convert the signature of the given block, if successful a new
  /// block is returned containing the new arguments. Returns `block` if it did
  /// not require conversion.
  FailureOr<Block *> convertSignature(Block *block, TypeConverter &converter,
                                      ConversionValueMapping &mapping);

  /// Apply the given signature conversion on the given block. The new block
  /// containing the updated signature is returned. If no conversions were
  /// necessary, e.g. if the block has no arguments, `block` is returned.
  /// `converter` is used to generate any necessary cast operations that
  /// translate between the origin argument types and those specified in the
  /// signature conversion.
  Block *applySignatureConversion(
      Block *block, TypeConverter &converter,
      TypeConverter::SignatureConversion &signatureConversion,
      ConversionValueMapping &mapping);

  /// Insert a new conversion into the cache.
  void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);

  /// A collection of blocks that have had their arguments converted. This is a
  /// map from the new replacement block, back to the original block.
  llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;

  /// The set of original blocks that were converted.
  DenseSet<Block *> convertedBlocks;

  /// A mapping from valid regions, to those containing the original blocks of a
  /// conversion.
  DenseMap<Region *, std::unique_ptr<Region>> regionMapping;

  /// A mapping of regions to type converters that should be used when
  /// converting the arguments of blocks within that region.
  DenseMap<Region *, TypeConverter *> regionToConverter;

  /// The pattern rewriter to use when materializing conversions.
  PatternRewriter &rewriter;
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Rewrite Application

void ArgConverter::notifyOpRemoved(Operation *op) {
  if (conversionInfo.empty())
    return;

  for (Region &region : op->getRegions()) {
    for (Block &block : region) {
      // Drop any rewrites from within.
      for (Operation &nestedOp : block)
        if (nestedOp.getNumRegions())
          notifyOpRemoved(&nestedOp);

      // Check if this block was converted.
      auto it = conversionInfo.find(&block);
      if (it == conversionInfo.end())
        continue;

      // Drop all uses of the original arguments and delete the original block.
      Block *origBlock = it->second.origBlock;
      for (BlockArgument arg : origBlock->getArguments())
        arg.dropAllUses();
      conversionInfo.erase(it);
    }
  }
}

void ArgConverter::discardRewrites(Block *block) {
  auto it = conversionInfo.find(block);
  if (it == conversionInfo.end())
    return;
  Block *origBlock = it->second.origBlock;

  // Drop all uses of the new block arguments and replace uses of the new block.
  for (int i = block->getNumArguments() - 1; i >= 0; --i)
    block->getArgument(i).dropAllUses();
  block->replaceAllUsesWith(origBlock);

  // Move the operations back the original block and the delete the new block.
  origBlock->getOperations().splice(origBlock->end(), block->getOperations());
  origBlock->moveBefore(block);
  block->erase();

  convertedBlocks.erase(origBlock);
  conversionInfo.erase(it);
}

void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
  for (auto &info : conversionInfo) {
    ConvertedBlockInfo &blockInfo = info.second;
    Block *origBlock = blockInfo.origBlock;

    // Process the remapping for each of the original arguments.
    for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
      Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
      BlockArgument origArg = origBlock->getArgument(i);

      // Handle the case of a 1->0 value mapping.
      if (!argInfo) {
        if (Value newArg = mapping.lookupOrNull(origArg))
          origArg.replaceAllUsesWith(newArg);
        continue;
      }

      // Otherwise this is a 1->1+ value mapping.
      Value castValue = argInfo->castValue;
      assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");

      // If the argument is still used, replace it with the generated cast.
      if (!origArg.use_empty())
        origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));

      // If all users of the cast were removed, we can drop it. Otherwise, keep
      // the operation alive and let the user handle any remaining usages.
      if (castValue.use_empty() && castValue.getDefiningOp())
        castValue.getDefiningOp()->erase();
    }
  }
}

LogicalResult ArgConverter::materializeLiveConversions(
    ConversionValueMapping &mapping, OpBuilder &builder,
    function_ref<Operation *(Value)> findLiveUser) {
  for (auto &info : conversionInfo) {
    Block *newBlock = info.first;
    ConvertedBlockInfo &blockInfo = info.second;
    Block *origBlock = blockInfo.origBlock;

    // Process the remapping for each of the original arguments.
    for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
      // FIXME: We should run the below checks even if the type conversion was
      // 1->N, but a lot of existing lowering rely on the block argument being
      // blindly replaced. Those usages should be updated, and this if should be
      // removed.
      if (blockInfo.argInfo[i])
        continue;

      // If the type of this argument changed and the argument is still live, we
      // need to materialize a conversion.
      BlockArgument origArg = origBlock->getArgument(i);
      auto argReplacementValue = mapping.lookupOrDefault(origArg);
      bool isDroppedArg = argReplacementValue == origArg;
      if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg)
        continue;
      Operation *liveUser = findLiveUser(origArg);
      if (!liveUser)
        continue;

      if (OpResult result = argReplacementValue.dyn_cast<OpResult>())
        rewriter.setInsertionPointAfter(result.getOwner());
      else
        rewriter.setInsertionPointToStart(newBlock);
      Value newArg = blockInfo.converter->materializeSourceConversion(
          rewriter, origArg.getLoc(), origArg.getType(),
          isDroppedArg ? ValueRange() : ValueRange(argReplacementValue));
      if (!newArg) {
        InFlightDiagnostic diag =
            emitError(origArg.getLoc())
            << "failed to materialize conversion for block argument #" << i
            << " that remained live after conversion, type was "
            << origArg.getType();
        if (!isDroppedArg)
          diag << ", with target type " << argReplacementValue.getType();
        diag.attachNote(liveUser->getLoc())
            << "see existing live user here: " << *liveUser;
        return failure();
      }
      mapping.map(origArg, newArg);
    }
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Conversion

FailureOr<Block *>
ArgConverter::convertSignature(Block *block, TypeConverter &converter,
                               ConversionValueMapping &mapping) {
  // Check if the block was already converted. If the block is detached,
  // conservatively assume it is going to be deleted.
  if (hasBeenConverted(block) || !block->getParent())
    return block;

  // Try to convert the signature for the block with the provided converter.
  if (auto conversion = converter.convertBlockSignature(block))
    return applySignatureConversion(block, converter, *conversion, mapping);
  return failure();
}

Block *ArgConverter::applySignatureConversion(
    Block *block, TypeConverter &converter,
    TypeConverter::SignatureConversion &signatureConversion,
    ConversionValueMapping &mapping) {
  // If no arguments are being changed or added, there is nothing to do.
  unsigned origArgCount = block->getNumArguments();
  auto convertedTypes = signatureConversion.getConvertedTypes();
  if (origArgCount == 0 && convertedTypes.empty())
    return block;

  // Split the block at the beginning to get a new block to use for the updated
  // signature.
  Block *newBlock = block->splitBlock(block->begin());
  block->replaceAllUsesWith(newBlock);

  SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
  ArrayRef<Value> newArgs(newArgRange);

  // Remap each of the original arguments as determined by the signature
  // conversion.
  ConvertedBlockInfo info(block, converter);
  info.argInfo.resize(origArgCount);

  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPointToStart(newBlock);
  for (unsigned i = 0; i != origArgCount; ++i) {
    auto inputMap = signatureConversion.getInputMapping(i);
    if (!inputMap)
      continue;
    BlockArgument origArg = block->getArgument(i);

    // If inputMap->replacementValue is not nullptr, then the argument is
    // dropped and a replacement value is provided to be the remappedValue.
    if (inputMap->replacementValue) {
      assert(inputMap->size == 0 &&
             "invalid to provide a replacement value when the argument isn't "
             "dropped");
      mapping.map(origArg, inputMap->replacementValue);
      continue;
    }

    // Otherwise, this is a 1->1+ mapping. Call into the provided type converter
    // to pack the new values. For 1->1 mappings, if there is no materialization
    // provided, use the argument directly instead.
    auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
    Value newArg = converter.materializeArgumentConversion(
        rewriter, origArg.getLoc(), origArg.getType(), replArgs);
    if (!newArg) {
      assert(replArgs.size() == 1 &&
             "couldn't materialize the result of 1->N conversion");
      newArg = replArgs.front();
    }
    mapping.map(origArg, newArg);
    info.argInfo[i] =
        ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
  }

  // Remove the original block from the region and return the new one.
  insertConversion(newBlock, std::move(info));
  return newBlock;
}

void ArgConverter::insertConversion(Block *newBlock,
                                    ConvertedBlockInfo &&info) {
  // Get a region to insert the old block.
  Region *region = newBlock->getParent();
  std::unique_ptr<Region> &mappedRegion = regionMapping[region];
  if (!mappedRegion)
    mappedRegion = std::make_unique<Region>(region->getParentOp());

  // Move the original block to the mapped region and emplace the conversion.
  mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
                                   info.origBlock->getIterator());
  convertedBlocks.insert(info.origBlock);
  conversionInfo.insert({newBlock, std::move(info)});
}

//===----------------------------------------------------------------------===//
// Rewriter and Transation State
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
  RewriterState(unsigned numCreatedOps, unsigned numReplacements,
                unsigned numArgReplacements, unsigned numBlockActions,
                unsigned numIgnoredOperations, unsigned numRootUpdates)
      : numCreatedOps(numCreatedOps), numReplacements(numReplacements),
        numArgReplacements(numArgReplacements),
        numBlockActions(numBlockActions),
        numIgnoredOperations(numIgnoredOperations),
        numRootUpdates(numRootUpdates) {}

  /// The current number of created operations.
  unsigned numCreatedOps;

  /// The current number of replacements queued.
  unsigned numReplacements;

  /// The current number of argument replacements queued.
  unsigned numArgReplacements;

