MCExpr.cpp 35.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCExpr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "mcexpr"

namespace {
namespace stats {

STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");

} // end namespace stats
} // end anonymous namespace

void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens) const {
  switch (getKind()) {
  case MCExpr::Target:
    return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
  case MCExpr::Constant: {
    auto Value = cast<MCConstantExpr>(*this).getValue();
    auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
    auto SizeInBytes = cast<MCConstantExpr>(*this).getSizeInBytes();
    if (Value < 0 && MAI && !MAI->supportsSignedData())
      PrintInHex = true;
    if (PrintInHex)
      switch (SizeInBytes) {
      default:
        OS << "0x" << Twine::utohexstr(Value);
        break;
      case 1:
        OS << format("0x%02" PRIx64, Value);
        break;
      case 2:
        OS << format("0x%04" PRIx64, Value);
        break;
      case 4:
        OS << format("0x%08" PRIx64, Value);
        break;
      case 8:
        OS << format("0x%016" PRIx64, Value);
        break;
      }
    else
      OS << Value;
    return;
  }
  case MCExpr::SymbolRef: {
    const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
    const MCSymbol &Sym = SRE.getSymbol();
    // Parenthesize names that start with $ so that they don't look like
    // absolute names.
    bool UseParens =
        !InParens && !Sym.getName().empty() && Sym.getName()[0] == '$';
    if (UseParens) {
      OS << '(';
      Sym.print(OS, MAI);
      OS << ')';
    } else
      Sym.print(OS, MAI);

    const MCSymbolRefExpr::VariantKind Kind = SRE.getKind();
    if (Kind != MCSymbolRefExpr::VK_None) {
      if (MAI && MAI->useParensForSymbolVariant()) // ARM
        OS << '(' << MCSymbolRefExpr::getVariantKindName(Kind) << ')';
      else
        OS << '@' << MCSymbolRefExpr::getVariantKindName(Kind);
    }

    return;
  }

  case MCExpr::Unary: {
    const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
    switch (UE.getOpcode()) {
    case MCUnaryExpr::LNot:  OS << '!'; break;
    case MCUnaryExpr::Minus: OS << '-'; break;
    case MCUnaryExpr::Not:   OS << '~'; break;
    case MCUnaryExpr::Plus:  OS << '+'; break;
    }
    bool Binary = UE.getSubExpr()->getKind() == MCExpr::Binary;
    if (Binary) OS << "(";
    UE.getSubExpr()->print(OS, MAI);
    if (Binary) OS << ")";
    return;
  }

  case MCExpr::Binary: {
    const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);

    // Only print parens around the LHS if it is non-trivial.
    if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
      BE.getLHS()->print(OS, MAI);
    } else {
      OS << '(';
      BE.getLHS()->print(OS, MAI);
      OS << ')';
    }

    switch (BE.getOpcode()) {
    case MCBinaryExpr::Add:
      // Print "X-42" instead of "X+-42".
      if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
        if (RHSC->getValue() < 0) {
          OS << RHSC->getValue();
          return;
        }
      }

      OS <<  '+';
      break;
    case MCBinaryExpr::AShr: OS << ">>"; break;
    case MCBinaryExpr::And:  OS <<  '&'; break;
    case MCBinaryExpr::Div:  OS <<  '/'; break;
    case MCBinaryExpr::EQ:   OS << "=="; break;
    case MCBinaryExpr::GT:   OS <<  '>'; break;
    case MCBinaryExpr::GTE:  OS << ">="; break;
    case MCBinaryExpr::LAnd: OS << "&&"; break;
    case MCBinaryExpr::LOr:  OS << "||"; break;
    case MCBinaryExpr::LShr: OS << ">>"; break;
    case MCBinaryExpr::LT:   OS <<  '<'; break;
    case MCBinaryExpr::LTE:  OS << "<="; break;
    case MCBinaryExpr::Mod:  OS <<  '%'; break;
    case MCBinaryExpr::Mul:  OS <<  '*'; break;
    case MCBinaryExpr::NE:   OS << "!="; break;
    case MCBinaryExpr::Or:   OS <<  '|'; break;
    case MCBinaryExpr::OrNot: OS << '!'; break;
    case MCBinaryExpr::Shl:  OS << "<<"; break;
    case MCBinaryExpr::Sub:  OS <<  '-'; break;
    case MCBinaryExpr::Xor:  OS <<  '^'; break;
    }

    // Only print parens around the LHS if it is non-trivial.
    if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
      BE.getRHS()->print(OS, MAI);
    } else {
      OS << '(';
      BE.getRHS()->print(OS, MAI);
      OS << ')';
    }
    return;
  }
  }

  llvm_unreachable("Invalid expression kind!");
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MCExpr::dump() const {
  dbgs() << *this;
  dbgs() << '\n';
}
#endif

