AVRISelLowering.cpp 67.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AVR uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "AVRISelLowering.h"

#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/ErrorHandling.h"

#include "AVR.h"
#include "AVRMachineFunctionInfo.h"
#include "AVRSubtarget.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

namespace llvm {

AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
                                     const AVRSubtarget &STI)
    : TargetLowering(TM), Subtarget(STI) {
  // Set up the register classes.
  addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
  addRegisterClass(MVT::i16, &AVR::DREGSRegClass);

  // Compute derived properties from the register classes.
  computeRegisterProperties(Subtarget.getRegisterInfo());

  setBooleanContents(ZeroOrOneBooleanContent);
  setBooleanVectorContents(ZeroOrOneBooleanContent);
  setSchedulingPreference(Sched::RegPressure);
  setStackPointerRegisterToSaveRestore(AVR::SP);
  setSupportsUnalignedAtomics(true);

  setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
  setOperationAction(ISD::BlockAddress, MVT::i16, Custom);

  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);

  for (MVT VT : MVT::integer_valuetypes()) {
    for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
      setLoadExtAction(N, VT, MVT::i1, Promote);
      setLoadExtAction(N, VT, MVT::i8, Expand);
    }
  }

  setTruncStoreAction(MVT::i16, MVT::i8, Expand);

  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::ADDC, VT, Legal);
    setOperationAction(ISD::SUBC, VT, Legal);
    setOperationAction(ISD::ADDE, VT, Legal);
    setOperationAction(ISD::SUBE, VT, Legal);
  }

  // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
  // revert into a sub since we don't have an add with immediate instruction.
  setOperationAction(ISD::ADD, MVT::i32, Custom);
  setOperationAction(ISD::ADD, MVT::i64, Custom);

  // our shift instructions are only able to shift 1 bit at a time, so handle
  // this in a custom way.
  setOperationAction(ISD::SRA, MVT::i8, Custom);
  setOperationAction(ISD::SHL, MVT::i8, Custom);
  setOperationAction(ISD::SRL, MVT::i8, Custom);
  setOperationAction(ISD::SRA, MVT::i16, Custom);
  setOperationAction(ISD::SHL, MVT::i16, Custom);
  setOperationAction(ISD::SRL, MVT::i16, Custom);
  setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
  setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
  setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);

  setOperationAction(ISD::ROTL, MVT::i8, Custom);
  setOperationAction(ISD::ROTL, MVT::i16, Expand);
  setOperationAction(ISD::ROTR, MVT::i8, Custom);
  setOperationAction(ISD::ROTR, MVT::i16, Expand);

  setOperationAction(ISD::BR_CC, MVT::i8, Custom);
  setOperationAction(ISD::BR_CC, MVT::i16, Custom);
  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);

  setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
  setOperationAction(ISD::SETCC, MVT::i8, Custom);
  setOperationAction(ISD::SETCC, MVT::i16, Custom);
  setOperationAction(ISD::SETCC, MVT::i32, Custom);
  setOperationAction(ISD::SETCC, MVT::i64, Custom);
  setOperationAction(ISD::SELECT, MVT::i8, Expand);
  setOperationAction(ISD::SELECT, MVT::i16, Expand);

  setOperationAction(ISD::BSWAP, MVT::i16, Expand);

  // Add support for postincrement and predecrement load/stores.
  setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
  setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
  setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
  setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
  setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
  setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
  setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
  setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);

  setOperationAction(ISD::BR_JT, MVT::Other, Expand);

  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VAEND, MVT::Other, Expand);
  setOperationAction(ISD::VAARG, MVT::Other, Expand);
  setOperationAction(ISD::VACOPY, MVT::Other, Expand);

  // Atomic operations which must be lowered to rtlib calls
  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
  }

  // Division/remainder
  setOperationAction(ISD::UDIV, MVT::i8, Expand);
  setOperationAction(ISD::UDIV, MVT::i16, Expand);
  setOperationAction(ISD::UREM, MVT::i8, Expand);
  setOperationAction(ISD::UREM, MVT::i16, Expand);
  setOperationAction(ISD::SDIV, MVT::i8, Expand);
  setOperationAction(ISD::SDIV, MVT::i16, Expand);
  setOperationAction(ISD::SREM, MVT::i8, Expand);
  setOperationAction(ISD::SREM, MVT::i16, Expand);

  // Make division and modulus custom
  setOperationAction(ISD::UDIVREM, MVT::i8, Custom);
  setOperationAction(ISD::UDIVREM, MVT::i16, Custom);
  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
  setOperationAction(ISD::SDIVREM, MVT::i8, Custom);
  setOperationAction(ISD::SDIVREM, MVT::i16, Custom);
  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);

  // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
  setOperationAction(ISD::MUL, MVT::i8, Expand);
  setOperationAction(ISD::MUL, MVT::i16, Expand);

  // Expand 16 bit multiplications.
  setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
  setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);

  // Expand multiplications to libcalls when there is
  // no hardware MUL.
  if (!Subtarget.supportsMultiplication()) {
    setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
    setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
  }

  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::MULHS, VT, Expand);
    setOperationAction(ISD::MULHU, VT, Expand);
  }

  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::CTPOP, VT, Expand);
    setOperationAction(ISD::CTLZ, VT, Expand);
    setOperationAction(ISD::CTTZ, VT, Expand);
  }

  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    // TODO: The generated code is pretty poor. Investigate using the
    // same "shift and subtract with carry" trick that we do for
    // extending 8-bit to 16-bit. This may require infrastructure
    // improvements in how we treat 16-bit "registers" to be feasible.
  }

  // Division rtlib functions (not supported), use divmod functions instead
  setLibcallName(RTLIB::SDIV_I8, nullptr);
  setLibcallName(RTLIB::SDIV_I16, nullptr);
  setLibcallName(RTLIB::SDIV_I32, nullptr);
  setLibcallName(RTLIB::UDIV_I8, nullptr);
  setLibcallName(RTLIB::UDIV_I16, nullptr);
  setLibcallName(RTLIB::UDIV_I32, nullptr);