  /// The current number of block actions performed.
  unsigned numBlockActions;

  /// The current number of ignored operations.
  unsigned numIgnoredOperations;

  /// The current number of operations that were updated in place.
  unsigned numRootUpdates;
};

/// The state of an operation that was updated by a pattern in-place. This
/// contains all of the necessary information to reconstruct an operation that
/// was updated in place.
class OperationTransactionState {
public:
  OperationTransactionState() = default;
  OperationTransactionState(Operation *op)
      : op(op), loc(op->getLoc()), attrs(op->getMutableAttrDict()),
        operands(op->operand_begin(), op->operand_end()),
        successors(op->successor_begin(), op->successor_end()) {}

  /// Discard the transaction state and reset the state of the original
  /// operation.
  void resetOperation() const {
    op->setLoc(loc);
    op->setAttrs(attrs);
    op->setOperands(operands);
    for (auto it : llvm::enumerate(successors))
      op->setSuccessor(it.value(), it.index());
  }

  /// Return the original operation of this state.
  Operation *getOperation() const { return op; }

private:
  Operation *op;
  LocationAttr loc;
  MutableDictionaryAttr attrs;
  SmallVector<Value, 8> operands;
  SmallVector<Block *, 2> successors;
};

/// This class represents one requested operation replacement via 'replaceOp' or
/// 'eraseOp`.
struct OpReplacement {
  OpReplacement() = default;
  OpReplacement(TypeConverter *converter) : converter(converter) {}

  /// An optional type converter that can be used to materialize conversions
  /// between the new and old values if necessary.
  TypeConverter *converter = nullptr;
};

/// The kind of the block action performed during the rewrite.  Actions can be
/// undone if the conversion fails.
enum class BlockActionKind {
  Create,
  Erase,
  Merge,
  Move,
  Split,
  TypeConversion
};

/// Original position of the given block in its parent region. During undo
/// actions, the block needs to be placed after `insertAfterBlock`.
struct BlockPosition {
  Region *region;
  Block *insertAfterBlock;
};

/// Information needed to undo the merge actions.
/// - the source block, and
/// - the Operation that was the last operation in the dest block before the
///   merge (could be null if the dest block was empty).
struct MergeInfo {
  Block *sourceBlock;
  Operation *destBlockLastInst;
};

/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
  static BlockAction getCreate(Block *block) {
    return {BlockActionKind::Create, block, {}};
  }
  static BlockAction getErase(Block *block, BlockPosition originalPosition) {
    return {BlockActionKind::Erase, block, {originalPosition}};
  }
  static BlockAction getMerge(Block *block, Block *sourceBlock) {
    BlockAction action{BlockActionKind::Merge, block, {}};
    action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
    return action;
  }
  static BlockAction getMove(Block *block, BlockPosition originalPosition) {
    return {BlockActionKind::Move, block, {originalPosition}};
  }
  static BlockAction getSplit(Block *block, Block *originalBlock) {
    BlockAction action{BlockActionKind::Split, block, {}};
    action.originalBlock = originalBlock;
    return action;
  }
  static BlockAction getTypeConversion(Block *block) {
    return BlockAction{BlockActionKind::TypeConversion, block, {}};
  }

  // The action kind.
  BlockActionKind kind;

  // A pointer to the block that was created by the action.
  Block *block;

  union {
    // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
    // contains a pointer to the region that originally contained the block as
    // well as the position of the block in that region.
    BlockPosition originalPosition;
    // In use if kind == BlockActionKind::Split and contains a pointer to the
    // block that was split into two parts.
    Block *originalBlock;
    // In use if kind == BlockActionKind::Merge, and contains the information
    // needed to undo the merge.
    MergeInfo mergeInfo;
  };
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl {
  ConversionPatternRewriterImpl(PatternRewriter &rewriter)
      : argConverter(rewriter) {}

  /// Cleanup and destroy any generated rewrite operations. This method is
  /// invoked when the conversion process fails.
  void discardRewrites();

  /// Apply all requested operation rewrites. This method is invoked when the
  /// conversion process succeeds.
  void applyRewrites();

  //===--------------------------------------------------------------------===//
  // State Management
  //===--------------------------------------------------------------------===//

  /// Return the current state of the rewriter.
  RewriterState getCurrentState();

  /// Reset the state of the rewriter to a previously saved point.
  void resetState(RewriterState state);

  /// Erase any blocks that were unlinked from their regions and stored in block
  /// actions.
  void eraseDanglingBlocks();

  /// Undo the block actions (motions, splits) one by one in reverse order until
  /// "numActionsToKeep" actions remains.
  void undoBlockActions(unsigned numActionsToKeep = 0);

  /// Remap the given operands to those with potentially different types. The
  /// provided type converter is used to ensure that the remapped types are
  /// legal. Returns success if the operands could be remapped, failure
  /// otherwise.
  LogicalResult remapValues(Location loc, PatternRewriter &rewriter,
                            TypeConverter *converter,
                            Operation::operand_range operands,
                            SmallVectorImpl<Value> &remapped);

  /// Returns true if the given operation is ignored, and does not need to be
  /// converted.
  bool isOpIgnored(Operation *op) const;

  /// Recursively marks the nested operations under 'op' as ignored. This
  /// removes them from being considered for legalization.
  void markNestedOpsIgnored(Operation *op);

  //===--------------------------------------------------------------------===//
  // Type Conversion
  //===--------------------------------------------------------------------===//

  /// Convert the signature of the given block.
  FailureOr<Block *> convertBlockSignature(
      Block *block, TypeConverter &converter,
      TypeConverter::SignatureConversion *conversion = nullptr);

  /// Apply a signature conversion on the given region.
  Block *
  applySignatureConversion(Region *region,
                           TypeConverter::SignatureConversion &conversion);

  /// Convert the types of block arguments within the given region.
  FailureOr<Block *>
  convertRegionTypes(Region *region, TypeConverter &converter,
                     TypeConverter::SignatureConversion *entryConversion);

  //===--------------------------------------------------------------------===//
  // Rewriter Notification Hooks
  //===--------------------------------------------------------------------===//

  /// PatternRewriter hook for replacing the results of an operation.
  void notifyOpReplaced(Operation *op, ValueRange newValues);

  /// Notifies that a block is about to be erased.
  void notifyBlockIsBeingErased(Block *block);

  /// Notifies that a block was created.
  void notifyCreatedBlock(Block *block);

  /// Notifies that a block was split.
  void notifySplitBlock(Block *block, Block *continuation);

  /// Notifies that `block` is being merged with `srcBlock`.
  void notifyBlocksBeingMerged(Block *block, Block *srcBlock);

  /// Notifies that the blocks of a region are about to be moved.
  void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
                                        Region::iterator before);

  /// Notifies that the blocks of a region were cloned into another.
  void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
                                   Location origRegionLoc);

  /// Notifies that a pattern match failed for the given reason.
  LogicalResult
  notifyMatchFailure(Location loc,
                     function_ref<void(Diagnostic &)> reasonCallback);

  //===--------------------------------------------------------------------===//
  // State
  //===--------------------------------------------------------------------===//

  // Mapping between replaced values that differ in type. This happens when
  // replacing a value with one of a different type.
  ConversionValueMapping mapping;

  /// Utility used to convert block arguments.
  ArgConverter argConverter;

  /// Ordered vector of all of the newly created operations during conversion.
  std::vector<Operation *> createdOps;

  /// Ordered map of requested operation replacements.
  llvm::MapVector<Operation *, OpReplacement> replacements;

  /// Ordered vector of any requested block argument replacements.
  SmallVector<BlockArgument, 4> argReplacements;

  /// Ordered list of block operations (creations, splits, motions).
  SmallVector<BlockAction, 4> blockActions;

  /// A set of operations that should no longer be considered for legalization,
  /// but were not directly replace/erased/etc. by a pattern. These are
  /// generally child operations of other operations who were
  /// replaced/erased/etc. This is not meant to be an exhaustive list of all
  /// operations, but the minimal set that can be used to detect if a given
  /// operation should be `ignored`. For example, we may add the operations that
  /// define non-empty regions to the set, but not any of the others. This
  /// simplifies the amount of memory needed as we can query if the parent
  /// operation was ignored.
  llvm::SetVector<Operation *> ignoredOps;

  /// A transaction state for each of operations that were updated in-place.
  SmallVector<OperationTransactionState, 4> rootUpdates;

  /// A vector of indices into `replacements` of operations that were replaced
  /// with values with different result types than the original operation, e.g.
  /// 1->N conversion of some kind.
  SmallVector<unsigned, 4> operationsWithChangedResults;

  /// A default type converter, used when block conversions do not have one
  /// explicitly provided.
  TypeConverter defaultTypeConverter;

  /// The current conversion pattern that is being rewritten, or nullptr if
  /// called from outside of a conversion pattern rewrite.
  const ConversionPattern *currentConversionPattern = nullptr;

#ifndef NDEBUG
  /// A set of operations that have pending updates. This tracking isn't
  /// strictly necessary, and is thus only active during debug builds for extra
  /// verification.
  SmallPtrSet<Operation *, 1> pendingRootUpdates;

  /// A logger used to emit diagnostics during the conversion process.
  llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
};
} // end namespace detail
} // end namespace mlir

/// Detach any operations nested in the given operation from their parent
/// blocks, and erase the given operation. This can be used when the nested
/// operations are scheduled for erasure themselves, so deleting the regions of
/// the given operation together with their content would result in double-free.
/// This happens, for example, when rolling back op creation in the reverse
/// order and if the nested ops were created before the parent op. This function
/// does not need to collect nested ops recursively because it is expected to
/// also be called for each nested op when it is about to be deleted.
static void detachNestedAndErase(Operation *op) {
  for (Region &region : op->getRegions()) {
    for (Block &block : region.getBlocks()) {
      while (!block.getOperations().empty())
        block.getOperations().remove(block.getOperations().begin());
      block.dropAllDefinedValueUses();
    }
  }
  op->erase();
}

void ConversionPatternRewriterImpl::discardRewrites() {
  // Reset any operations that were updated in place.
  for (auto &state : rootUpdates)
    state.resetOperation();

  undoBlockActions();