/* *** */

const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
                                         const MCExpr *RHS, MCContext &Ctx,
                                         SMLoc Loc) {
  return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
}

const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
                                       MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
}

const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx,
                                             bool PrintInHex,
                                             unsigned SizeInBytes) {
  return new (Ctx) MCConstantExpr(Value, PrintInHex, SizeInBytes);
}

/* *** */

MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
                                 const MCAsmInfo *MAI, SMLoc Loc)
    : MCExpr(MCExpr::SymbolRef, Loc,
             encodeSubclassData(Kind, MAI->hasSubsectionsViaSymbols())),
      Symbol(Symbol) {
  assert(Symbol);
}

const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
                                               VariantKind Kind,
                                               MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCSymbolRefExpr(Sym, Kind, Ctx.getAsmInfo(), Loc);
}

const MCSymbolRefExpr *MCSymbolRefExpr::create(StringRef Name, VariantKind Kind,
                                               MCContext &Ctx) {
  return create(Ctx.getOrCreateSymbol(Name), Kind, Ctx);
}

StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
  switch (Kind) {
  case VK_Invalid: return "<<invalid>>";
  case VK_None: return "<<none>>";

  case VK_DTPOFF: return "DTPOFF";
  case VK_DTPREL: return "DTPREL";
  case VK_GOT: return "GOT";
  case VK_GOTOFF: return "GOTOFF";
  case VK_GOTREL: return "GOTREL";
  case VK_PCREL: return "PCREL";
  case VK_GOTPCREL: return "GOTPCREL";
  case VK_GOTTPOFF: return "GOTTPOFF";
  case VK_INDNTPOFF: return "INDNTPOFF";
  case VK_NTPOFF: return "NTPOFF";
  case VK_GOTNTPOFF: return "GOTNTPOFF";
  case VK_PLT: return "PLT";
  case VK_TLSGD: return "TLSGD";
  case VK_TLSLD: return "TLSLD";
  case VK_TLSLDM: return "TLSLDM";
  case VK_TPOFF: return "TPOFF";
  case VK_TPREL: return "TPREL";
  case VK_TLSCALL: return "tlscall";
  case VK_TLSDESC: return "tlsdesc";
  case VK_TLVP: return "TLVP";
  case VK_TLVPPAGE: return "TLVPPAGE";
  case VK_TLVPPAGEOFF: return "TLVPPAGEOFF";
  case VK_PAGE: return "PAGE";
  case VK_PAGEOFF: return "PAGEOFF";
  case VK_GOTPAGE: return "GOTPAGE";
  case VK_GOTPAGEOFF: return "GOTPAGEOFF";
  case VK_SECREL: return "SECREL32";
  case VK_SIZE: return "SIZE";
  case VK_WEAKREF: return "WEAKREF";
  case VK_X86_ABS8: return "ABS8";
  case VK_ARM_NONE: return "none";
  case VK_ARM_GOT_PREL: return "GOT_PREL";
  case VK_ARM_TARGET1: return "target1";
  case VK_ARM_TARGET2: return "target2";
  case VK_ARM_PREL31: return "prel31";
  case VK_ARM_SBREL: return "sbrel";
  case VK_ARM_TLSLDO: return "tlsldo";
  case VK_ARM_TLSDESCSEQ: return "tlsdescseq";
  case VK_AVR_NONE: return "none";
  case VK_AVR_LO8: return "lo8";
  case VK_AVR_HI8: return "hi8";
  case VK_AVR_HLO8: return "hlo8";
  case VK_AVR_DIFF8: return "diff8";
  case VK_AVR_DIFF16: return "diff16";
  case VK_AVR_DIFF32: return "diff32";
  case VK_PPC_LO: return "l";
  case VK_PPC_HI: return "h";
  case VK_PPC_HA: return "ha";
  case VK_PPC_HIGH: return "high";
  case VK_PPC_HIGHA: return "higha";
  case VK_PPC_HIGHER: return "higher";
  case VK_PPC_HIGHERA: return "highera";
  case VK_PPC_HIGHEST: return "highest";
  case VK_PPC_HIGHESTA: return "highesta";
  case VK_PPC_GOT_LO: return "got@l";
  case VK_PPC_GOT_HI: return "got@h";
  case VK_PPC_GOT_HA: return "got@ha";
  case VK_PPC_TOCBASE: return "tocbase";
  case VK_PPC_TOC: return "toc";
  case VK_PPC_TOC_LO: return "toc@l";
  case VK_PPC_TOC_HI: return "toc@h";