  // Modulus rtlib functions (not supported), use divmod functions instead
  setLibcallName(RTLIB::SREM_I8, nullptr);
  setLibcallName(RTLIB::SREM_I16, nullptr);
  setLibcallName(RTLIB::SREM_I32, nullptr);
  setLibcallName(RTLIB::UREM_I8, nullptr);
  setLibcallName(RTLIB::UREM_I16, nullptr);
  setLibcallName(RTLIB::UREM_I32, nullptr);

  // Division and modulus rtlib functions
  setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
  setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
  setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
  setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
  setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
  setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");

  // Several of the runtime library functions use a special calling conv
  setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
  setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
  setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
  setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);

  // Trigonometric rtlib functions
  setLibcallName(RTLIB::SIN_F32, "sin");
  setLibcallName(RTLIB::COS_F32, "cos");

  setMinFunctionAlignment(Align(2));
  setMinimumJumpTableEntries(UINT_MAX);
}

const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
#define NODE(name)       \
  case AVRISD::name:     \
    return #name

  switch (Opcode) {
  default:
    return nullptr;
    NODE(RET_FLAG);
    NODE(RETI_FLAG);
    NODE(CALL);
    NODE(WRAPPER);
    NODE(LSL);
    NODE(LSR);
    NODE(ROL);
    NODE(ROR);
    NODE(ASR);
    NODE(LSLLOOP);
    NODE(LSRLOOP);
    NODE(ROLLOOP);
    NODE(RORLOOP);
    NODE(ASRLOOP);
    NODE(BRCOND);
    NODE(CMP);
    NODE(CMPC);
    NODE(TST);
    NODE(SELECT_CC);
#undef NODE
  }
}

EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
                                          EVT VT) const {
  assert(!VT.isVector() && "No AVR SetCC type for vectors!");
  return MVT::i8;
}

SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
  //:TODO: this function has to be completely rewritten to produce optimal
  // code, for now it's producing very long but correct code.
  unsigned Opc8;
  const SDNode *N = Op.getNode();
  EVT VT = Op.getValueType();
  SDLoc dl(N);
  assert(isPowerOf2_32(VT.getSizeInBits()) &&
         "Expected power-of-2 shift amount");

  // Expand non-constant shifts to loops.
  if (!isa<ConstantSDNode>(N->getOperand(1))) {
    switch (Op.getOpcode()) {
    default:
      llvm_unreachable("Invalid shift opcode!");
    case ISD::SHL:
      return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
                         N->getOperand(1));
    case ISD::SRL:
      return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
                         N->getOperand(1));
    case ISD::ROTL: {
      SDValue Amt = N->getOperand(1);
      EVT AmtVT = Amt.getValueType();
      Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
                        DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
      return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt);
    }
    case ISD::ROTR: {
      SDValue Amt = N->getOperand(1);
      EVT AmtVT = Amt.getValueType();
      Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
                        DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
      return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt);
    }
    case ISD::SRA:
      return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
                         N->getOperand(1));
    }
  }

  uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
  SDValue Victim = N->getOperand(0);

  switch (Op.getOpcode()) {
  case ISD::SRA:
    Opc8 = AVRISD::ASR;
    break;
  case ISD::ROTL:
    Opc8 = AVRISD::ROL;
    ShiftAmount = ShiftAmount % VT.getSizeInBits();
    break;
  case ISD::ROTR:
    Opc8 = AVRISD::ROR;
    ShiftAmount = ShiftAmount % VT.getSizeInBits();
    break;
  case ISD::SRL:
    Opc8 = AVRISD::LSR;
    break;
  case ISD::SHL:
    Opc8 = AVRISD::LSL;
    break;
  default:
    llvm_unreachable("Invalid shift opcode");
  }

  while (ShiftAmount--) {
    Victim = DAG.getNode(Opc8, dl, VT, Victim);
  }

  return Victim;
}

SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
  unsigned Opcode = Op->getOpcode();
  assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
         "Invalid opcode for Div/Rem lowering");
  bool IsSigned = (Opcode == ISD::SDIVREM);
  EVT VT = Op->getValueType(0);
  Type *Ty = VT.getTypeForEVT(*DAG.getContext());

  RTLIB::Libcall LC;
  switch (VT.getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("Unexpected request for libcall!");
  case MVT::i8:
    LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
    break;
  case MVT::i16:
    LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
    break;
  case MVT::i32:
    LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
    break;
  }

  SDValue InChain = DAG.getEntryNode();

  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  for (SDValue const &Value : Op->op_values()) {
    Entry.Node = Value;
    Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
    Entry.IsSExt = IsSigned;
    Entry.IsZExt = !IsSigned;
    Args.push_back(Entry);
  }

  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
                                         getPointerTy(DAG.getDataLayout()));

  Type *RetTy = (Type *)StructType::get(Ty, Ty);

  SDLoc dl(Op);
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl)
      .setChain(InChain)
      .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
      .setInRegister()
      .setSExtResult(IsSigned)
      .setZExtResult(!IsSigned);

  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
  return CallInfo.first;
}

SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  auto DL = DAG.getDataLayout();

  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();

  // Create the TargetGlobalAddress node, folding in the constant offset.
  SDValue Result =
      DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
  return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
}

SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
                                             SelectionDAG &DAG) const {
  auto DL = DAG.getDataLayout();
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();

  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));

  return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
}

/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
  switch (CC) {
  default:
    llvm_unreachable("Unknown condition code!");
  case ISD::SETEQ:
    return AVRCC::COND_EQ;
  case ISD::SETNE:
    return AVRCC::COND_NE;
  case ISD::SETGE:
    return AVRCC::COND_GE;
  case ISD::SETLT:
    return AVRCC::COND_LT;
  case ISD::SETUGE:
    return AVRCC::COND_SH;
  case ISD::SETULT:
    return AVRCC::COND_LO;
  }
}