  // Remove any newly created ops.
  for (auto *op : llvm::reverse(createdOps))
    detachNestedAndErase(op);
}

void ConversionPatternRewriterImpl::applyRewrites() {
  // Apply all of the rewrites replacements requested during conversion.
  for (auto &repl : replacements) {
    for (OpResult result : repl.first->getResults())
      if (Value newValue = mapping.lookupOrNull(result))
        result.replaceAllUsesWith(newValue);

    // If this operation defines any regions, drop any pending argument
    // rewrites.
    if (repl.first->getNumRegions())
      argConverter.notifyOpRemoved(repl.first);
  }

  // Apply all of the requested argument replacements.
  for (BlockArgument arg : argReplacements) {
    Value repl = mapping.lookupOrDefault(arg);
    if (repl.isa<BlockArgument>()) {
      arg.replaceAllUsesWith(repl);
      continue;
    }

    // If the replacement value is an operation, we check to make sure that we
    // don't replace uses that are within the parent operation of the
    // replacement value.
    Operation *replOp = repl.cast<OpResult>().getOwner();
    Block *replBlock = replOp->getBlock();
    arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
      Operation *user = operand.getOwner();
      return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
    });
  }

  // In a second pass, erase all of the replaced operations in reverse. This
  // allows processing nested operations before their parent region is
  // destroyed.
  for (auto &repl : llvm::reverse(replacements))
    repl.first->erase();

  argConverter.applyRewrites(mapping);

  // Now that the ops have been erased, also erase dangling blocks.
  eraseDanglingBlocks();
}

//===----------------------------------------------------------------------===//
// State Management

RewriterState ConversionPatternRewriterImpl::getCurrentState() {
  return RewriterState(createdOps.size(), replacements.size(),
                       argReplacements.size(), blockActions.size(),
                       ignoredOps.size(), rootUpdates.size());
}

void ConversionPatternRewriterImpl::resetState(RewriterState state) {
  // Reset any operations that were updated in place.
  for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
    rootUpdates[i].resetOperation();
  rootUpdates.resize(state.numRootUpdates);

  // Reset any replaced arguments.
  for (BlockArgument replacedArg :
       llvm::drop_begin(argReplacements, state.numArgReplacements))
    mapping.erase(replacedArg);
  argReplacements.resize(state.numArgReplacements);

  // Undo any block actions.
  undoBlockActions(state.numBlockActions);

  // Reset any replaced operations and undo any saved mappings.
  for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
    for (auto result : repl.first->getResults())
      mapping.erase(result);
  while (replacements.size() != state.numReplacements)
    replacements.pop_back();

  // Pop all of the newly created operations.
  while (createdOps.size() != state.numCreatedOps) {
    detachNestedAndErase(createdOps.back());
    createdOps.pop_back();
  }

  // Pop all of the recorded ignored operations that are no longer valid.
  while (ignoredOps.size() != state.numIgnoredOperations)
    ignoredOps.pop_back();

  // Reset operations with changed results.
  while (!operationsWithChangedResults.empty() &&
         operationsWithChangedResults.back() >= state.numReplacements)
    operationsWithChangedResults.pop_back();
}

void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
  for (auto &action : blockActions)
    if (action.kind == BlockActionKind::Erase)
      delete action.block;
}

void ConversionPatternRewriterImpl::undoBlockActions(
    unsigned numActionsToKeep) {
  for (auto &action :
       llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
    switch (action.kind) {
    // Delete the created block.
    case BlockActionKind::Create: {
      // Unlink all of the operations within this block, they will be deleted
      // separately.
      auto &blockOps = action.block->getOperations();
      while (!blockOps.empty())
        blockOps.remove(blockOps.begin());
      action.block->dropAllDefinedValueUses();
      action.block->erase();
      break;
    }
    // Put the block (owned by action) back into its original position.
    case BlockActionKind::Erase: {
      auto &blockList = action.originalPosition.region->getBlocks();
      Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
      blockList.insert((insertAfterBlock
                            ? std::next(Region::iterator(insertAfterBlock))
                            : blockList.end()),
                       action.block);
      break;
    }
    // Split the block at the position which was originally the end of the
    // destination block (owned by action), and put the instructions back into
    // the block used before the merge.
    case BlockActionKind::Merge: {
      Block *sourceBlock = action.mergeInfo.sourceBlock;
      Block::iterator splitPoint =
          (action.mergeInfo.destBlockLastInst
               ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
               : action.block->begin());
      sourceBlock->getOperations().splice(sourceBlock->begin(),
                                          action.block->getOperations(),
                                          splitPoint, action.block->end());
      break;
    }
    // Move the block back to its original position.
    case BlockActionKind::Move: {
      Region *originalRegion = action.originalPosition.region;
      Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
      originalRegion->getBlocks().splice(
          (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
                            : originalRegion->end()),
          action.block->getParent()->getBlocks(), action.block);
      break;
    }
    // Merge back the block that was split out.
    case BlockActionKind::Split: {
      action.originalBlock->getOperations().splice(
          action.originalBlock->end(), action.block->getOperations());
      action.block->dropAllDefinedValueUses();
      action.block->erase();
      break;
    }
    // Undo the type conversion.
    case BlockActionKind::TypeConversion: {
      argConverter.discardRewrites(action.block);
      break;
    }
    }
  }
  blockActions.resize(numActionsToKeep);
}

LogicalResult ConversionPatternRewriterImpl::remapValues(
    Location loc, PatternRewriter &rewriter, TypeConverter *converter,
    Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
  remapped.reserve(llvm::size(operands));

  SmallVector<Type, 1> legalTypes;
  for (auto it : llvm::enumerate(operands)) {
    Value operand = it.value();
    Type origType = operand.getType();

    // If a converter was provided, get the desired legal types for this
    // operand.
    Type desiredType;
    if (converter) {
      // If there is no legal conversion, fail to match this pattern.
      legalTypes.clear();
      if (failed(converter->convertType(origType, legalTypes))) {
        return notifyMatchFailure(loc, [=](Diagnostic &diag) {
          diag << "unable to convert type for operand #" << it.index()
               << ", type was " << origType;
        });
      }
      // TODO: There currently isn't any mechanism to do 1->N type conversion
      // via the PatternRewriter replacement API, so for now we just ignore it.
      if (legalTypes.size() == 1)
        desiredType = legalTypes.front();
    } else {
      // TODO: What we should do here is just set `desiredType` to `origType`
      // and then handle the necessary type conversions after the conversion
      // process has finished. Unfortunately a lot of patterns currently rely on
      // receiving the new operands even if the types change, so we keep the
      // original behavior here for now until all of the patterns relying on
      // this get updated.
    }
    Value newOperand = mapping.lookupOrDefault(operand, desiredType);

    // Handle the case where the conversion was 1->1 and the new operand type
    // isn't legal.
    Type newOperandType = newOperand.getType();
    if (converter && desiredType && newOperandType != desiredType) {
      // Attempt to materialize a conversion for this new value.
      newOperand = converter->materializeTargetConversion(
          rewriter, loc, desiredType, newOperand);
      if (!newOperand) {
        return notifyMatchFailure(loc, [=](Diagnostic &diag) {
          diag << "unable to materialize a conversion for "
                  "operand #"
               << it.index() << ", from " << newOperandType << " to "
               << desiredType;
        });
      }
    }
    remapped.push_back(newOperand);
  }
  return success();
}

bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
  // Check to see if this operation was replaced or its parent ignored.
  return replacements.count(op) || ignoredOps.count(op->getParentOp());
}

void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
  // Walk this operation and collect nested operations that define non-empty
  // regions. We mark such operations as 'ignored' so that we know we don't have
  // to convert them, or their nested ops.
  if (op->getNumRegions() == 0)
    return;
  op->walk([&](Operation *op) {
    if (llvm::any_of(op->getRegions(),
                     [](Region &region) { return !region.empty(); }))
      ignoredOps.insert(op);
  });
}

//===----------------------------------------------------------------------===//
// Type Conversion

FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
    Block *block, TypeConverter &converter,
    TypeConverter::SignatureConversion *conversion) {
  FailureOr<Block *> result =
      conversion ? argConverter.applySignatureConversion(block, converter,
                                                         *conversion, mapping)
                 : argConverter.convertSignature(block, converter, mapping);
  if (Block *newBlock = result.getValue()) {
    if (newBlock != block)
      blockActions.push_back(BlockAction::getTypeConversion(newBlock));
  }
  return result;
}

Block *ConversionPatternRewriterImpl::applySignatureConversion(
    Region *region, TypeConverter::SignatureConversion &conversion) {
  if (!region->empty()) {
    return *convertBlockSignature(&region->front(), defaultTypeConverter,
                                  &conversion);
  }
  return nullptr;
}

FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
    Region *region, TypeConverter &converter,
    TypeConverter::SignatureConversion *entryConversion) {
  argConverter.setConverter(region, &converter);
  if (region->empty())
    return nullptr;

  // Convert the arguments of each block within the region.
  FailureOr<Block *> newEntry =
      convertBlockSignature(&region->front(), converter, entryConversion);
  for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1)))
    if (failed(convertBlockSignature(&block, converter)))
      return failure();
  return newEntry;
}

//===----------------------------------------------------------------------===//
// Rewriter Notification Hooks

void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
                                                     ValueRange newValues) {
  assert(newValues.size() == op->getNumResults());
  assert(!replacements.count(op) && "operation was already replaced");