  case VK_PPC_TOC_HA: return "toc@ha";
  case VK_PPC_U: return "u";
  case VK_PPC_L: return "l";
  case VK_PPC_DTPMOD: return "dtpmod";
  case VK_PPC_TPREL_LO: return "tprel@l";
  case VK_PPC_TPREL_HI: return "tprel@h";
  case VK_PPC_TPREL_HA: return "tprel@ha";
  case VK_PPC_TPREL_HIGH: return "tprel@high";
  case VK_PPC_TPREL_HIGHA: return "tprel@higha";
  case VK_PPC_TPREL_HIGHER: return "tprel@higher";
  case VK_PPC_TPREL_HIGHERA: return "tprel@highera";
  case VK_PPC_TPREL_HIGHEST: return "tprel@highest";
  case VK_PPC_TPREL_HIGHESTA: return "tprel@highesta";
  case VK_PPC_DTPREL_LO: return "dtprel@l";
  case VK_PPC_DTPREL_HI: return "dtprel@h";
  case VK_PPC_DTPREL_HA: return "dtprel@ha";
  case VK_PPC_DTPREL_HIGH: return "dtprel@high";
  case VK_PPC_DTPREL_HIGHA: return "dtprel@higha";
  case VK_PPC_DTPREL_HIGHER: return "dtprel@higher";
  case VK_PPC_DTPREL_HIGHERA: return "dtprel@highera";
  case VK_PPC_DTPREL_HIGHEST: return "dtprel@highest";
  case VK_PPC_DTPREL_HIGHESTA: return "dtprel@highesta";
  case VK_PPC_GOT_TPREL: return "got@tprel";
  case VK_PPC_GOT_TPREL_LO: return "got@tprel@l";
  case VK_PPC_GOT_TPREL_HI: return "got@tprel@h";
  case VK_PPC_GOT_TPREL_HA: return "got@tprel@ha";
  case VK_PPC_GOT_DTPREL: return "got@dtprel";
  case VK_PPC_GOT_DTPREL_LO: return "got@dtprel@l";
  case VK_PPC_GOT_DTPREL_HI: return "got@dtprel@h";
  case VK_PPC_GOT_DTPREL_HA: return "got@dtprel@ha";
  case VK_PPC_TLS: return "tls";
  case VK_PPC_GOT_TLSGD: return "got@tlsgd";
  case VK_PPC_GOT_TLSGD_LO: return "got@tlsgd@l";
  case VK_PPC_GOT_TLSGD_HI: return "got@tlsgd@h";
  case VK_PPC_GOT_TLSGD_HA: return "got@tlsgd@ha";
  case VK_PPC_TLSGD: return "tlsgd";
  case VK_PPC_GOT_TLSLD: return "got@tlsld";
  case VK_PPC_GOT_TLSLD_LO: return "got@tlsld@l";
  case VK_PPC_GOT_TLSLD_HI: return "got@tlsld@h";
  case VK_PPC_GOT_TLSLD_HA: return "got@tlsld@ha";
  case VK_PPC_GOT_PCREL:
    return "got@pcrel";
  case VK_PPC_GOT_TLSGD_PCREL:
    return "got@tlsgd@pcrel";
  case VK_PPC_GOT_TLSLD_PCREL:
    return "got@tlsld@pcrel";
  case VK_PPC_GOT_TPREL_PCREL:
    return "got@tprel@pcrel";
  case VK_PPC_TLS_PCREL:
    return "tls@pcrel";
  case VK_PPC_TLSLD: return "tlsld";
  case VK_PPC_LOCAL: return "local";
  case VK_PPC_NOTOC: return "notoc";
  case VK_PPC_PCREL_OPT: return "<<invalid>>";
  case VK_COFF_IMGREL32: return "IMGREL";
  case VK_Hexagon_LO16: return "LO16";
  case VK_Hexagon_HI16: return "HI16";
  case VK_Hexagon_GPREL: return "GPREL";
  case VK_Hexagon_GD_GOT: return "GDGOT";
  case VK_Hexagon_LD_GOT: return "LDGOT";
  case VK_Hexagon_GD_PLT: return "GDPLT";
  case VK_Hexagon_LD_PLT: return "LDPLT";
  case VK_Hexagon_IE: return "IE";
  case VK_Hexagon_IE_GOT: return "IEGOT";
  case VK_WASM_TYPEINDEX: return "TYPEINDEX";
  case VK_WASM_MBREL: return "MBREL";
  case VK_WASM_TBREL: return "TBREL";
  case VK_AMDGPU_GOTPCREL32_LO: return "gotpcrel32@lo";
  case VK_AMDGPU_GOTPCREL32_HI: return "gotpcrel32@hi";
  case VK_AMDGPU_REL32_LO: return "rel32@lo";
  case VK_AMDGPU_REL32_HI: return "rel32@hi";
  case VK_AMDGPU_REL64: return "rel64";
  case VK_AMDGPU_ABS32_LO: return "abs32@lo";
  case VK_AMDGPU_ABS32_HI: return "abs32@hi";
  case VK_VE_HI32: return "hi";
  case VK_VE_LO32: return "lo";
  case VK_VE_PC_HI32: return "pc_hi";
  case VK_VE_PC_LO32: return "pc_lo";
  case VK_VE_GOT_HI32: return "got_hi";
  case VK_VE_GOT_LO32: return "got_lo";
  case VK_VE_GOTOFF_HI32: return "gotoff_hi";
  case VK_VE_GOTOFF_LO32: return "gotoff_lo";
  case VK_VE_PLT_HI32: return "plt_hi";
  case VK_VE_PLT_LO32: return "plt_lo";
  case VK_VE_TLS_GD_HI32: return "tls_gd_hi";
  case VK_VE_TLS_GD_LO32: return "tls_gd_lo";
  case VK_VE_TPOFF_HI32: return "tpoff_hi";
  case VK_VE_TPOFF_LO32: return "tpoff_lo";
  }
  llvm_unreachable("Invalid variant kind");
}