/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
/// the given operands.
SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
                                     SDValue &AVRcc, SelectionDAG &DAG,
                                     SDLoc DL) const {
  SDValue Cmp;
  EVT VT = LHS.getValueType();
  bool UseTest = false;

  switch (CC) {
  default:
    break;
  case ISD::SETLE: {
    // Swap operands and reverse the branching condition.
    std::swap(LHS, RHS);
    CC = ISD::SETGE;
    break;
  }
  case ISD::SETGT: {
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
      switch (C->getSExtValue()) {
      case -1: {
        // When doing lhs > -1 use a tst instruction on the top part of lhs
        // and use brpl instead of using a chain of cp/cpc.
        UseTest = true;
        AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
        break;
      }
      case 0: {
        // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
        // __zero_reg__ in lhs.
        RHS = LHS;
        LHS = DAG.getConstant(0, DL, VT);
        CC = ISD::SETLT;
        break;
      }
      default: {
        // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
        // us to  fold the constant into the cmp instruction.
        RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
        CC = ISD::SETGE;
        break;
      }
      }
      break;
    }
    // Swap operands and reverse the branching condition.
    std::swap(LHS, RHS);
    CC = ISD::SETLT;
    break;
  }
  case ISD::SETLT: {
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
      switch (C->getSExtValue()) {
      case 1: {
        // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
        // __zero_reg__ in lhs.
        RHS = LHS;
        LHS = DAG.getConstant(0, DL, VT);
        CC = ISD::SETGE;
        break;
      }
      case 0: {
        // When doing lhs < 0 use a tst instruction on the top part of lhs
        // and use brmi instead of using a chain of cp/cpc.
        UseTest = true;
        AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
        break;
      }
      }
    }
    break;
  }
  case ISD::SETULE: {
    // Swap operands and reverse the branching condition.
    std::swap(LHS, RHS);
    CC = ISD::SETUGE;
    break;
  }
  case ISD::SETUGT: {
    // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
    // fold the constant into the cmp instruction.
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
      RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
      CC = ISD::SETUGE;
      break;
    }
    // Swap operands and reverse the branching condition.
    std::swap(LHS, RHS);
    CC = ISD::SETULT;
    break;
  }
  }

  // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
  // using the default and/or/xor expansion code which is much longer.
  if (VT == MVT::i32) {
    SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
                                DAG.getIntPtrConstant(0, DL));
    SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
                                DAG.getIntPtrConstant(1, DL));
    SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
                                DAG.getIntPtrConstant(0, DL));
    SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
                                DAG.getIntPtrConstant(1, DL));

    if (UseTest) {
      // When using tst we only care about the highest part.
      SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
                                DAG.getIntPtrConstant(1, DL));
      Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
    } else {
      Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
      Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
    }
  } else if (VT == MVT::i64) {
    SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
                                DAG.getIntPtrConstant(0, DL));
    SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
                                DAG.getIntPtrConstant(1, DL));

    SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
                               DAG.getIntPtrConstant(0, DL));
    SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
                               DAG.getIntPtrConstant(1, DL));
    SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
                               DAG.getIntPtrConstant(0, DL));
    SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
                               DAG.getIntPtrConstant(1, DL));

    SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
                                DAG.getIntPtrConstant(0, DL));
    SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
                                DAG.getIntPtrConstant(1, DL));

    SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
                               DAG.getIntPtrConstant(0, DL));
    SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
                               DAG.getIntPtrConstant(1, DL));
    SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
                               DAG.getIntPtrConstant(0, DL));
    SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
                               DAG.getIntPtrConstant(1, DL));

    if (UseTest) {
      // When using tst we only care about the highest part.
      SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
                                DAG.getIntPtrConstant(1, DL));
      Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
    } else {
      Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
      Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
      Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
      Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
    }
  } else if (VT == MVT::i8 || VT == MVT::i16) {
    if (UseTest) {
      // When using tst we only care about the highest part.
      Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
                        (VT == MVT::i8)
                            ? LHS
                            : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
                                          LHS, DAG.getIntPtrConstant(1, DL)));
    } else {
      Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
    }
  } else {
    llvm_unreachable("Invalid comparison size");
  }

  // When using a test instruction AVRcc is already set.
  if (!UseTest) {
    AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
  }

  return Cmp;
}

SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue Dest = Op.getOperand(4);
  SDLoc dl(Op);

  SDValue TargetCC;
  SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);

  return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
                     Cmp);
}

SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue TrueV = Op.getOperand(2);
  SDValue FalseV = Op.getOperand(3);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
  SDLoc dl(Op);

  SDValue TargetCC;
  SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);

  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
  SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};

  return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
}

SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  SDLoc DL(Op);

  SDValue TargetCC;
  SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);

  SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
  SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
  SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};

  return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
}

SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  const MachineFunction &MF = DAG.getMachineFunction();
  const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  auto DL = DAG.getDataLayout();
  SDLoc dl(Op);

  // Vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));

  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Don't know how to custom lower this!");
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::ROTL:
  case ISD::ROTR:
    return LowerShifts(Op, DAG);
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::BlockAddress:
    return LowerBlockAddress(Op, DAG);
  case ISD::BR_CC:
    return LowerBR_CC(Op, DAG);
  case ISD::SELECT_CC:
    return LowerSELECT_CC(Op, DAG);
  case ISD::SETCC:
    return LowerSETCC(Op, DAG);
  case ISD::VASTART:
    return LowerVASTART(Op, DAG);
  case ISD::SDIVREM:
  case ISD::UDIVREM:
    return LowerDivRem(Op, DAG);
  }

  return SDValue();
}

/// Replace a node with an illegal result type
/// with a new node built out of custom code.
void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
                                           SmallVectorImpl<SDValue> &Results,
                                           SelectionDAG &DAG) const {
  SDLoc DL(N);

  switch (N->getOpcode()) {
  case ISD::ADD: {
    // Convert add (x, imm) into sub (x, -imm).
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
      SDValue Sub = DAG.getNode(
          ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
          DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
      Results.push_back(Sub);
    }
    break;
  }
  default: {
    SDValue Res = LowerOperation(SDValue(N, 0), DAG);

    for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
      Results.push_back(Res.getValue(I));

    break;
  }
  }
}

/// Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                              const AddrMode &AM, Type *Ty,
                                              unsigned AS, Instruction *I) const {
  int64_t Offs = AM.BaseOffs;