  // Track if any of the results changed, e.g. erased and replaced with null.
  bool resultChanged = false;

  // Create mappings for each of the new result values.
  Value newValue, result;
  for (auto it : llvm::zip(newValues, op->getResults())) {
    std::tie(newValue, result) = it;
    if (!newValue) {
      resultChanged = true;
      continue;
    }
    // Remap, and check for any result type changes.
    mapping.map(result, newValue);
    resultChanged |= (newValue.getType() != result.getType());
  }
  if (resultChanged)
    operationsWithChangedResults.push_back(replacements.size());

  // Record the requested operation replacement.
  TypeConverter *converter = nullptr;
  if (currentConversionPattern)
    converter = currentConversionPattern->getTypeConverter();
  replacements.insert(std::make_pair(op, OpReplacement(converter)));

  // Mark this operation as recursively ignored so that we don't need to
  // convert any nested operations.
  markNestedOpsIgnored(op);
}

void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
  Region *region = block->getParent();
  Block *origPrevBlock = block->getPrevNode();
  blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
}

void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
  blockActions.push_back(BlockAction::getCreate(block));
}

void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
                                                     Block *continuation) {
  blockActions.push_back(BlockAction::getSplit(continuation, block));
}

void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
                                                            Block *srcBlock) {
  blockActions.push_back(BlockAction::getMerge(block, srcBlock));
}

void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
    Region &region, Region &parent, Region::iterator before) {
  Block *origPrevBlock = nullptr;
  for (auto &pair : llvm::enumerate(region)) {
    Block &block = pair.value();
    blockActions.push_back(
        BlockAction::getMove(&block, {&region, origPrevBlock}));
    origPrevBlock = &block;
  }
}

void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
    iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
  for (Block &block : blocks)
    blockActions.push_back(BlockAction::getCreate(&block));

  // Compute the conversion set for the inlined region.
  auto result = computeConversionSet(blocks, origRegionLoc, createdOps);

  // This original region has already had its conversion set computed, so there
  // shouldn't be any new failures.
  (void)result;
  assert(succeeded(result) && "expected region to have no unreachable blocks");
}

LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
    Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
  LLVM_DEBUG({
    Diagnostic diag(loc, DiagnosticSeverity::Remark);
    reasonCallback(diag);
    logger.startLine() << "** Failure : " << diag.str() << "\n";
  });
  return failure();
}

//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//

ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
    : PatternRewriter(ctx),
      impl(new detail::ConversionPatternRewriterImpl(*this)) {}
ConversionPatternRewriter::~ConversionPatternRewriter() {}

/// PatternRewriter hook for replacing the results of an operation.
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
  LLVM_DEBUG({
    impl->logger.startLine()
        << "** Replace : '" << op->getName() << "'(" << op << ")\n";
  });
  impl->notifyOpReplaced(op, newValues);
}

/// PatternRewriter hook for erasing a dead operation. The uses of this
/// operation *must* be made dead by the end of the conversion process,
/// otherwise an assert will be issued.
void ConversionPatternRewriter::eraseOp(Operation *op) {
  LLVM_DEBUG({
    impl->logger.startLine()
        << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
  });
  SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
  impl->notifyOpReplaced(op, nullRepls);
}

void ConversionPatternRewriter::eraseBlock(Block *block) {
  impl->notifyBlockIsBeingErased(block);

  // Mark all ops for erasure.
  for (Operation &op : *block)
    eraseOp(&op);

  // Unlink the block from its parent region. The block is kept in the block
  // action and will be actually destroyed when rewrites are applied. This
  // allows us to keep the operations in the block live and undo the removal by
  // re-inserting the block.
  block->getParent()->getBlocks().remove(block);
}

Block *ConversionPatternRewriter::applySignatureConversion(
    Region *region, TypeConverter::SignatureConversion &conversion) {
  return impl->applySignatureConversion(region, conversion);
}

FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
    Region *region, TypeConverter &converter,
    TypeConverter::SignatureConversion *entryConversion) {
  return impl->convertRegionTypes(region, converter, entryConversion);
}

void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
                                                           Value to) {
  LLVM_DEBUG({
    Operation *parentOp = from.getOwner()->getParentOp();
    impl->logger.startLine() << "** Replace Argument : '" << from
                             << "'(in region of '" << parentOp->getName()
                             << "'(" << from.getOwner()->getParentOp() << ")\n";
  });
  impl->argReplacements.push_back(from);
  impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}

/// Return the converted value that replaces 'key'. Return 'key' if there is
/// no such a converted value.
Value ConversionPatternRewriter::getRemappedValue(Value key) {
  return impl->mapping.lookupOrDefault(key);
}

/// PatternRewriter hook for creating a new block with the given arguments.
void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
  impl->notifyCreatedBlock(block);
}

/// PatternRewriter hook for splitting a block into two parts.
Block *ConversionPatternRewriter::splitBlock(Block *block,
                                             Block::iterator before) {
  auto *continuation = PatternRewriter::splitBlock(block, before);
  impl->notifySplitBlock(block, continuation);
  return continuation;
}

/// PatternRewriter hook for merging a block into another.
void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
                                            ValueRange argValues) {
  impl->notifyBlocksBeingMerged(dest, source);
  assert(llvm::all_of(source->getPredecessors(),
                      [dest](Block *succ) { return succ == dest; }) &&
         "expected 'source' to have no predecessors or only 'dest'");
  assert(argValues.size() == source->getNumArguments() &&
         "incorrect # of argument replacement values");
  for (auto it : llvm::zip(source->getArguments(), argValues))
    replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
  dest->getOperations().splice(dest->end(), source->getOperations());
  eraseBlock(source);
}

/// PatternRewriter hook for moving blocks out of a region.
void ConversionPatternRewriter::inlineRegionBefore(Region &region,
                                                   Region &parent,
                                                   Region::iterator before) {
  impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
  PatternRewriter::inlineRegionBefore(region, parent, before);
}

/// PatternRewriter hook for cloning blocks of one region into another.
void ConversionPatternRewriter::cloneRegionBefore(
    Region &region, Region &parent, Region::iterator before,
    BlockAndValueMapping &mapping) {
  if (region.empty())
    return;
  PatternRewriter::cloneRegionBefore(region, parent, before, mapping);

  // Collect the range of the cloned blocks.
  auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
  auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
  impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
}

/// PatternRewriter hook for creating a new operation.
void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
  LLVM_DEBUG({
    impl->logger.startLine()
        << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
  });
  impl->createdOps.push_back(op);
}

/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
#ifndef NDEBUG
  impl->pendingRootUpdates.insert(op);
#endif
  impl->rootUpdates.emplace_back(op);
}

/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
  // There is nothing to do here, we only need to track the operation at the
  // start of the update.
#ifndef NDEBUG
  assert(impl->pendingRootUpdates.erase(op) &&
         "operation did not have a pending in-place update");
#endif
}

/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
#ifndef NDEBUG
  assert(impl->pendingRootUpdates.erase(op) &&
         "operation did not have a pending in-place update");
#endif
  // Erase the last update for this operation.
  auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
  auto &rootUpdates = impl->rootUpdates;
  auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
  rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
}

/// PatternRewriter hook for notifying match failure reasons.
LogicalResult ConversionPatternRewriter::notifyMatchFailure(
    Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
  return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
}

/// Return a reference to the internal implementation.
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
  return *impl;
}

//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//

/// Attempt to match and rewrite the IR root at the specified operation.
LogicalResult
ConversionPattern::matchAndRewrite(Operation *op,
                                   PatternRewriter &rewriter) const {
  auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
  auto &rewriterImpl = dialectRewriter.getImpl();

  // Track the current conversion pattern in the rewriter.
  assert(!rewriterImpl.currentConversionPattern &&
         "already inside of a pattern rewrite");
  llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard(
      rewriterImpl.currentConversionPattern, this);

  // Remap the operands of the operation.
  SmallVector<Value, 4> operands;
  if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter,
                                      getTypeConverter(), op->getOperands(),
                                      operands))) {
    return failure();
  }
  return matchAndRewrite(op, operands, dialectRewriter);
}

//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//

namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<const RewritePattern *, 1>;

/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
  using LegalizationAction = ConversionTarget::LegalizationAction;

  OperationLegalizer(ConversionTarget &targetInfo,
                     const OwningRewritePatternList &patterns);

  /// Returns true if the given operation is known to be illegal on the target.
  bool isIllegal(Operation *op) const;

  /// Attempt to legalize the given operation. Returns success if the operation
  /// was legalized, failure otherwise.
  LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);

  /// Returns the conversion target in use by the legalizer.
  ConversionTarget &getTarget() { return target; }

private:
  /// Attempt to legalize the given operation by folding it.
  LogicalResult legalizeWithFold(Operation *op,
                                 ConversionPatternRewriter &rewriter);

  /// Attempt to legalize the given operation by applying a pattern. Returns
  /// success if the operation was legalized, failure otherwise.
  LogicalResult legalizeWithPattern(Operation *op,
                                    ConversionPatternRewriter &rewriter);

  /// Return true if the given pattern may be applied to the given operation,
  /// false otherwise.
  bool canApplyPattern(Operation *op, const RewritePattern &pattern,
                       ConversionPatternRewriter &rewriter);

  /// Legalize the resultant IR after successfully applying the given pattern.
  LogicalResult legalizePatternResult(Operation *op,
                                      const RewritePattern &pattern,
                                      ConversionPatternRewriter &rewriter,
                                      RewriterState &curState);