MCSymbolRefExpr::VariantKind
MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
  return StringSwitch<VariantKind>(Name.lower())
    .Case("dtprel", VK_DTPREL)
    .Case("dtpoff", VK_DTPOFF)
    .Case("got", VK_GOT)
    .Case("gotoff", VK_GOTOFF)
    .Case("gotrel", VK_GOTREL)
    .Case("pcrel", VK_PCREL)
    .Case("gotpcrel", VK_GOTPCREL)
    .Case("gottpoff", VK_GOTTPOFF)
    .Case("indntpoff", VK_INDNTPOFF)
    .Case("ntpoff", VK_NTPOFF)
    .Case("gotntpoff", VK_GOTNTPOFF)
    .Case("plt", VK_PLT)
    .Case("tlscall", VK_TLSCALL)
    .Case("tlsdesc", VK_TLSDESC)
    .Case("tlsgd", VK_TLSGD)
    .Case("tlsld", VK_TLSLD)
    .Case("tlsldm", VK_TLSLDM)
    .Case("tpoff", VK_TPOFF)
    .Case("tprel", VK_TPREL)
    .Case("tlvp", VK_TLVP)
    .Case("tlvppage", VK_TLVPPAGE)
    .Case("tlvppageoff", VK_TLVPPAGEOFF)
    .Case("page", VK_PAGE)
    .Case("pageoff", VK_PAGEOFF)
    .Case("gotpage", VK_GOTPAGE)
    .Case("gotpageoff", VK_GOTPAGEOFF)
    .Case("imgrel", VK_COFF_IMGREL32)
    .Case("secrel32", VK_SECREL)
    .Case("size", VK_SIZE)
    .Case("abs8", VK_X86_ABS8)
    .Case("l", VK_PPC_LO)
    .Case("h", VK_PPC_HI)
    .Case("ha", VK_PPC_HA)
    .Case("high", VK_PPC_HIGH)
    .Case("higha", VK_PPC_HIGHA)
    .Case("higher", VK_PPC_HIGHER)
    .Case("highera", VK_PPC_HIGHERA)
    .Case("highest", VK_PPC_HIGHEST)
    .Case("highesta", VK_PPC_HIGHESTA)
    .Case("got@l", VK_PPC_GOT_LO)
    .Case("got@h", VK_PPC_GOT_HI)
    .Case("got@ha", VK_PPC_GOT_HA)
    .Case("local", VK_PPC_LOCAL)
    .Case("tocbase", VK_PPC_TOCBASE)
    .Case("toc", VK_PPC_TOC)
    .Case("toc@l", VK_PPC_TOC_LO)
    .Case("toc@h", VK_PPC_TOC_HI)
    .Case("toc@ha", VK_PPC_TOC_HA)
    .Case("u", VK_PPC_U)
    .Case("l", VK_PPC_L)
    .Case("tls", VK_PPC_TLS)
    .Case("dtpmod", VK_PPC_DTPMOD)
    .Case("tprel@l", VK_PPC_TPREL_LO)
    .Case("tprel@h", VK_PPC_TPREL_HI)
    .Case("tprel@ha", VK_PPC_TPREL_HA)
    .Case("tprel@high", VK_PPC_TPREL_HIGH)
    .Case("tprel@higha", VK_PPC_TPREL_HIGHA)
    .Case("tprel@higher", VK_PPC_TPREL_HIGHER)
    .Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
    .Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
    .Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
    .Case("dtprel@l", VK_PPC_DTPREL_LO)
    .Case("dtprel@h", VK_PPC_DTPREL_HI)
    .Case("dtprel@ha", VK_PPC_DTPREL_HA)
    .Case("dtprel@high", VK_PPC_DTPREL_HIGH)
    .Case("dtprel@higha", VK_PPC_DTPREL_HIGHA)
    .Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
    .Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
    .Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
    .Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