  // Allow absolute addresses.
  if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
    return true;
  }

  // Flash memory instructions only allow zero offsets.
  if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
    return false;
  }

  // Allow reg+<6bit> offset.
  if (Offs < 0)
    Offs = -Offs;
  if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
    return true;
  }

  return false;
}

/// Returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                                  SDValue &Offset,
                                                  ISD::MemIndexedMode &AM,
                                                  SelectionDAG &DAG) const {
  EVT VT;
  const SDNode *Op;
  SDLoc DL(N);

  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT = LD->getMemoryVT();
    Op = LD->getBasePtr().getNode();
    if (LD->getExtensionType() != ISD::NON_EXTLOAD)
      return false;
    if (AVR::isProgramMemoryAccess(LD)) {
      return false;
    }
  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT = ST->getMemoryVT();
    Op = ST->getBasePtr().getNode();
    if (AVR::isProgramMemoryAccess(ST)) {
      return false;
    }
  } else {
    return false;
  }

  if (VT != MVT::i8 && VT != MVT::i16) {
    return false;
  }

  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
    return false;
  }

  if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
    int RHSC = RHS->getSExtValue();
    if (Op->getOpcode() == ISD::SUB)
      RHSC = -RHSC;

    if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
      return false;
    }

    Base = Op->getOperand(0);
    Offset = DAG.getConstant(RHSC, DL, MVT::i8);
    AM = ISD::PRE_DEC;

    return true;
  }

  return false;
}

/// Returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
                                                   SDValue &Base,
                                                   SDValue &Offset,
                                                   ISD::MemIndexedMode &AM,
                                                   SelectionDAG &DAG) const {
  EVT VT;
  SDLoc DL(N);

  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT = LD->getMemoryVT();
    if (LD->getExtensionType() != ISD::NON_EXTLOAD)
      return false;
  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT = ST->getMemoryVT();
    if (AVR::isProgramMemoryAccess(ST)) {
      return false;
    }
  } else {
    return false;
  }

  if (VT != MVT::i8 && VT != MVT::i16) {
    return false;
  }

  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
    return false;
  }

  if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
    int RHSC = RHS->getSExtValue();
    if (Op->getOpcode() == ISD::SUB)
      RHSC = -RHSC;
    if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
      return false;
    }

    Base = Op->getOperand(0);
    Offset = DAG.getConstant(RHSC, DL, MVT::i8);
    AM = ISD::POST_INC;

    return true;
  }

  return false;
}

bool AVRTargetLowering::isOffsetFoldingLegal(
    const GlobalAddressSDNode *GA) const {
  return true;
}

//===----------------------------------------------------------------------===//
//             Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//

#include "AVRGenCallingConv.inc"

/// Registers for calling conventions, ordered in reverse as required by ABI.
/// Both arrays must be of the same length.
static const MCPhysReg RegList8[] = {
    AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20,
    AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14,
    AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9,  AVR::R8};
static const MCPhysReg RegList16[] = {
    AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22,
    AVR::R22R21, AVR::R21R20, AVR::R20R19, AVR::R19R18,
    AVR::R18R17, AVR::R17R16, AVR::R16R15, AVR::R15R14,
    AVR::R14R13, AVR::R13R12, AVR::R12R11, AVR::R11R10,
    AVR::R10R9,  AVR::R9R8};

static_assert(array_lengthof(RegList8) == array_lengthof(RegList16),
        "8-bit and 16-bit register arrays must be of equal length");

/// Analyze incoming and outgoing function arguments. We need custom C++ code
/// to handle special constraints in the ABI.
/// In addition, all pieces of a certain argument have to be passed either
/// using registers or the stack but never mixing both.
template <typename ArgT>
static void
analyzeArguments(TargetLowering::CallLoweringInfo *CLI, const Function *F,
                 const DataLayout *TD, const SmallVectorImpl<ArgT> &Args,
                 SmallVectorImpl<CCValAssign> &ArgLocs, CCState &CCInfo) {
  unsigned NumArgs = Args.size();
  // This is the index of the last used register, in RegList*.
  // -1 means R26 (R26 is never actually used in CC).
  int RegLastIdx = -1;
  // Once a value is passed to the stack it will always be used
  bool UseStack = false;
  for (unsigned i = 0; i != NumArgs;) {
    MVT VT = Args[i].VT;
    // We have to count the number of bytes for each function argument, that is
    // those Args with the same OrigArgIndex. This is important in case the
    // function takes an aggregate type.
    // Current argument will be between [i..j).
    unsigned ArgIndex = Args[i].OrigArgIndex;
    unsigned TotalBytes = VT.getStoreSize();
    unsigned j = i + 1;
    for (; j != NumArgs; ++j) {
      if (Args[j].OrigArgIndex != ArgIndex)
        break;
      TotalBytes += Args[j].VT.getStoreSize();
    }
    // Round up to even number of bytes.
    TotalBytes = alignTo(TotalBytes, 2);
    // Skip zero sized arguments
    if (TotalBytes == 0)
      continue;
    // The index of the first register to be used
    unsigned RegIdx = RegLastIdx + TotalBytes;
    RegLastIdx = RegIdx;
    // If there are not enough registers, use the stack
    if (RegIdx >= array_lengthof(RegList8)) {
      UseStack = true;
    }
    for (; i != j; ++i) {
      MVT VT = Args[i].VT;

      if (UseStack) {
        auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext());
        unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt),
                                               TD->getABITypeAlign(evt));
        CCInfo.addLoc(
            CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full));
      } else {
        unsigned Reg;
        if (VT == MVT::i8) {
          Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
        } else if (VT == MVT::i16) {
          Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
        } else {
          llvm_unreachable(
              "calling convention can only manage i8 and i16 types");
        }
        assert(Reg && "register not available in calling convention");
        CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
        // Registers inside a particular argument are sorted in increasing order
        // (remember the array is reversed).
        RegIdx -= VT.getStoreSize();
      }
    }
  }
}