  /// Legalizes the actions registered during the execution of a pattern.
  LogicalResult legalizePatternBlockActions(Operation *op,
                                            ConversionPatternRewriter &rewriter,
                                            ConversionPatternRewriterImpl &impl,
                                            RewriterState &state,
                                            RewriterState &newState);
  LogicalResult legalizePatternCreatedOperations(
      ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
      RewriterState &state, RewriterState &newState);
  LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
                                           ConversionPatternRewriterImpl &impl,
                                           RewriterState &state,
                                           RewriterState &newState);

  //===--------------------------------------------------------------------===//
  // Cost Model
  //===--------------------------------------------------------------------===//

  /// Build an optimistic legalization graph given the provided patterns. This
  /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
  /// patterns for operations that are not directly legal, but may be
  /// transitively legal for the current target given the provided patterns.
  void buildLegalizationGraph(
      LegalizationPatterns &anyOpLegalizerPatterns,
      DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);

  /// Compute the benefit of each node within the computed legalization graph.
  /// This orders the patterns within 'legalizerPatterns' based upon two
  /// criteria:
  ///  1) Prefer patterns that have the lowest legalization depth, i.e.
  ///     represent the more direct mapping to the target.
  ///  2) When comparing patterns with the same legalization depth, prefer the
  ///     pattern with the highest PatternBenefit. This allows for users to
  ///     prefer specific legalizations over others.
  void computeLegalizationGraphBenefit(
      LegalizationPatterns &anyOpLegalizerPatterns,
      DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);

  /// Compute the legalization depth when legalizing an operation of the given
  /// type.
  unsigned computeOpLegalizationDepth(
      OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
      DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);

  /// Apply the conversion cost model to the given set of patterns, and return
  /// the smallest legalization depth of any of the patterns. See
  /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
  unsigned applyCostModelToPatterns(
      LegalizationPatterns &patterns,
      DenseMap<OperationName, unsigned> &minOpPatternDepth,
      DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);

  /// The current set of patterns that have been applied.
  SmallPtrSet<const RewritePattern *, 8> appliedPatterns;

  /// The legalization information provided by the target.
  ConversionTarget &target;

  /// The pattern applicator to use for conversions.
  PatternApplicator applicator;
};
} // namespace

OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
                                       const OwningRewritePatternList &patterns)
    : target(targetInfo), applicator(patterns) {
  // The set of patterns that can be applied to illegal operations to transform
  // them into legal ones.
  DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
  LegalizationPatterns anyOpLegalizerPatterns;

  buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
  computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
}

bool OperationLegalizer::isIllegal(Operation *op) const {
  // Check if the target explicitly marked this operation as illegal.
  return target.getOpAction(op->getName()) == LegalizationAction::Illegal;
}

LogicalResult
OperationLegalizer::legalize(Operation *op,
                             ConversionPatternRewriter &rewriter) {
#ifndef NDEBUG
  const char *logLineComment =
      "//===-------------------------------------------===//\n";

  auto &rewriterImpl = rewriter.getImpl();
#endif
  LLVM_DEBUG({
    auto &os = rewriterImpl.logger;
    os.getOStream() << "\n";
    os.startLine() << logLineComment;
    os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
                   << ") {\n";
    os.indent();

    // If the operation has no regions, just print it here.
    if (op->getNumRegions() == 0) {
      op->print(os.startLine(), OpPrintingFlags().printGenericOpForm());
      os.getOStream() << "\n\n";
    }
  });

  // Check if this operation is legal on the target.
  if (auto legalityInfo = target.isLegal(op)) {
    LLVM_DEBUG({
      logSuccess(
          rewriterImpl.logger, "operation marked legal by the target{0}",
          legalityInfo->isRecursivelyLegal
              ? "; NOTE: operation is recursively legal; skipping internals"
              : "");
      rewriterImpl.logger.startLine() << logLineComment;
    });

    // If this operation is recursively legal, mark its children as ignored so
    // that we don't consider them for legalization.
    if (legalityInfo->isRecursivelyLegal)
      rewriter.getImpl().markNestedOpsIgnored(op);
    return success();
  }

  // Check to see if the operation is ignored and doesn't need to be converted.
  if (rewriter.getImpl().isOpIgnored(op)) {
    LLVM_DEBUG({
      logSuccess(rewriterImpl.logger,
                 "operation marked 'ignored' during conversion");
      rewriterImpl.logger.startLine() << logLineComment;
    });
    return success();
  }

  // If the operation isn't legal, try to fold it in-place.
  // TODO: Should we always try to do this, even if the op is
  // already legal?
  if (succeeded(legalizeWithFold(op, rewriter))) {
    LLVM_DEBUG({
      logSuccess(rewriterImpl.logger, "operation was folded");
      rewriterImpl.logger.startLine() << logLineComment;
    });
    return success();
  }

  // Otherwise, we need to apply a legalization pattern to this operation.
  if (succeeded(legalizeWithPattern(op, rewriter))) {
    LLVM_DEBUG({
      logSuccess(rewriterImpl.logger, "");
      rewriterImpl.logger.startLine() << logLineComment;
    });
    return success();
  }

  LLVM_DEBUG({
    logFailure(rewriterImpl.logger, "no matched legalization pattern");
    rewriterImpl.logger.startLine() << logLineComment;
  });
  return failure();
}

LogicalResult
OperationLegalizer::legalizeWithFold(Operation *op,
                                     ConversionPatternRewriter &rewriter) {
  auto &rewriterImpl = rewriter.getImpl();
  RewriterState curState = rewriterImpl.getCurrentState();

  LLVM_DEBUG({
    rewriterImpl.logger.startLine() << "* Fold {\n";
    rewriterImpl.logger.indent();
  });

  // Try to fold the operation.
  SmallVector<Value, 2> replacementValues;
  rewriter.setInsertionPoint(op);
  if (failed(rewriter.tryFold(op, replacementValues))) {
    LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
    return failure();
  }

  // Insert a replacement for 'op' with the folded replacement values.
  rewriter.replaceOp(op, replacementValues);

  // Recursively legalize any new constant operations.
  for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
       i != e; ++i) {
    Operation *cstOp = rewriterImpl.createdOps[i];
    if (failed(legalize(cstOp, rewriter))) {
      LLVM_DEBUG(logFailure(rewriterImpl.logger,
                            "generated constant '{0}' was illegal",
                            cstOp->getName()));
      rewriterImpl.resetState(curState);
      return failure();
    }
  }

  LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
  return success();
}

LogicalResult
OperationLegalizer::legalizeWithPattern(Operation *op,
                                        ConversionPatternRewriter &rewriter) {
  auto &rewriterImpl = rewriter.getImpl();

  // Functor that returns if the given pattern may be applied.
  auto canApply = [&](const RewritePattern &pattern) {
    return canApplyPattern(op, pattern, rewriter);
  };

  // Functor that cleans up the rewriter state after a pattern failed to match.
  RewriterState curState = rewriterImpl.getCurrentState();
  auto onFailure = [&](const RewritePattern &pattern) {
    LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
    rewriterImpl.resetState(curState);
    appliedPatterns.erase(&pattern);
  };

  // Functor that performs additional legalization when a pattern is
  // successfully applied.
  auto onSuccess = [&](const RewritePattern &pattern) {
    auto result = legalizePatternResult(op, pattern, rewriter, curState);
    appliedPatterns.erase(&pattern);
    if (failed(result))
      rewriterImpl.resetState(curState);
    return result;
  };

  // Try to match and rewrite a pattern on this operation.
  return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
                                    onSuccess);
}

bool OperationLegalizer::canApplyPattern(Operation *op,
                                         const RewritePattern &pattern,
                                         ConversionPatternRewriter &rewriter) {
  LLVM_DEBUG({
    auto &os = rewriter.getImpl().logger;
    os.getOStream() << "\n";
    os.startLine() << "* Pattern : '" << op->getName() << " -> (";
    llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs());
    os.getOStream() << ")' {\n";
    os.indent();
  });

  // Ensure that we don't cycle by not allowing the same pattern to be
  // applied twice in the same recursion stack if it is not known to be safe.
  if (!pattern.hasBoundedRewriteRecursion() &&
      !appliedPatterns.insert(&pattern).second) {
    LLVM_DEBUG(
        logFailure(rewriter.getImpl().logger, "pattern was already applied"));
    return false;
  }
  return true;
}

LogicalResult OperationLegalizer::legalizePatternResult(
    Operation *op, const RewritePattern &pattern,
    ConversionPatternRewriter &rewriter, RewriterState &curState) {
  auto &impl = rewriter.getImpl();

#ifndef NDEBUG
  assert(impl.pendingRootUpdates.empty() && "dangling root updates");
#endif

  // Check that the root was either replaced or updated in place.
  auto replacedRoot = [&] {
    return llvm::any_of(
        llvm::drop_begin(impl.replacements, curState.numReplacements),
        [op](auto &it) { return it.first == op; });
  };
  auto updatedRootInPlace = [&] {
    return llvm::any_of(
        llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
        [op](auto &state) { return state.getOperation() == op; });
  };
  (void)replacedRoot;
  (void)updatedRootInPlace;
  assert((replacedRoot() || updatedRootInPlace()) &&
         "expected pattern to replace the root operation");

  // Legalize each of the actions registered during application.
  RewriterState newState = impl.getCurrentState();
  if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
                                         newState)) ||
      failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
      failed(legalizePatternCreatedOperations(rewriter, impl, curState,
                                              newState))) {
    return failure();
  }

  LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
  return success();
}

LogicalResult OperationLegalizer::legalizePatternBlockActions(
    Operation *op, ConversionPatternRewriter &rewriter,
    ConversionPatternRewriterImpl &impl, RewriterState &state,
    RewriterState &newState) {
  SmallPtrSet<Operation *, 16> operationsToIgnore;