    .Case("got@tprel", VK_PPC_GOT_TPREL)
    .Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
    .Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
    .Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
    .Case("got@dtprel", VK_PPC_GOT_DTPREL)
    .Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
    .Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
    .Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
    .Case("got@tlsgd", VK_PPC_GOT_TLSGD)
    .Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
    .Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
    .Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
    .Case("got@tlsld", VK_PPC_GOT_TLSLD)
    .Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
    .Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
    .Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
    .Case("got@pcrel", VK_PPC_GOT_PCREL)
    .Case("got@tlsgd@pcrel", VK_PPC_GOT_TLSGD_PCREL)
    .Case("got@tlsld@pcrel", VK_PPC_GOT_TLSLD_PCREL)
    .Case("got@tprel@pcrel", VK_PPC_GOT_TPREL_PCREL)
    .Case("tls@pcrel", VK_PPC_TLS_PCREL)
    .Case("notoc", VK_PPC_NOTOC)
    .Case("gdgot", VK_Hexagon_GD_GOT)
    .Case("gdplt", VK_Hexagon_GD_PLT)
    .Case("iegot", VK_Hexagon_IE_GOT)
    .Case("ie", VK_Hexagon_IE)
    .Case("ldgot", VK_Hexagon_LD_GOT)
    .Case("ldplt", VK_Hexagon_LD_PLT)
    .Case("none", VK_ARM_NONE)
    .Case("got_prel", VK_ARM_GOT_PREL)
    .Case("target1", VK_ARM_TARGET1)
    .Case("target2", VK_ARM_TARGET2)
    .Case("prel31", VK_ARM_PREL31)
    .Case("sbrel", VK_ARM_SBREL)
    .Case("tlsldo", VK_ARM_TLSLDO)
    .Case("lo8", VK_AVR_LO8)
    .Case("hi8", VK_AVR_HI8)
    .Case("hlo8", VK_AVR_HLO8)
    .Case("typeindex", VK_WASM_TYPEINDEX)
    .Case("tbrel", VK_WASM_TBREL)
    .Case("mbrel", VK_WASM_MBREL)
    .Case("gotpcrel32@lo", VK_AMDGPU_GOTPCREL32_LO)
    .Case("gotpcrel32@hi", VK_AMDGPU_GOTPCREL32_HI)
    .Case("rel32@lo", VK_AMDGPU_REL32_LO)
    .Case("rel32@hi", VK_AMDGPU_REL32_HI)
    .Case("rel64", VK_AMDGPU_REL64)
    .Case("abs32@lo", VK_AMDGPU_ABS32_LO)
    .Case("abs32@hi", VK_AMDGPU_ABS32_HI)
    .Case("hi", VK_VE_HI32)
    .Case("lo", VK_VE_LO32)
    .Case("pc_hi", VK_VE_PC_HI32)
    .Case("pc_lo", VK_VE_PC_LO32)
    .Case("got_hi", VK_VE_GOT_HI32)
    .Case("got_lo", VK_VE_GOT_LO32)
    .Case("gotoff_hi", VK_VE_GOTOFF_HI32)
    .Case("gotoff_lo", VK_VE_GOTOFF_LO32)
    .Case("plt_hi", VK_VE_PLT_HI32)
    .Case("plt_lo", VK_VE_PLT_LO32)
    .Case("tls_gd_hi", VK_VE_TLS_GD_HI32)
    .Case("tls_gd_lo", VK_VE_TLS_GD_LO32)
    .Case("tpoff_hi", VK_VE_TPOFF_HI32)
    .Case("tpoff_lo", VK_VE_TPOFF_LO32)
    .Default(VK_Invalid);
}