/// Count the total number of bytes needed to pass or return these arguments.
template <typename ArgT>
static unsigned getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) {
  unsigned TotalBytes = 0;

  for (const ArgT& Arg : Args) {
    TotalBytes += Arg.VT.getStoreSize();
  }
  return TotalBytes;
}

/// Analyze incoming and outgoing value of returning from a function.
/// The algorithm is similar to analyzeArguments, but there can only be
/// one value, possibly an aggregate, and it is limited to 8 bytes.
template <typename ArgT>
static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args,
                                CCState &CCInfo) {
  unsigned NumArgs = Args.size();
  unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args);
  // CanLowerReturn() guarantees this assertion.
  assert(TotalBytes <= 8 && "return values greater than 8 bytes cannot be lowered");

  // GCC-ABI says that the size is rounded up to the next even number,
  // but actually once it is more than 4 it will always round up to 8.
  if (TotalBytes > 4) {
    TotalBytes = 8;
  } else {
    TotalBytes = alignTo(TotalBytes, 2);
  }

  // The index of the first register to use.
  int RegIdx = TotalBytes - 1;
  for (unsigned i = 0; i != NumArgs; ++i) {
    MVT VT = Args[i].VT;
    unsigned Reg;
    if (VT == MVT::i8) {
      Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
    } else if (VT == MVT::i16) {
      Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
    } else {
      llvm_unreachable("calling convention can only manage i8 and i16 types");
    }
    assert(Reg && "register not available in calling convention");
    CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
    // Registers sort in increasing order
    RegIdx -= VT.getStoreSize();
  }
}

SDValue AVRTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  auto DL = DAG.getDataLayout();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());

  // Variadic functions do not need all the analysis below.
  if (isVarArg) {
    CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg);
  } else {
    analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo);
  }

  SDValue ArgValue;
  for (CCValAssign &VA : ArgLocs) {

    // Arguments stored on registers.
    if (VA.isRegLoc()) {
      EVT RegVT = VA.getLocVT();
      const TargetRegisterClass *RC;
      if (RegVT == MVT::i8) {
        RC = &AVR::GPR8RegClass;
      } else if (RegVT == MVT::i16) {
        RC = &AVR::DREGSRegClass;
      } else {
        llvm_unreachable("Unknown argument type!");
      }

      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);

      // :NOTE: Clang should not promote any i8 into i16 but for safety the
      // following code will handle zexts or sexts generated by other
      // front ends. Otherwise:
      // If this is an 8 bit value, it is really passed promoted
      // to 16 bits. Insert an assert[sz]ext to capture this, then
      // truncate to the right size.
      switch (VA.getLocInfo()) {
      default:
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::BCvt:
        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
        break;
      case CCValAssign::SExt:
        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
        break;
      case CCValAssign::ZExt:
        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
        break;
      }

      InVals.push_back(ArgValue);
    } else {
      // Sanity check.
      assert(VA.isMemLoc());

      EVT LocVT = VA.getLocVT();

      // Create the frame index object for this incoming parameter.
      int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
                                     VA.getLocMemOffset(), true);

      // Create the SelectionDAG nodes corresponding to a load
      // from this parameter.
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
      InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
                                   MachinePointerInfo::getFixedStack(MF, FI)));
    }
  }

  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  if (isVarArg) {
    unsigned StackSize = CCInfo.getNextStackOffset();
    AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();

    AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
  }

  return Chain;
}

//===----------------------------------------------------------------------===//
//                  Call Calling Convention Implementation
//===----------------------------------------------------------------------===//

SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                     SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc &DL = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  bool &isTailCall = CLI.IsTailCall;
  CallingConv::ID CallConv = CLI.CallConv;
  bool isVarArg = CLI.IsVarArg;

  MachineFunction &MF = DAG.getMachineFunction();

  // AVR does not yet support tail call optimization.
  isTailCall = false;

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  const Function *F = nullptr;
  if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    const GlobalValue *GV = G->getGlobal();

    F = cast<Function>(GV);
    Callee =
        DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
  } else if (const ExternalSymbolSDNode *ES =
                 dyn_cast<ExternalSymbolSDNode>(Callee)) {
    Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
                                         getPointerTy(DAG.getDataLayout()));
  }

  // Variadic functions do not need all the analysis below.
  if (isVarArg) {
    CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg);
  } else {
    analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo);
  }

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();

  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);

  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;

  // First, walk the register assignments, inserting copies.
  unsigned AI, AE;
  bool HasStackArgs = false;
  for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
    CCValAssign &VA = ArgLocs[AI];
    EVT RegVT = VA.getLocVT();
    SDValue Arg = OutVals[AI];

    // Promote the value if needed. With Clang this should not happen.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
      break;
    }

    // Stop when we encounter a stack argument, we need to process them
    // in reverse order in the loop below.
    if (VA.isMemLoc()) {
      HasStackArgs = true;
      break;
    }

    // Arguments that can be passed on registers must be kept in the RegsToPass
    // vector.
    RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
  }

  // Second, stack arguments have to walked in reverse order by inserting
  // chained stores, this ensures their order is not changed by the scheduler
  // and that the push instruction sequence generated is correct, otherwise they
  // can be freely intermixed.
  if (HasStackArgs) {
    for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
      unsigned Loc = AI - 1;
      CCValAssign &VA = ArgLocs[Loc];
      SDValue Arg = OutVals[Loc];

      assert(VA.isMemLoc());

      // SP points to one stack slot further so add one to adjust it.
      SDValue PtrOff = DAG.getNode(
          ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
          DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
          DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));

      Chain =
          DAG.getStore(Chain, DL, Arg, PtrOff,
                       MachinePointerInfo::getStack(MF, VA.getLocMemOffset()));
    }
  }