  // If the pattern moved or created any blocks, make sure the types of block
  // arguments get legalized.
  for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
       ++i) {
    auto &action = impl.blockActions[i];
    if (action.kind == BlockActionKind::TypeConversion ||
        action.kind == BlockActionKind::Erase)
      continue;
    // Only check blocks outside of the current operation.
    Operation *parentOp = action.block->getParentOp();
    if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
      continue;

    // If the region of the block has a type converter, try to convert the block
    // directly.
    if (auto *converter =
            impl.argConverter.getConverter(action.block->getParent())) {
      if (failed(impl.convertBlockSignature(action.block, *converter))) {
        LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
                                           "block"));
        return failure();
      }
      continue;
    }

    // Otherwise, check that this operation isn't one generated by this pattern.
    // This is because we will attempt to legalize the parent operation, and
    // blocks in regions created by this pattern will already be legalized later
    // on. If we haven't built the set yet, build it now.
    if (operationsToIgnore.empty()) {
      auto createdOps = ArrayRef<Operation *>(impl.createdOps)
                            .drop_front(state.numCreatedOps);
      operationsToIgnore.insert(createdOps.begin(), createdOps.end());
    }

    // If this operation should be considered for re-legalization, try it.
    if (operationsToIgnore.insert(parentOp).second &&
        failed(legalize(parentOp, rewriter))) {
      LLVM_DEBUG(logFailure(
          impl.logger, "operation '{0}'({1}) became illegal after block action",
          parentOp->getName(), parentOp));
      return failure();
    }
  }
  return success();
}
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
    ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
    RewriterState &state, RewriterState &newState) {
  for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
    Operation *op = impl.createdOps[i];
    if (failed(legalize(op, rewriter))) {
      LLVM_DEBUG(logFailure(impl.logger,
                            "generated operation '{0}'({1}) was illegal",
                            op->getName(), op));
      return failure();
    }
  }
  return success();
}
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
    ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
    RewriterState &state, RewriterState &newState) {
  for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
    Operation *op = impl.rootUpdates[i].getOperation();
    if (failed(legalize(op, rewriter))) {
      LLVM_DEBUG(logFailure(impl.logger,
                            "operation updated in-place '{0}' was illegal",
                            op->getName()));
      return failure();
    }
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Cost Model

void OperationLegalizer::buildLegalizationGraph(
    LegalizationPatterns &anyOpLegalizerPatterns,
    DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
  // A mapping between an operation and a set of operations that can be used to
  // generate it.
  DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
  // A mapping between an operation and any currently invalid patterns it has.
  DenseMap<OperationName, SmallPtrSet<const RewritePattern *, 2>>
      invalidPatterns;
  // A worklist of patterns to consider for legality.
  llvm::SetVector<const RewritePattern *> patternWorklist;

  // Build the mapping from operations to the parent ops that may generate them.
  applicator.walkAllPatterns([&](const RewritePattern &pattern) {
    Optional<OperationName> root = pattern.getRootKind();

    // If the pattern has no specific root, we can't analyze the relationship
    // between the root op and generated operations. Given that, add all such
    // patterns to the legalization set.
    if (!root) {
      anyOpLegalizerPatterns.push_back(&pattern);
      return;
    }

    // Skip operations that are always known to be legal.
    if (target.getOpAction(*root) == LegalizationAction::Legal)
      return;

    // Add this pattern to the invalid set for the root op and record this root
    // as a parent for any generated operations.
    invalidPatterns[*root].insert(&pattern);
    for (auto op : pattern.getGeneratedOps())
      parentOps[op].insert(*root);

    // Add this pattern to the worklist.
    patternWorklist.insert(&pattern);
  });

  // If there are any patterns that don't have a specific root kind, we can't
  // make direct assumptions about what operations will never be legalized.
  // Note: Technically we could, but it would require an analysis that may
  // recurse into itself. It would be better to perform this kind of filtering
  // at a higher level than here anyways.
  if (!anyOpLegalizerPatterns.empty()) {
    for (const RewritePattern *pattern : patternWorklist)
      legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
    return;
  }

  while (!patternWorklist.empty()) {
    auto *pattern = patternWorklist.pop_back_val();

    // Check to see if any of the generated operations are invalid.
    if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
          Optional<LegalizationAction> action = target.getOpAction(op);
          return !legalizerPatterns.count(op) &&
                 (!action || action == LegalizationAction::Illegal);
        }))
      continue;

    // Otherwise, if all of the generated operation are valid, this op is now
    // legal so add all of the child patterns to the worklist.
    legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
    invalidPatterns[*pattern->getRootKind()].erase(pattern);

    // Add any invalid patterns of the parent operations to see if they have now
    // become legal.
    for (auto op : parentOps[*pattern->getRootKind()])
      patternWorklist.set_union(invalidPatterns[op]);
  }
}

void OperationLegalizer::computeLegalizationGraphBenefit(
    LegalizationPatterns &anyOpLegalizerPatterns,
    DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
  // The smallest pattern depth, when legalizing an operation.
  DenseMap<OperationName, unsigned> minOpPatternDepth;

  // For each operation that is transitively legal, compute a cost for it.
  for (auto &opIt : legalizerPatterns)
    if (!minOpPatternDepth.count(opIt.first))
      computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
                                 legalizerPatterns);

  // Apply the cost model to the patterns that can match any operation. Those
  // with a specific operation type are already resolved when computing the op
  // legalization depth.
  if (!anyOpLegalizerPatterns.empty())
    applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
                             legalizerPatterns);

  // Apply a cost model to the pattern applicator. We order patterns first by
  // depth then benefit. `legalizerPatterns` contains per-op patterns by
  // decreasing benefit.
  applicator.applyCostModel([&](const RewritePattern &p) {
    ArrayRef<const RewritePattern *> orderedPatternList;
    if (Optional<OperationName> rootName = p.getRootKind())
      orderedPatternList = legalizerPatterns[*rootName];
    else
      orderedPatternList = anyOpLegalizerPatterns;

    // If the pattern is not found, then it was removed and cannot be matched.
    auto it = llvm::find(orderedPatternList, &p);
    if (it == orderedPatternList.end())
      return PatternBenefit::impossibleToMatch();

    // Patterns found earlier in the list have higher benefit.
    return PatternBenefit(std::distance(it, orderedPatternList.end()));
  });
}

unsigned OperationLegalizer::computeOpLegalizationDepth(
    OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
    DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
  // Check for existing depth.
  auto depthIt = minOpPatternDepth.find(op);
  if (depthIt != minOpPatternDepth.end())
    return depthIt->second;

  // If a mapping for this operation does not exist, then this operation
  // is always legal. Return 0 as the depth for a directly legal operation.
  auto opPatternsIt = legalizerPatterns.find(op);
  if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
    return 0u;

  // Record this initial depth in case we encounter this op again when
  // recursively computing the depth.
  minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());

  // Apply the cost model to the operation patterns, and update the minimum
  // depth.
  unsigned minDepth = applyCostModelToPatterns(
      opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
  minOpPatternDepth[op] = minDepth;
  return minDepth;
}

unsigned OperationLegalizer::applyCostModelToPatterns(
    LegalizationPatterns &patterns,
    DenseMap<OperationName, unsigned> &minOpPatternDepth,
    DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
  unsigned minDepth = std::numeric_limits<unsigned>::max();

  // Compute the depth for each pattern within the set.
  SmallVector<std::pair<const RewritePattern *, unsigned>, 4> patternsByDepth;
  patternsByDepth.reserve(patterns.size());
  for (const RewritePattern *pattern : patterns) {
    unsigned depth = 0;
    for (auto generatedOp : pattern->getGeneratedOps()) {
      unsigned generatedOpDepth = computeOpLegalizationDepth(
          generatedOp, minOpPatternDepth, legalizerPatterns);
      depth = std::max(depth, generatedOpDepth + 1);
    }
    patternsByDepth.emplace_back(pattern, depth);

    // Update the minimum depth of the pattern list.
    minDepth = std::min(minDepth, depth);
  }

  // If the operation only has one legalization pattern, there is no need to
  // sort them.
  if (patternsByDepth.size() == 1)
    return minDepth;

  // Sort the patterns by those likely to be the most beneficial.
  llvm::array_pod_sort(
      patternsByDepth.begin(), patternsByDepth.end(),
      [](const std::pair<const RewritePattern *, unsigned> *lhs,
         const std::pair<const RewritePattern *, unsigned> *rhs) {
        // First sort by the smaller pattern legalization depth.
        if (lhs->second != rhs->second)
          return llvm::array_pod_sort_comparator<unsigned>(&lhs->second,
                                                           &rhs->second);

        // Then sort by the larger pattern benefit.
        auto lhsBenefit = lhs->first->getBenefit();
        auto rhsBenefit = rhs->first->getBenefit();
        return llvm::array_pod_sort_comparator<PatternBenefit>(&rhsBenefit,
                                                               &lhsBenefit);
      });

  // Update the legalization pattern to use the new sorted list.
  patterns.clear();
  for (auto &patternIt : patternsByDepth)
    patterns.push_back(patternIt.first);
  return minDepth;
}

//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
  // In this mode, the conversion will ignore failed conversions to allow
  // illegal operations to co-exist in the IR.
  Partial,

  // In this mode, all operations must be legal for the given target for the
  // conversion to succeed.
  Full,

  // In this mode, operations are analyzed for legality. No actual rewrites are
  // applied to the operations on success.
  Analysis,
};

// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
  explicit OperationConverter(ConversionTarget &target,
                              const OwningRewritePatternList &patterns,
                              OpConversionMode mode,
                              DenseSet<Operation *> *trackedOps = nullptr)
      : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}

  /// Converts the given operations to the conversion target.
  LogicalResult convertOperations(ArrayRef<Operation *> ops);

private:
  /// Converts an operation with the given rewriter.
  LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);