/* *** */

void MCTargetExpr::anchor() {}

/* *** */

bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
  return evaluateAsAbsolute(Res, nullptr, nullptr, nullptr, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res,
                                const MCAsmLayout &Layout) const {
  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res,
                                const MCAsmLayout &Layout,
                                const SectionAddrMap &Addrs) const {
  // Setting InSet causes us to absolutize differences across sections and that
  // is what the MachO writer uses Addrs for.
  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs, true);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
  return evaluateAsAbsolute(Res, &Asm, nullptr, nullptr, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
  return evaluateAsAbsolute(Res, Asm, nullptr, nullptr, false);
}

bool MCExpr::evaluateKnownAbsolute(int64_t &Res,
                                   const MCAsmLayout &Layout) const {
  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr,
                            true);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
                                const MCAsmLayout *Layout,
                                const SectionAddrMap *Addrs, bool InSet) const {
  MCValue Value;

  // Fast path constants.
  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
    Res = CE->getValue();
    return true;
  }

  bool IsRelocatable =
      evaluateAsRelocatableImpl(Value, Asm, Layout, nullptr, Addrs, InSet);

  // Record the current value.
  Res = Value.getConstant();

  return IsRelocatable && Value.isAbsolute();
}

/// Helper method for \see EvaluateSymbolAdd().
static void AttemptToFoldSymbolOffsetDifference(
    const MCAssembler *Asm, const MCAsmLayout *Layout,
    const SectionAddrMap *Addrs, bool InSet, const MCSymbolRefExpr *&A,
    const MCSymbolRefExpr *&B, int64_t &Addend) {
  if (!A || !B)
    return;

  const MCSymbol &SA = A->getSymbol();
  const MCSymbol &SB = B->getSymbol();

  if (SA.isUndefined() || SB.isUndefined())
    return;

  if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
    return;

  auto FinalizeFolding = [&]() {
    // Pointers to Thumb symbols need to have their low-bit set to allow
    // for interworking.
    if (Asm->isThumbFunc(&SA))
      Addend |= 1;

    // If symbol is labeled as micromips, we set low-bit to ensure
    // correct offset in .gcc_except_table
    if (Asm->getBackend().isMicroMips(&SA))
      Addend |= 1;

    // Clear the symbol expr pointers to indicate we have folded these
    // operands.
    A = B = nullptr;
  };

  const MCFragment *FA = SA.getFragment();
  const MCFragment *FB = SB.getFragment();
  // If both symbols are in the same fragment, return the difference of their
  // offsets
  if (FA == FB && !SA.isVariable() && !SA.isUnset() && !SB.isVariable() &&
      !SB.isUnset()) {
    Addend += SA.getOffset() - SB.getOffset();
    return FinalizeFolding();
  }

  const MCSection &SecA = *FA->getParent();
  const MCSection &SecB = *FB->getParent();

  if ((&SecA != &SecB) && !Addrs)
    return;

  if (Layout) {
    // One of the symbol involved is part of a fragment being laid out. Quit now
    // to avoid a self loop.
    if (!Layout->canGetFragmentOffset(FA) || !Layout->canGetFragmentOffset(FB))
      return;

    // Eagerly evaluate when layout is finalized.
    Addend += Layout->getSymbolOffset(A->getSymbol()) -
              Layout->getSymbolOffset(B->getSymbol());
    if (Addrs && (&SecA != &SecB))
      Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));

    FinalizeFolding();
  } else {
    // When layout is not finalized, our ability to resolve differences between
    // symbols is limited to specific cases where the fragments between two
    // symbols (including the fragments the symbols are defined in) are
    // fixed-size fragments so the difference can be calculated. For example,
    // this is important when the Subtarget is changed and a new MCDataFragment
    // is created in the case of foo: instr; .arch_extension ext; instr .if . -
    // foo.
    if (SA.isVariable() || SA.isUnset() || SB.isVariable() || SB.isUnset() ||
        FA->getKind() != MCFragment::FT_Data ||
        FB->getKind() != MCFragment::FT_Data ||
        FA->getSubsectionNumber() != FB->getSubsectionNumber())
      return;
    // Try to find a constant displacement from FA to FB, add the displacement
    // between the offset in FA of SA and the offset in FB of SB.
    int64_t Displacement = SA.getOffset() - SB.getOffset();
    for (auto FI = FB->getIterator(), FE = SecA.end(); FI != FE; ++FI) {
      if (&*FI == FA) {
        Addend += Displacement;
        return FinalizeFolding();
      }

      if (FI->getKind() != MCFragment::FT_Data)
        return;
      Displacement += cast<MCDataFragment>(FI)->getContents().size();
    }
  }
}

static bool canFold(const MCAssembler *Asm, const MCSymbolRefExpr *A,
                    const MCSymbolRefExpr *B, bool InSet) {
  if (InSet)
    return true;

  if (!Asm->getBackend().requiresDiffExpressionRelocations())
    return true;

  const MCSymbol &CheckSym = A ? A->getSymbol() : B->getSymbol();
  if (!CheckSym.isInSection())
    return true;

  if (!CheckSym.getSection().hasInstructions())
    return true;

  return false;
}

/// Evaluate the result of an add between (conceptually) two MCValues.
///
/// This routine conceptually attempts to construct an MCValue:
///   Result = (Result_A - Result_B + Result_Cst)
/// from two MCValue's LHS and RHS where
///   Result = LHS + RHS
/// and
///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
///
/// This routine attempts to aggressively fold the operands such that the result
/// is representable in an MCValue, but may not always succeed.
///
/// \returns True on success, false if the result is not representable in an
/// MCValue.