  // Build a sequence of copy-to-reg nodes chained together with token chain and
  // flag operands which copy the outgoing args into registers.  The InFlag in
  // necessary since all emited instructions must be stuck together.
  SDValue InFlag;
  for (auto Reg : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (auto Reg : RegsToPass) {
    Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
  }

  // Add a register mask operand representing the call-preserved registers.
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const uint32_t *Mask =
      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  if (InFlag.getNode()) {
    Ops.push_back(InFlag);
  }

  Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
  InFlag = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
                             DAG.getIntPtrConstant(0, DL, true), InFlag, DL);

  if (!Ins.empty()) {
    InFlag = Chain.getValue(1);
  }

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
                         InVals);
}

/// Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue AVRTargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
    SmallVectorImpl<SDValue> &InVals) const {

  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Handle runtime calling convs.
  if (CallConv == CallingConv::AVR_BUILTIN) {
    CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN);
  } else {
    analyzeReturnValues(Ins, CCInfo);
  }

  // Copy all of the result registers out of their specified physreg.
  for (CCValAssign const &RVLoc : RVLocs) {
    Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
                               InFlag)
                .getValue(1);
    InFlag = Chain.getValue(2);
    InVals.push_back(Chain.getValue(0));
  }

  return Chain;
}

//===----------------------------------------------------------------------===//
//               Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//

bool AVRTargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
  if (CallConv == CallingConv::AVR_BUILTIN) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
    return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN);
  }

  unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs);
  return TotalBytes <= 8;
}

SDValue
AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                               bool isVarArg,
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
                               const SmallVectorImpl<SDValue> &OutVals,
                               const SDLoc &dl, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to locations.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  MachineFunction &MF = DAG.getMachineFunction();

  // Analyze return values.
  if (CallConv == CallingConv::AVR_BUILTIN) {
    CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN);
  } else {
    analyzeReturnValues(Outs, CCInfo);
  }

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);
  // Copy the result values into the output registers.
  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  // Don't emit the ret/reti instruction when the naked attribute is present in
  // the function being compiled.
  if (MF.getFunction().getAttributes().hasAttribute(
          AttributeList::FunctionIndex, Attribute::Naked)) {
    return Chain;
  }

  const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();

  unsigned RetOpc =
    AFI->isInterruptOrSignalHandler()
        ? AVRISD::RETI_FLAG
        : AVRISD::RET_FLAG;

  RetOps[0] = Chain; // Update chain.

  if (Flag.getNode()) {
    RetOps.push_back(Flag);
  }

  return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
}

//===----------------------------------------------------------------------===//
//  Custom Inserters
//===----------------------------------------------------------------------===//

MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
                                                  MachineBasicBlock *BB) const {
  unsigned Opc;
  const TargetRegisterClass *RC;
  bool HasRepeatedOperand = false;
  MachineFunction *F = BB->getParent();
  MachineRegisterInfo &RI = F->getRegInfo();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();

  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("Invalid shift opcode!");
  case AVR::Lsl8:
    Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
    RC = &AVR::GPR8RegClass;
    HasRepeatedOperand = true;
    break;
  case AVR::Lsl16:
    Opc = AVR::LSLWRd;
    RC = &AVR::DREGSRegClass;
    break;
  case AVR::Asr8:
    Opc = AVR::ASRRd;
    RC = &AVR::GPR8RegClass;
    break;
  case AVR::Asr16:
    Opc = AVR::ASRWRd;
    RC = &AVR::DREGSRegClass;
    break;
  case AVR::Lsr8:
    Opc = AVR::LSRRd;
    RC = &AVR::GPR8RegClass;
    break;
  case AVR::Lsr16:
    Opc = AVR::LSRWRd;
    RC = &AVR::DREGSRegClass;
    break;
  case AVR::Rol8:
    Opc = AVR::ROLBRd;
    RC = &AVR::GPR8RegClass;
    break;
  case AVR::Rol16:
    Opc = AVR::ROLWRd;
    RC = &AVR::DREGSRegClass;
    break;
  case AVR::Ror8:
    Opc = AVR::RORBRd;
    RC = &AVR::GPR8RegClass;
    break;
  case AVR::Ror16:
    Opc = AVR::RORWRd;
    RC = &AVR::DREGSRegClass;
    break;
  }

  const BasicBlock *LLVM_BB = BB->getBasicBlock();

  MachineFunction::iterator I;
  for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
  if (I != F->end()) ++I;

  // Create loop block.
  MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);

  F->insert(I, LoopBB);
  F->insert(I, RemBB);

  // Update machine-CFG edges by transferring all successors of the current
  // block to the block containing instructions after shift.
  RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
                BB->end());
  RemBB->transferSuccessorsAndUpdatePHIs(BB);

  // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
  BB->addSuccessor(LoopBB);
  BB->addSuccessor(RemBB);
  LoopBB->addSuccessor(RemBB);
  LoopBB->addSuccessor(LoopBB);

  Register ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
  Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
  Register ShiftReg = RI.createVirtualRegister(RC);
  Register ShiftReg2 = RI.createVirtualRegister(RC);
  Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  Register DstReg = MI.getOperand(0).getReg();

  // BB:
  // cpi N, 0
  // breq RemBB
  BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
  BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);

  // LoopBB:
  // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
  // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
  // ShiftReg2 = shift ShiftReg
  // ShiftAmt2 = ShiftAmt - 1;
  BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
      .addReg(SrcReg)
      .addMBB(BB)
      .addReg(ShiftReg2)
      .addMBB(LoopBB);
  BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
      .addReg(ShiftAmtSrcReg)
      .addMBB(BB)
      .addReg(ShiftAmtReg2)
      .addMBB(LoopBB);

  auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
  if (HasRepeatedOperand)
    ShiftMI.addReg(ShiftReg);

  BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
      .addReg(ShiftAmtReg)
      .addImm(1);
  BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);