  /// This method is called after the conversion process to legalize any
  /// remaining artifacts and complete the conversion.
  LogicalResult finalize(ConversionPatternRewriter &rewriter);

  /// Legalize the types of converted block arguments.
  LogicalResult
  legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
                                 ConversionPatternRewriterImpl &rewriterImpl);

  /// Legalize an operation result that was marked as "erased".
  LogicalResult
  legalizeErasedResult(Operation *op, OpResult result,
                       ConversionPatternRewriterImpl &rewriterImpl);

  /// Legalize an operation result that was replaced with a value of a different
  /// type.
  LogicalResult
  legalizeChangedResultType(Operation *op, OpResult result, Value newValue,
                            TypeConverter *replConverter,
                            ConversionPatternRewriter &rewriter,
                            ConversionPatternRewriterImpl &rewriterImpl);

  /// The legalizer to use when converting operations.
  OperationLegalizer opLegalizer;

  /// The conversion mode to use when legalizing operations.
  OpConversionMode mode;

  /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
  /// this is populated with ops found to be legalizable to the target.
  /// When mode == OpConversionMode::Partial, this is populated with ops found
  /// *not* to be legalizable to the target.
  DenseSet<Operation *> *trackedOps;
};
} // end anonymous namespace

LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
                                          Operation *op) {
  // Legalize the given operation.
  if (failed(opLegalizer.legalize(op, rewriter))) {
    // Handle the case of a failed conversion for each of the different modes.
    // Full conversions expect all operations to be converted.
    if (mode == OpConversionMode::Full)
      return op->emitError()
             << "failed to legalize operation '" << op->getName() << "'";
    // Partial conversions allow conversions to fail iff the operation was not
    // explicitly marked as illegal. If the user provided a nonlegalizableOps
    // set, non-legalizable ops are included.
    if (mode == OpConversionMode::Partial) {
      if (opLegalizer.isIllegal(op))
        return op->emitError()
               << "failed to legalize operation '" << op->getName()
               << "' that was explicitly marked illegal";
      if (trackedOps)
        trackedOps->insert(op);
    }
  } else if (mode == OpConversionMode::Analysis) {
    // Analysis conversions don't fail if any operations fail to legalize,
    // they are only interested in the operations that were successfully
    // legalized.
    trackedOps->insert(op);
  }
  return success();
}

LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
  if (ops.empty())
    return success();
  ConversionTarget &target = opLegalizer.getTarget();

  // Compute the set of operations and blocks to convert.
  std::vector<Operation *> toConvert;
  for (auto *op : ops) {
    toConvert.emplace_back(op);
    for (auto &region : op->getRegions())
      if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
                                      toConvert, &target)))
        return failure();
  }

  // Convert each operation and discard rewrites on failure.
  ConversionPatternRewriter rewriter(ops.front()->getContext());
  ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
  for (auto *op : toConvert)
    if (failed(convert(rewriter, op)))
      return rewriterImpl.discardRewrites(), failure();

  // Now that all of the operations have been converted, finalize the conversion
  // process to ensure any lingering conversion artifacts are cleaned up and
  // legalized.
  if (failed(finalize(rewriter)))
    return rewriterImpl.discardRewrites(), failure();

  // After a successful conversion, apply rewrites if this is not an analysis
  // conversion.
  if (mode == OpConversionMode::Analysis)
    rewriterImpl.discardRewrites();
  else
    rewriterImpl.applyRewrites();
  return success();
}

LogicalResult
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
  ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();

  // Legalize converted block arguments.
  if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
    return failure();

  // Process requested operation replacements.
  for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
       i != e; ++i) {
    unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
    auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
    for (OpResult result : repl.first->getResults()) {
      Value newValue = rewriterImpl.mapping.lookupOrNull(result);

      // If the operation result was replaced with null, all of the uses of this
      // value should be replaced.
      if (!newValue) {
        if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
          return failure();
        continue;
      }

      // Otherwise, check to see if the type of the result changed.
      if (result.getType() == newValue.getType())
        continue;

      // Legalize this result.
      rewriter.setInsertionPoint(repl.first);
      if (failed(legalizeChangedResultType(repl.first, result, newValue,
                                           repl.second.converter, rewriter,
                                           rewriterImpl)))
        return failure();

      // Update the end iterator for this loop in the case it was updated
      // when legalizing generated conversion operations.
      e = rewriterImpl.operationsWithChangedResults.size();
    }
  }
  return success();
}

LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
    ConversionPatternRewriter &rewriter,
    ConversionPatternRewriterImpl &rewriterImpl) {
  // Functor used to check if all users of a value will be dead after
  // conversion.
  auto findLiveUser = [&](Value val) {
    auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
      return rewriterImpl.isOpIgnored(user);
    });
    return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
  };

  // Materialize any necessary conversions for converted block arguments that
  // are still live.
  size_t numCreatedOps = rewriterImpl.createdOps.size();
  if (failed(rewriterImpl.argConverter.materializeLiveConversions(
          rewriterImpl.mapping, rewriter, findLiveUser)))
    return failure();

  // Legalize any newly created operations during argument materialization.
  for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
    if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
      return rewriterImpl.createdOps[i]->emitError()
             << "failed to legalize conversion operation generated for block "
                "argument that remained live after conversion";
    }
  }
  return success();
}

LogicalResult OperationConverter::legalizeErasedResult(
    Operation *op, OpResult result,
    ConversionPatternRewriterImpl &rewriterImpl) {
  // If the operation result was replaced with null, all of the uses of this
  // value should be replaced.
  auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
    return rewriterImpl.isOpIgnored(user);
  });
  if (liveUserIt != result.user_end()) {
    InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
                              << op->getName() << "' marked as erased";
    diag.attachNote(liveUserIt->getLoc())
        << "found live user of result #" << result.getResultNumber() << ": "
        << *liveUserIt;
    return failure();
  }
  return success();
}

LogicalResult OperationConverter::legalizeChangedResultType(
    Operation *op, OpResult result, Value newValue,
    TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
    ConversionPatternRewriterImpl &rewriterImpl) {
  // Walk the users of this value to see if there are any live users that
  // weren't replaced during conversion.
  auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
    return rewriterImpl.isOpIgnored(user);
  });
  if (liveUserIt == result.user_end())
    return success();

  // If the replacement has a type converter, attempt to materialize a
  // conversion back to the original type.
  if (!replConverter) {
    // TODO: We should emit an error here, similarly to the case where the
    // result is replaced with null. Unfortunately a lot of existing
    // patterns rely on this behavior, so until those patterns are updated
    // we keep the legacy behavior here of just forwarding the new value.
    return success();
  }

  // Track the number of created operations so that new ones can be legalized.
  size_t numCreatedOps = rewriterImpl.createdOps.size();

  // Materialize a conversion for this live result value.
  Type resultType = result.getType();
  Value convertedValue = replConverter->materializeSourceConversion(
      rewriter, op->getLoc(), resultType, newValue);
  if (!convertedValue) {
    InFlightDiagnostic diag = op->emitError()
                              << "failed to materialize conversion for result #"
                              << result.getResultNumber() << " of operation '"
                              << op->getName()
                              << "' that remained live after conversion";
    diag.attachNote(liveUserIt->getLoc())
        << "see existing live user here: " << *liveUserIt;
    return failure();
  }

  // Legalize all of the newly created conversion operations.
  for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
    if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
      return op->emitError("failed to legalize conversion operation generated ")
             << "for result #" << result.getResultNumber() << " of operation '"
             << op->getName() << "' that remained live after conversion";
    }
  }

  rewriterImpl.mapping.map(result, convertedValue);
  return success();
}

//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//

/// Remap an input of the original signature with a new set of types. The
/// new types are appended to the new signature conversion.
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
                                                   ArrayRef<Type> types) {
  assert(!types.empty() && "expected valid types");
  remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
  addInputs(types);
}

/// Append new input types to the signature conversion, this should only be
/// used if the new types are not intended to remap an existing input.
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
  assert(!types.empty() &&
         "1->0 type remappings don't need to be added explicitly");
  argTypes.append(types.begin(), types.end());
}

/// Remap an input of the original signature with a range of types in the
/// new signature.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
                                                    unsigned newInputNo,
                                                    unsigned newInputCount) {
  assert(!remappedInputs[origInputNo] && "input has already been remapped");
  assert(newInputCount != 0 && "expected valid input count");
  remappedInputs[origInputNo] =
      InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
}

/// Remap an input of the original signature to another `replacementValue`
/// value. This would make the signature converter drop this argument.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
                                                    Value replacementValue) {
  assert(!remappedInputs[origInputNo] && "input has already been remapped");
  remappedInputs[origInputNo] =
      InputMapping{origInputNo, /*size=*/0, replacementValue};
}

/// This hooks allows for converting a type.
LogicalResult TypeConverter::convertType(Type t,
                                         SmallVectorImpl<Type> &results) {
  auto existingIt = cachedDirectConversions.find(t);
  if (existingIt != cachedDirectConversions.end()) {
    if (existingIt->second)
      results.push_back(existingIt->second);
    return success(existingIt->second != nullptr);
  }
  auto multiIt = cachedMultiConversions.find(t);
  if (multiIt != cachedMultiConversions.end()) {
    results.append(multiIt->second.begin(), multiIt->second.end());
    return success();
  }

  // Walk the added converters in reverse order to apply the most recently
  // registered first.
  size_t currentCount = results.size();
  for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
    if (Optional<LogicalResult> result = converter(t, results)) {
      if (!succeeded(*result)) {
        cachedDirectConversions.try_emplace(t, nullptr);
        return failure();
      }
      auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
      if (newTypes.size() == 1)
        cachedDirectConversions.try_emplace(t, newTypes.front());
      else
        cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
      return success();
    }
  }
  return failure();
}