/// NOTE: It is really important to have both the Asm and Layout arguments.
/// They might look redundant, but this function can be used before layout
/// is done (see the object streamer for example) and having the Asm argument
/// lets us avoid relaxations early.
static bool
EvaluateSymbolicAdd(const MCAssembler *Asm, const MCAsmLayout *Layout,
                    const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS,
                    const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B,
                    int64_t RHS_Cst, MCValue &Res) {
  // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
  // about dealing with modifiers. This will ultimately bite us, one day.
  const MCSymbolRefExpr *LHS_A = LHS.getSymA();
  const MCSymbolRefExpr *LHS_B = LHS.getSymB();
  int64_t LHS_Cst = LHS.getConstant();

  // Fold the result constant immediately.
  int64_t Result_Cst = LHS_Cst + RHS_Cst;

  assert((!Layout || Asm) &&
         "Must have an assembler object if layout is given!");

  // If we have a layout, we can fold resolved differences. Do not do this if
  // the backend requires this to be emitted as individual relocations, unless
  // the InSet flag is set to get the current difference anyway (used for
  // example to calculate symbol sizes).
  if (Asm && canFold(Asm, LHS_A, LHS_B, InSet)) {
    // First, fold out any differences which are fully resolved. By
    // reassociating terms in
    //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
    // we have the four possible differences:
    //   (LHS_A - LHS_B),
    //   (LHS_A - RHS_B),
    //   (RHS_A - LHS_B),
    //   (RHS_A - RHS_B).
    // Since we are attempting to be as aggressive as possible about folding, we
    // attempt to evaluate each possible alternative.
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
                                        Result_Cst);
  }

  // We can't represent the addition or subtraction of two symbols.
  if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
    return false;

  // At this point, we have at most one additive symbol and one subtractive
  // symbol -- find them.
  const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
  const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;

  Res = MCValue::get(A, B, Result_Cst);
  return true;
}

bool MCExpr::evaluateAsRelocatable(MCValue &Res,
                                   const MCAsmLayout *Layout,
                                   const MCFixup *Fixup) const {
  MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
  return evaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
                                   false);
}

bool MCExpr::evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const {
  MCAssembler *Assembler = &Layout.getAssembler();
  return evaluateAsRelocatableImpl(Res, Assembler, &Layout, nullptr, nullptr,
                                   true);
}

static bool canExpand(const MCSymbol &Sym, bool InSet) {
  const MCExpr *Expr = Sym.getVariableValue();
  const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
  if (Inner) {
    if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
      return false;
  }

  if (InSet)
    return true;
  return !Sym.isInSection();
}

bool MCExpr::evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
                                       const MCAsmLayout *Layout,
                                       const MCFixup *Fixup,
                                       const SectionAddrMap *Addrs,
                                       bool InSet) const {
  ++stats::MCExprEvaluate;

  switch (getKind()) {
  case Target:
    return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Layout,
                                                               Fixup);

  case Constant:
    Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
    return true;

  case SymbolRef: {
    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
    const MCSymbol &Sym = SRE->getSymbol();

    // Evaluate recursively if this is a variable.
    if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None &&
        canExpand(Sym, InSet)) {
      bool IsMachO = SRE->hasSubsectionsViaSymbols();
      if (Sym.getVariableValue()->evaluateAsRelocatableImpl(
              Res, Asm, Layout, Fixup, Addrs, InSet || IsMachO)) {
        if (!IsMachO)
          return true;

        const MCSymbolRefExpr *A = Res.getSymA();
        const MCSymbolRefExpr *B = Res.getSymB();
        // FIXME: This is small hack. Given
        // a = b + 4
        // .long a
        // the OS X assembler will completely drop the 4. We should probably
        // include it in the relocation or produce an error if that is not
        // possible.
        // Allow constant expressions.
        if (!A && !B)
          return true;
        // Allows aliases with zero offset.
        if (Res.getConstant() == 0 && (!A || !B))
          return true;
      }
    }

    Res = MCValue::get(SRE, nullptr, 0);
    return true;
  }

  case Unary: {
    const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
    MCValue Value;

    if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, Layout, Fixup,
                                                      Addrs, InSet))
      return false;

    switch (AUE->getOpcode()) {
    case MCUnaryExpr::LNot:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(!Value.getConstant());
      break;
    case MCUnaryExpr::Minus:
      /// -(a - b + const) ==> (b - a - const)
      if (Value.getSymA() && !Value.getSymB())
        return false;