  // RemBB:
  // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
  BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
      .addReg(SrcReg)
      .addMBB(BB)
      .addReg(ShiftReg2)
      .addMBB(LoopBB);

  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return RemBB;
}

static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
  if (I->getOpcode() == AVR::COPY) {
    Register SrcReg = I->getOperand(1).getReg();
    return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
  }

  return false;
}

// The mul instructions wreak havock on our zero_reg R1. We need to clear it
// after the result has been evacuated. This is probably not the best way to do
// it, but it works for now.
MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
                                                MachineBasicBlock *BB) const {
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  MachineBasicBlock::iterator I(MI);
  ++I; // in any case insert *after* the mul instruction
  if (isCopyMulResult(I))
    ++I;
  if (isCopyMulResult(I))
    ++I;
  BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
      .addReg(AVR::R1)
      .addReg(AVR::R1);
  return BB;
}

MachineBasicBlock *
AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                               MachineBasicBlock *MBB) const {
  int Opc = MI.getOpcode();

  // Pseudo shift instructions with a non constant shift amount are expanded
  // into a loop.
  switch (Opc) {
  case AVR::Lsl8:
  case AVR::Lsl16:
  case AVR::Lsr8:
  case AVR::Lsr16:
  case AVR::Rol8:
  case AVR::Rol16:
  case AVR::Ror8:
  case AVR::Ror16:
  case AVR::Asr8:
  case AVR::Asr16:
    return insertShift(MI, MBB);
  case AVR::MULRdRr:
  case AVR::MULSRdRr:
    return insertMul(MI, MBB);
  }

  assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
         "Unexpected instr type to insert");

  const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
                                ->getParent()
                                ->getSubtarget()
                                .getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();

  // To "insert" a SELECT instruction, we insert the diamond
  // control-flow pattern. The incoming instruction knows the
  // destination vreg to set, the condition code register to branch
  // on, the true/false values to select between, and a branch opcode
  // to use.

  MachineFunction *MF = MBB->getParent();
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
  MachineBasicBlock *FallThrough = MBB->getFallThrough();

  // If the current basic block falls through to another basic block,
  // we must insert an unconditional branch to the fallthrough destination
  // if we are to insert basic blocks at the prior fallthrough point.
  if (FallThrough != nullptr) {
    BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
  }

  MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);

  MachineFunction::iterator I;
  for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
  if (I != MF->end()) ++I;
  MF->insert(I, trueMBB);
  MF->insert(I, falseMBB);

  // Transfer remaining instructions and all successors of the current
  // block to the block which will contain the Phi node for the
  // select.
  trueMBB->splice(trueMBB->begin(), MBB,
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
  trueMBB->transferSuccessorsAndUpdatePHIs(MBB);

  AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
  BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
  BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
  MBB->addSuccessor(falseMBB);
  MBB->addSuccessor(trueMBB);

  // Unconditionally flow back to the true block
  BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
  falseMBB->addSuccessor(trueMBB);

  // Set up the Phi node to determine where we came from
  BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
    .addReg(MI.getOperand(1).getReg())
    .addMBB(MBB)
    .addReg(MI.getOperand(2).getReg())
    .addMBB(falseMBB) ;

  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return trueMBB;
}

//===----------------------------------------------------------------------===//
//  Inline Asm Support
//===----------------------------------------------------------------------===//

AVRTargetLowering::ConstraintType
AVRTargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
    switch (Constraint[0]) {
    default:
      break;
    case 'a': // Simple upper registers
    case 'b': // Base pointer registers pairs
    case 'd': // Upper register
    case 'l': // Lower registers
    case 'e': // Pointer register pairs
    case 'q': // Stack pointer register
    case 'r': // Any register
    case 'w': // Special upper register pairs
      return C_RegisterClass;
    case 't': // Temporary register
    case 'x': case 'X': // Pointer register pair X
    case 'y': case 'Y': // Pointer register pair Y
    case 'z': case 'Z': // Pointer register pair Z
      return C_Register;
    case 'Q': // A memory address based on Y or Z pointer with displacement.
      return C_Memory;
    case 'G': // Floating point constant
    case 'I': // 6-bit positive integer constant
    case 'J': // 6-bit negative integer constant
    case 'K': // Integer constant (Range: 2)
    case 'L': // Integer constant (Range: 0)
    case 'M': // 8-bit integer constant
    case 'N': // Integer constant (Range: -1)
    case 'O': // Integer constant (Range: 8, 16, 24)
    case 'P': // Integer constant (Range: 1)
    case 'R': // Integer constant (Range: -6 to 5)x
      return C_Immediate;
    }
  }

  return TargetLowering::getConstraintType(Constraint);
}

unsigned
AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
  // Not sure if this is actually the right thing to do, but we got to do
  // *something* [agnat]
  switch (ConstraintCode[0]) {
  case 'Q':
    return InlineAsm::Constraint_Q;
  }
  return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}

AVRTargetLowering::ConstraintWeight
AVRTargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;

  // If we don't have a value, we can't do a match,
  // but allow it at the lowest weight.
  // (this behaviour has been copied from the ARM backend)
  if (!CallOperandVal) {
    return CW_Default;
  }