/// This hook simplifies defining 1-1 type conversions. This function returns
/// the type to convert to on success, and a null type on failure.
Type TypeConverter::convertType(Type t) {
  // Use the multi-type result version to convert the type.
  SmallVector<Type, 1> results;
  if (failed(convertType(t, results)))
    return nullptr;

  // Check to ensure that only one type was produced.
  return results.size() == 1 ? results.front() : nullptr;
}

/// Convert the given set of types, filling 'results' as necessary. This
/// returns failure if the conversion of any of the types fails, success
/// otherwise.
LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types,
                                          SmallVectorImpl<Type> &results) {
  for (auto type : types)
    if (failed(convertType(type, results)))
      return failure();
  return success();
}

/// Return true if the given type is legal for this type converter, i.e. the
/// type converts to itself.
bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
/// Return true if the given operation has legal operand and result types.
bool TypeConverter::isLegal(Operation *op) {
  return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
}

/// Return true if the types of block arguments within the region are legal.
bool TypeConverter::isLegal(Region *region) {
  return llvm::all_of(*region, [this](Block &block) {
    return isLegal(block.getArgumentTypes());
  });
}

/// Return true if the inputs and outputs of the given function type are
/// legal.
bool TypeConverter::isSignatureLegal(FunctionType ty) {
  return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
}

/// This hook allows for converting a specific argument of a signature.
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
                                                 SignatureConversion &result) {
  // Try to convert the given input type.
  SmallVector<Type, 1> convertedTypes;
  if (failed(convertType(type, convertedTypes)))
    return failure();

  // If this argument is being dropped, there is nothing left to do.
  if (convertedTypes.empty())
    return success();

  // Otherwise, add the new inputs.
  result.addInputs(inputNo, convertedTypes);
  return success();
}
LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
                                                  SignatureConversion &result,
                                                  unsigned origInputOffset) {
  for (unsigned i = 0, e = types.size(); i != e; ++i)
    if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
      return failure();
  return success();
}

Value TypeConverter::materializeConversion(
    MutableArrayRef<MaterializationCallbackFn> materializations,
    OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
  for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
    if (Optional<Value> result = fn(builder, resultType, inputs, loc))
      return result.getValue();
  return nullptr;
}

/// This function converts the type signature of the given block, by invoking
/// 'convertSignatureArg' for each argument. This function should return a valid
/// conversion for the signature on success, None otherwise.
auto TypeConverter::convertBlockSignature(Block *block)
    -> Optional<SignatureConversion> {
  SignatureConversion conversion(block->getNumArguments());
  if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
    return llvm::None;
  return conversion;
}

/// Create a default conversion pattern that rewrites the type signature of a
/// FuncOp.
namespace {
struct FuncOpSignatureConversion : public OpConversionPattern<FuncOp> {
  FuncOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
      : OpConversionPattern(converter, ctx) {}

  /// Hook for derived classes to implement combined matching and rewriting.
  LogicalResult
  matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    FunctionType type = funcOp.getType();

    // Convert the original function types.
    TypeConverter::SignatureConversion result(type.getNumInputs());
    SmallVector<Type, 1> newResults;
    if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
        failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
        failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter,
                                           &result)))
      return failure();

    // Update the function signature in-place.
    rewriter.updateRootInPlace(funcOp, [&] {
      funcOp.setType(FunctionType::get(result.getConvertedTypes(), newResults,
                                       funcOp.getContext()));
    });
    return success();
  }
};
} // end anonymous namespace

void mlir::populateFuncOpTypeConversionPattern(
    OwningRewritePatternList &patterns, MLIRContext *ctx,
    TypeConverter &converter) {
  patterns.insert<FuncOpSignatureConversion>(ctx, converter);
}

//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//

/// Register a legality action for the given operation.
void ConversionTarget::setOpAction(OperationName op,
                                   LegalizationAction action) {
  legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None};
}

/// Register a legality action for the given dialects.
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
                                        LegalizationAction action) {
  for (StringRef dialect : dialectNames)
    legalDialects[dialect] = action;
}

/// Get the legality action for the given operation.
auto ConversionTarget::getOpAction(OperationName op) const
    -> Optional<LegalizationAction> {
  Optional<LegalizationInfo> info = getOpInfo(op);
  return info ? info->action : Optional<LegalizationAction>();
}

/// If the given operation instance is legal on this target, a structure
/// containing legality information is returned. If the operation is not legal,
/// None is returned.
auto ConversionTarget::isLegal(Operation *op) const
    -> Optional<LegalOpDetails> {
  Optional<LegalizationInfo> info = getOpInfo(op->getName());
  if (!info)
    return llvm::None;

  // Returns true if this operation instance is known to be legal.
  auto isOpLegal = [&] {
    // Handle dynamic legality either with the provided legality function, or
    // the default hook on the derived instance.
    if (info->action == LegalizationAction::Dynamic)
      return info->legalityFn ? (*info->legalityFn)(op)
                              : isDynamicallyLegal(op);

    // Otherwise, the operation is only legal if it was marked 'Legal'.
    return info->action == LegalizationAction::Legal;
  };
  if (!isOpLegal())
    return llvm::None;

  // This operation is legal, compute any additional legality information.
  LegalOpDetails legalityDetails;
  if (info->isRecursivelyLegal) {
    auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
    if (legalityFnIt != opRecursiveLegalityFns.end())
      legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
    else
      legalityDetails.isRecursivelyLegal = true;
  }
  return legalityDetails;
}

/// Set the dynamic legality callback for the given operation.
void ConversionTarget::setLegalityCallback(
    OperationName name, const DynamicLegalityCallbackFn &callback) {
  assert(callback && "expected valid legality callback");
  auto infoIt = legalOperations.find(name);
  assert(infoIt != legalOperations.end() &&
         infoIt->second.action == LegalizationAction::Dynamic &&
         "expected operation to already be marked as dynamically legal");
  infoIt->second.legalityFn = callback;
}

/// Set the recursive legality callback for the given operation and mark the
/// operation as recursively legal.
void ConversionTarget::markOpRecursivelyLegal(
    OperationName name, const DynamicLegalityCallbackFn &callback) {
  auto infoIt = legalOperations.find(name);
  assert(infoIt != legalOperations.end() &&
         infoIt->second.action != LegalizationAction::Illegal &&
         "expected operation to already be marked as legal");
  infoIt->second.isRecursivelyLegal = true;
  if (callback)
    opRecursiveLegalityFns[name] = callback;
  else
    opRecursiveLegalityFns.erase(name);
}

/// Set the dynamic legality callback for the given dialects.
void ConversionTarget::setLegalityCallback(
    ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
  assert(callback && "expected valid legality callback");
  for (StringRef dialect : dialects)
    dialectLegalityFns[dialect] = callback;
}

/// Get the legalization information for the given operation.
auto ConversionTarget::getOpInfo(OperationName op) const
    -> Optional<LegalizationInfo> {
  // Check for info for this specific operation.
  auto it = legalOperations.find(op);
  if (it != legalOperations.end())
    return it->second;
  // Check for info for the parent dialect.
  auto dialectIt = legalDialects.find(op.getDialect());
  if (dialectIt != legalDialects.end()) {
    Optional<DynamicLegalityCallbackFn> callback;
    auto dialectFn = dialectLegalityFns.find(op.getDialect());
    if (dialectFn != dialectLegalityFns.end())
      callback = dialectFn->second;
    return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
                            callback};
  }
  // Otherwise, check if we mark unknown operations as dynamic.
  if (unknownOpsDynamicallyLegal)
    return LegalizationInfo{LegalizationAction::Dynamic,
                            /*isRecursivelyLegal=*/false, unknownLegalityFn};
  return llvm::None;
}

//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//

/// Apply a partial conversion on the given operations and all nested
/// operations. This method converts as many operations to the target as
/// possible, ignoring operations that failed to legalize. This method only
/// returns failure if there ops explicitly marked as illegal.
/// If an `unconvertedOps` set is provided, all operations that are found not
/// to be legalizable to the given `target` are placed within that set. (Note
/// that if there is an op explicitly marked as illegal, the conversion
/// terminates and the `unconvertedOps` set will not necessarily be complete.)
LogicalResult
mlir::applyPartialConversion(ArrayRef<Operation *> ops,
                             ConversionTarget &target,
                             const OwningRewritePatternList &patterns,
                             DenseSet<Operation *> *unconvertedOps) {
  OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
                                 unconvertedOps);
  return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
                             const OwningRewritePatternList &patterns,
                             DenseSet<Operation *> *unconvertedOps) {
  return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
                                unconvertedOps);
}

/// Apply a complete conversion on the given operations, and all nested
/// operations. This method will return failure if the conversion of any
/// operation fails.
LogicalResult
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
                          const OwningRewritePatternList &patterns) {
  OperationConverter opConverter(target, patterns, OpConversionMode::Full);
  return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
                          const OwningRewritePatternList &patterns) {
  return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
}

/// Apply an analysis conversion on the given operations, and all nested
/// operations. This method analyzes which operations would be successfully
/// converted to the target if a conversion was applied. All operations that
/// were found to be legalizable to the given 'target' are placed within the
/// provided 'convertedOps' set; note that no actual rewrites are applied to the
/// operations on success and only pre-existing operations are added to the set.
LogicalResult
mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
                              ConversionTarget &target,
                              const OwningRewritePatternList &patterns,
                              DenseSet<Operation *> &convertedOps) {
  OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
                                 &convertedOps);
  return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
                              const OwningRewritePatternList &patterns,
                              DenseSet<Operation *> &convertedOps) {
  return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
                                 convertedOps);
}