      // The cast avoids undefined behavior if the constant is INT64_MIN.
      Res = MCValue::get(Value.getSymB(), Value.getSymA(),
                         -(uint64_t)Value.getConstant());
      break;
    case MCUnaryExpr::Not:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(~Value.getConstant());
      break;
    case MCUnaryExpr::Plus:
      Res = Value;
      break;
    }

    return true;
  }

  case Binary: {
    const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
    MCValue LHSValue, RHSValue;

    if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, Layout, Fixup,
                                                  Addrs, InSet) ||
        !ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, Layout, Fixup,
                                                  Addrs, InSet)) {
      // Check if both are Target Expressions, see if we can compare them.
      if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS()))
        if (const MCTargetExpr *R = cast<MCTargetExpr>(ABE->getRHS())) {
          switch (ABE->getOpcode()) {
          case MCBinaryExpr::EQ:
            Res = MCValue::get((L->isEqualTo(R)) ? -1 : 0);
            return true;
          case MCBinaryExpr::NE:
            Res = MCValue::get((R->isEqualTo(R)) ? 0 : -1);
            return true;
          default: break;
          }
        }
      return false;
    }

    // We only support a few operations on non-constant expressions, handle
    // those first.
    if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
      switch (ABE->getOpcode()) {
      default:
        return false;
      case MCBinaryExpr::Sub:
        // Negate RHS and add.
        // The cast avoids undefined behavior if the constant is INT64_MIN.
        return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
                                   RHSValue.getSymB(), RHSValue.getSymA(),
                                   -(uint64_t)RHSValue.getConstant(), Res);

      case MCBinaryExpr::Add:
        return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
                                   RHSValue.getSymA(), RHSValue.getSymB(),
                                   RHSValue.getConstant(), Res);
      }
    }

    // FIXME: We need target hooks for the evaluation. It may be limited in
    // width, and gas defines the result of comparisons differently from
    // Apple as.
    int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
    int64_t Result = 0;
    auto Op = ABE->getOpcode();
    switch (Op) {
    case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
    case MCBinaryExpr::Add:  Result = LHS + RHS; break;
    case MCBinaryExpr::And:  Result = LHS & RHS; break;
    case MCBinaryExpr::Div:
    case MCBinaryExpr::Mod:
      // Handle division by zero. gas just emits a warning and keeps going,
      // we try to be stricter.
      // FIXME: Currently the caller of this function has no way to understand
      // we're bailing out because of 'division by zero'. Therefore, it will
      // emit a 'expected relocatable expression' error. It would be nice to
      // change this code to emit a better diagnostic.
      if (RHS == 0)
        return false;
      if (ABE->getOpcode() == MCBinaryExpr::Div)
        Result = LHS / RHS;
      else
        Result = LHS % RHS;
      break;
    case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
    case MCBinaryExpr::GT:   Result = LHS > RHS; break;
    case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
    case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
    case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
    case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
    case MCBinaryExpr::LT:   Result = LHS < RHS; break;
    case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
    case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
    case MCBinaryExpr::NE:   Result = LHS != RHS; break;
    case MCBinaryExpr::Or:   Result = LHS | RHS; break;
    case MCBinaryExpr::OrNot: Result = LHS | ~RHS; break;
    case MCBinaryExpr::Shl:  Result = uint64_t(LHS) << uint64_t(RHS); break;
    case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
    case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
    }

    switch (Op) {
    default:
      Res = MCValue::get(Result);
      break;
    case MCBinaryExpr::EQ:
    case MCBinaryExpr::GT:
    case MCBinaryExpr::GTE:
    case MCBinaryExpr::LT:
    case MCBinaryExpr::LTE:
    case MCBinaryExpr::NE:
      // A comparison operator returns a -1 if true and 0 if false.
      Res = MCValue::get(Result ? -1 : 0);
      break;
    }

    return true;
  }
  }

  llvm_unreachable("Invalid assembly expression kind!");
}

MCFragment *MCExpr::findAssociatedFragment() const {
  switch (getKind()) {
  case Target:
    // We never look through target specific expressions.
    return cast<MCTargetExpr>(this)->findAssociatedFragment();

  case Constant:
    return MCSymbol::AbsolutePseudoFragment;

  case SymbolRef: {
    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
    const MCSymbol &Sym = SRE->getSymbol();
    return Sym.getFragment();
  }

  case Unary:
    return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();

  case Binary: {
    const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
    MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
    MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();

    // If either is absolute, return the other.
    if (LHS_F == MCSymbol::AbsolutePseudoFragment)
      return RHS_F;
    if (RHS_F == MCSymbol::AbsolutePseudoFragment)
      return LHS_F;

    // Not always correct, but probably the best we can do without more context.
    if (BE->getOpcode() == MCBinaryExpr::Sub)
      return MCSymbol::AbsolutePseudoFragment;

    // Otherwise, return the first non-null fragment.
    return LHS_F ? LHS_F : RHS_F;
  }
  }

  llvm_unreachable("Invalid assembly expression kind!");
}