  // Look at the constraint type.
  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'd':
  case 'r':
  case 'l':
    weight = CW_Register;
    break;
  case 'a':
  case 'b':
  case 'e':
  case 'q':
  case 't':
  case 'w':
  case 'x': case 'X':
  case 'y': case 'Y':
  case 'z': case 'Z':
    weight = CW_SpecificReg;
    break;
  case 'G':
    if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
      if (C->isZero()) {
        weight = CW_Constant;
      }
    }
    break;
  case 'I':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if (isUInt<6>(C->getZExtValue())) {
        weight = CW_Constant;
      }
    }
    break;
  case 'J':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
        weight = CW_Constant;
      }
    }
    break;
  case 'K':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if (C->getZExtValue() == 2) {
        weight = CW_Constant;
      }
    }
    break;
  case 'L':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if (C->getZExtValue() == 0) {
        weight = CW_Constant;
      }
    }
    break;
  case 'M':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if (isUInt<8>(C->getZExtValue())) {
        weight = CW_Constant;
      }
    }
    break;
  case 'N':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if (C->getSExtValue() == -1) {
        weight = CW_Constant;
      }
    }
    break;
  case 'O':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
          (C->getZExtValue() == 24)) {
        weight = CW_Constant;
      }
    }
    break;
  case 'P':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if (C->getZExtValue() == 1) {
        weight = CW_Constant;
      }
    }
    break;
  case 'R':
    if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
      if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
        weight = CW_Constant;
      }
    }
    break;
  case 'Q':
    weight = CW_Memory;
    break;
  }

  return weight;
}

std::pair<unsigned, const TargetRegisterClass *>
AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                                StringRef Constraint,
                                                MVT VT) const {
  // We only support i8 and i16.
  //
  //:FIXME: remove this assert for now since it gets sometimes executed
  // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");

  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'a': // Simple upper registers r16..r23.
      return std::make_pair(0U, &AVR::LD8loRegClass);
    case 'b': // Base pointer registers: y, z.
      return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
    case 'd': // Upper registers r16..r31.
      return std::make_pair(0U, &AVR::LD8RegClass);
    case 'l': // Lower registers r0..r15.
      return std::make_pair(0U, &AVR::GPR8loRegClass);
    case 'e': // Pointer register pairs: x, y, z.
      return std::make_pair(0U, &AVR::PTRREGSRegClass);
    case 'q': // Stack pointer register: SPH:SPL.
      return std::make_pair(0U, &AVR::GPRSPRegClass);
    case 'r': // Any register: r0..r31.
      if (VT == MVT::i8)
        return std::make_pair(0U, &AVR::GPR8RegClass);

      assert(VT == MVT::i16 && "inline asm constraint too large");
      return std::make_pair(0U, &AVR::DREGSRegClass);
    case 't': // Temporary register: r0.
      return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
    case 'w': // Special upper register pairs: r24, r26, r28, r30.
      return std::make_pair(0U, &AVR::IWREGSRegClass);
    case 'x': // Pointer register pair X: r27:r26.
    case 'X':
      return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
    case 'y': // Pointer register pair Y: r29:r28.
    case 'Y':
      return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
    case 'z': // Pointer register pair Z: r31:r30.
    case 'Z':
      return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
    default:
      break;
    }
  }

  return TargetLowering::getRegForInlineAsmConstraint(
      Subtarget.getRegisterInfo(), Constraint, VT);
}

void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
                                                     std::string &Constraint,
                                                     std::vector<SDValue> &Ops,
                                                     SelectionDAG &DAG) const {
  SDValue Result(0, 0);
  SDLoc DL(Op);
  EVT Ty = Op.getValueType();

  // Currently only support length 1 constraints.
  if (Constraint.length() != 1) {
    return;
  }

  char ConstraintLetter = Constraint[0];
  switch (ConstraintLetter) {
  default:
    break;
  // Deal with integers first:
  case 'I':
  case 'J':
  case 'K':
  case 'L':
  case 'M':
  case 'N':
  case 'O':
  case 'P':
  case 'R': {
    const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
    if (!C) {
      return;
    }

    int64_t CVal64 = C->getSExtValue();
    uint64_t CUVal64 = C->getZExtValue();
    switch (ConstraintLetter) {
    case 'I': // 0..63
      if (!isUInt<6>(CUVal64))
        return;
      Result = DAG.getTargetConstant(CUVal64, DL, Ty);
      break;
    case 'J': // -63..0
      if (CVal64 < -63 || CVal64 > 0)
        return;
      Result = DAG.getTargetConstant(CVal64, DL, Ty);
      break;
    case 'K': // 2
      if (CUVal64 != 2)
        return;
      Result = DAG.getTargetConstant(CUVal64, DL, Ty);
      break;
    case 'L': // 0
      if (CUVal64 != 0)
        return;
      Result = DAG.getTargetConstant(CUVal64, DL, Ty);
      break;
    case 'M': // 0..255
      if (!isUInt<8>(CUVal64))
        return;
      // i8 type may be printed as a negative number,
      // e.g. 254 would be printed as -2,
      // so we force it to i16 at least.
      if (Ty.getSimpleVT() == MVT::i8) {
        Ty = MVT::i16;
      }
      Result = DAG.getTargetConstant(CUVal64, DL, Ty);
      break;
    case 'N': // -1
      if (CVal64 != -1)
        return;
      Result = DAG.getTargetConstant(CVal64, DL, Ty);
      break;
    case 'O': // 8, 16, 24
      if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
        return;
      Result = DAG.getTargetConstant(CUVal64, DL, Ty);
      break;
    case 'P': // 1
      if (CUVal64 != 1)
        return;
      Result = DAG.getTargetConstant(CUVal64, DL, Ty);
      break;
    case 'R': // -6..5
      if (CVal64 < -6 || CVal64 > 5)
        return;
      Result = DAG.getTargetConstant(CVal64, DL, Ty);
      break;
    }

    break;
  }
  case 'G':
    const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
    if (!FC || !FC->isZero())
      return;
    // Soften float to i8 0
    Result = DAG.getTargetConstant(0, DL, MVT::i8);
    break;
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }

  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
                                              const MachineFunction &MF) const {
  Register Reg;

  if (VT == LLT::scalar(8)) {
    Reg = StringSwitch<unsigned>(RegName)
      .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
      .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
      .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
      .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
      .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
      .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
      .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
      .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
      .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
      .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
      .Case("r30", AVR::R30).Case("r31", AVR::R31)
      .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
      .Default(0);
  } else {
    Reg = StringSwitch<unsigned>(RegName)
      .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
      .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
      .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
      .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
      .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
      .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
      .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
      .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
      .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
      .Default(0);
  }

  if (Reg)
    return Reg;

  report_fatal_error("Invalid register name global variable");
}

} // end of namespace llvm